
Chapter 7

Analyzing Hogwild Parallel Gaussian
Gibbs Sampling

⌅ 7.1 Introduction

Scaling probabilistic inference algorithms to large datasets and parallel computing ar-

chitectures is a challenge of great importance and considerable current research interest,

and great strides have been made in designing parallelizeable algorithms. Along with

the powerful and sometimes complex new algorithms, a very simple strategy has proven

to be surprisingly useful in some situations: running local Gibbs sampling updates on

multiple processors in parallel while only periodically communicating updated statistics

(see Section 7.4 for details). We refer to this strategy as “Hogwild Gibbs sampling” in

reference to recent work [84] in which sequential computations for computing gradient

steps were applied in parallel (without global coordination) to great beneficial e↵ect.

This Hogwild Gibbs sampling strategy is not new; indeed, Gonzalez et al. [42]

attributes a version of it to the original Gibbs sampling paper (see Section 7.2 for

a discussion), though it has mainly been used as a heuristic method or initialization

procedure without theoretical analysis or guarantees. However, extensive empirical

work on Approximate Distributed Latent Dirichlet Allocation (AD-LDA) [83, 82, 73,

7, 55], which applies the strategy to generate samples from a collapsed LDA model

[12], has demonstrated its e↵ectiveness in sampling LDA models with the same or

better predictive performance as those generated by standard serial Gibbs [83, Figure

3]. The results are empirical and so it is di�cult to understand how model properties

and algorithm parameters might a↵ect performance, or whether similar success can be

expected for any other models. There have been recent advances in understanding some

of the particular structure of AD-LDA [55], but a thorough theoretical explanation for

the e↵ectiveness and limitations of Hogwild Gibbs sampling is far from complete.

Sampling-based inference algorithms for complex Bayesian models have notoriously

resisted theoretical analysis, so to begin an analysis of Hogwild Gibbs sampling we

consider a restricted class of models that is especially tractable for analysis: Gaussians.
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Gaussian distributions and algorithms are tractable because of their deep connection

with linear algebra. Further, Gaussian sampling is of significant interest in its own

right, and there is active research in developing e↵ective Gaussian samplers [72, 89,

90, 29]. Gaussian Hogwild Gibbs sampling can be used in conjunction with those

methods to allow greater parallelization and scalability, provided some understanding

of its applicability and tradeo↵s.

The main contribution of this chapter is a linear algebraic framework for analyzing

the stability and errors in Gaussian Hogwild Gibbs sampling. Our framework yields

several results, including a simple proof for a su�cient condition for all Gaussian Hog-

wild Gibbs sampling processes to be stable and yield the correct asymptotic mean no

matter the allocation of variables to processors. Our framework also provides an anal-

ysis of errors introduced in the process covariance, which in one case of interest leads

to an inexpensive correction for those errors.

In Section 7.2 we discuss some related work in greater detail. In Section 7.3 we

overview known connections between Gaussian sampling and linear system solvers,

connections on which we build to provide an analysis for Hogwild Gibbs sampling.

In Section 7.4 we precisely define the parallel updating scheme. Finally, in Section 7.5

we present our analytical framework and main results on Gaussian models.

⌅ 7.2 Related work

There has been significant work on constructing parallel Gibbs sampling algorithms, and

the contributions are too numerous to list here. One recent body of work [42] provides

exact parallel Gibbs samplers which exploit particular graphical model structure for

parallelism. The algorithms are supported by the standard Gibbs sampling analysis,

and the authors point out that while heuristic parallel samplers such as the AD-LDA

sampler o↵er easier implementation and often greater parallelism, they are currently

not supported by much theoretical analysis. Gonzalez et al. [42] attribute one version

(see Section 7.4) of Hogwild Gibbs to the original Gibbs sampling paper [39] and refer

to it as Synchronous Gibbs, though the Gibbs sampling paper only directly discusses

an asynchronous implementation of their exact Gibbs sampling scheme rather than a

parallelized approximation [39, Section XI]. Gonzalez et al. [42] also gives a result on

Synchronous Gibbs in the special case of two processors.

The parallel sampling work that is most relevant to the proposed Hogwild Gibbs

sampling analysis is the thorough empirical demonstration of AD-LDA [83, 82, 73, 7,

55] and its extensions. The AD-LDA sampling algorithm is an instance of the strategy

we have named Hogwild Gibbs, and Bekkerman et al. [7, Chapter 11] suggests applying

the strategy to other latent variable models.

The work of Ihler and Newman [55] provides some understanding of the e↵ective-
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ness of a variant of AD-LDA by bounding in terms of run-time quantities the one-step

error probability induced by proceeding with sampling steps in parallel, thereby allow-

ing an AD-LDA user to inspect the computed error bound after inference [55, Section

4.2]. In experiments, the authors empirically demonstrate very small upper bounds on

these one-step error probabilities, e.g. a value of their parameter " = 10�4 meaning

that at least 99.99% of samples are expected to be drawn just as if they were sam-

pled sequentially. However, this per-sample error does not necessarily provide a direct

understanding of the e↵ectiveness of the overall algorithm because errors might accu-

mulate over sampling steps; indeed, understanding this potential error accumulation

is of critical importance in iterative systems. Furthermore, the bound is in terms of

empirical run-time quantities, and thus it does not provide guidance regarding on which

other models the Hogwild strategy may be e↵ective. Ihler and Newman [55, Section

4.3] also provides approximate scaling analysis by estimating the order of the one-step

bound in terms of a Gaussian approximation and some distributional assumptions.

Finally, Niu et al. [84] provides both a motivation for Hogwild Gibbs sampling as

well as the Hogwild name. The authors present “a lock-free approach to parallelizing

stochastic gradient descent” (SGD) by providing analysis that shows, for certain com-

mon problem structures, that the locking and synchronization needed for a stochastic

gradient descent algorithm to converge on a multicore architecture are unnecessary, and

in fact the robustness of the SGD algorithm compensates for the uncertainty introduced

by allowing processors to perform updates without locking their shared memory.

⌅ 7.3 Gaussian sampling background

In this section we fix notation for Gaussian distributions and describe known connec-

tions between Gaussian sampling and a class of stationary iterative linear system solvers

which are useful in analyzing the behavior of Hogwild Gibbs sampling.

The density of a Gaussian distribution on n variables with mean vector µ and

positive definite1 covariance matrix ⌃ � 0 has the form

p(x) / exp
n

�1
2(x � µ)T⌃�1(x � µ)

o

/ exp
��1

2x
TJx + hTx

 

(7.3.1)

where we have written the information parameters J , ⌃�1 and h , Jµ. The matrix

J is often called the precision matrix or information matrix, and it has a natural

interpretation in the context of Gaussian graphical models: its entries are the coe�cients

on pairwise log potentials and its sparsity pattern is exactly the sparsity pattern of a

graphical model. Similarly h, also called the potential vector, encodes node potentials

and evidence.
1We assume models are non-degenerate, i.e. that covariances are of full rank.
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In many problems [113] one has access to the pair (J, h) and must compute or

estimate the moment parameters µ and ⌃ (or just the diagonal) or generate samples

from N (µ, ⌃). Sampling provides both a means for estimating the moment parameters

and a subroutine for other algorithms. Computing µ from (J, h) is equivalent to solving

the linear system Jµ = h for µ.

One way to generate samples is via Gibbs sampling, in which one iterates sampling

each xi conditioned on all other variables to construct a Markov chain for which the

invariant distribution is the target N (µ, ⌃). The conditional distributions for Gibbs

sampling steps are

p(xi|x¬i = x̄¬i) / exp

⇢

�1

2

�

xi x̄T
¬i
�

✓

Jii Ji¬i
J¬ii J¬i¬i

◆✓

xi

x̄¬i

◆

+

�

hi hT
¬i
�

✓

xi

x̄¬i

◆�

(7.3.2)

/ exp

⇢

�1

2
Jiix

2
i + (hi � Ji¬ix̄¬i)xi

�

(7.3.3)

where the indexing x¬i , (xj : j 6= i) 2 Rn�1 denotes all the variables other than xi

and Ji¬i , (Jij : j 6= i) denotes the ith row of J with its ith entry removed. That is, we

update each xi to be a scalar Gaussian sample with mean 1
Jii

(hi� Ji¬ix̄i) and variance
1
Jii

or, equivalently,

xi  1

Jii
(hi � Ji¬ix̄¬i) + vi where vi

iid⇠ N (0,
1

Jii
). (7.3.4)

Since each variable update is a linear function of other variables with added Gaussian

noise, we can collect one scan for i = 1, 2, . . . , n into a matrix equation relating the

sampler state vector at t and t + 1:

x(t+1) = �D�1Lx(t+1) �D�1LTx(t) + D�1h + D� 1

2 ṽ(t) (7.3.5)

ṽ(t)
iid⇠ N (0, I). (7.3.6)

where we have split J = L + D + LT into its strictly lower-triangular, diagonal, and

strictly upper-triangular parts, respectively. Note that x(t+1) appears on both sides of

the equation, and that the sparsity patterns of L and LT ensure that the updated value

x(t+1)
i depends only on x(t)

a and x(t+1)
b for all a > i and b < i. We can rearrange the

equation into an update expression:
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(I + D�1L)x(t+1) = �D�1LTx(t) + D�1h + D� 1

2 v(t) (7.3.7)

x(t+1) = �(D + L)�1LTx(t) + (D + L)�1h + (D + L)�1D
1

2 v(t) (7.3.8)

= �(D + L)�1LTx(t) + (D + L)�1h + (D + L)�1ṽ(t) (7.3.9)

ṽ(t)
iid⇠ N (0, D). (7.3.10)

The expectation of this update is exactly the Gauss-Seidel iterative linear system

solver update [9, Section 7.3] applied to Jµ = h, i.e. x(t+1) = �(D + L)�1LTx(t) +

(D + L)�1h. Therefore a Gaussian Gibbs sampling process can be interpreted as Gauss-

Seidel iterates on the system Jµ = h with appropriately-shaped noise injected at each

iteration.

Gauss-Seidel is one instance of a stationary iterative linear solver based on a matrix

splitting. In general, one can construct a stationary iterative linear solver for any

splitting J = M � N where M is invertible, and similarly one can construct iterative

Gaussian samplers via

x(t+1) = (M�1N)x(t) + M�1h + M�1v(t) (7.3.11)

v(t)
iid⇠ N (0, MT + N) (7.3.12)

with the constraint that MT + N ⌫ 0 (i.e. that the splitting is P-regular [77]). For a

stationary iterative process like (7.3.11) to be stable or convergent for any initialization

we require the eigenvalues of its update map to lie in the interior of the complex unit

disk, i.e. ⇢(M�1N) , maxi |�i(M�1N)| < 1 [9, Lemma 7.3.6]. The Gauss-Seidel solver

(and Gibbs sampling) correspond to choosing M to be the lower-triangular part of J

and N to be the negative of the strict upper-triangle of J . J � 0 is a su�cient condition

for Gauss-Seidel to be convergent [9, Theorem 7.5.41] [101], and the connection to Gibbs

sampling provides an alternative proof.

For solving linear systems with splitting-based algorithms, the complexity of solving

linear systems in M directly a↵ects the computational cost per iteration. For the Gauss-

Seidel splitting (and hence Gibbs sampling), M is chosen to be lower-triangular so that

the corresponding linear system can be solved e�ciently via back-substitution. In the

sampling context, the per-iteration computational complexity is also determined by the

covariance of the injected noise process v(t), because at each iteration one must sample

from a Gaussian distribution with covariance MT + N .

We highlight one other standard stationary iterative linear solver that is relevant

to analyzing Gaussian Hogwild Gibbs sampling: Jacobi iterations, in which one splits
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J = D � A where D is the diagonal part of J and A is the negative of the o↵-diagonal

part. Due to the choice of a diagonal M , each coordinate update depends only on

the previous sweep’s output, and thus the Jacobi update sweep can be performed in

parallel. A su�cient condition for the convergence of Jacobi iterates is for J to be a

generalized diagonally dominant matrix (i.e. an H-matrix) [9, Definition 5.13]. A simple

proof 2 due to Ruozzi and Tatikonda [96], is to consider Gauss-Seidel iterations on a

lifted 2n ⇥ 2n system:
 

D �A

�A D

!

G-S update�������!
 

D�1

D�1AD�1 D�1

! 

A
!

=

 

D�1A

(D�1A)
2

!

(7.3.13)

where zero entries are left blank where dimensions can be inferred. Therefore one

iteration of Gauss-Seidel on the lifted system corresponds to two iterations of the Ja-

cobi update D�1A to the latter n entries in the lifted system, so Jacobi iterations

converge if Gauss-Seidel on the lifted system converges. Furthermore, a su�cient con-

dition for Gauss-Seidel to converge on the lifted system is for the lifted matrix to be

positive definite, and by taking Schur complements we require D � AD�1A � 0 or

I � (D� 1

2 AD� 1

2 )(D� 1

2 AD� 1

2 ) � 0, which is equivalent to requiring strict generalized

diagonal dominance of J [9, Theorem 5.14].

⌅ 7.4 Hogwild Gibbs model

In this section, we define the Hogwild Gibbs computational model and fix some notation

for the iterative process that we use for the remainder of the chapter.

As with standard Gibbs sampling, we assume we are given a collection of n random

variables {xi : i 2 [n]} where [n] , {1, 2, . . . , n} and that we can sample from the

conditional distributions xi|x¬i. Gibbs sampling is an iterative Markov process on the

state vector x(t) for times t = 1, 2, . . . so that the stationary distribution is the joint

distribution of {xi : i 2 [n]}.

For Hogwild Gibbs, we assume we are given a partition {I1, I1, . . . , IK} of [n] that

represents an allocation of the state vector to K processors, so that the kth proces-

sor updates the state values indexed by Ik. We assume each partition element Ik is

contiguous and ordered and we write xIk , (xi : i 2 Ik) to denote the corresponding

sub-vector of any vector x. We keep this partition fixed over time for the majority of

this chapter, though we describe a generalization in Theorem 7.6.7.

The Hogwild Gibbs algorithm is shown in Algorithm 7.1. We define two iterations:

outer iterations, which count the number of global synchronizations among the proces-

2 When J is symmetric one can arrive at the same condition by applying a similarity transform as
in Proposition 7.7.4. We use the lifting argument here because we extend the idea in our other proofs.
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Algorithm 7.1 Hogwild Gibbs

Input: Joint distribution over x = (x1, . . . , xn), partition {I1, . . . , IK} of {1, 2, . . . , n}
Initialize x̄(1)

for t = 1, 2, . . . do
for k = 1, 2, . . . , K in parallel do

x̄(t+1)
Ik  LocalGibbs(x̄(t), Ik, q(t, k))

function LocalGibbs(x̄, I, q)
for j = 1, 2, . . . , q do

for i 2 I in order do
x̄i  sample xi|x¬i = x̄¬i

return x̄

sors, and inner iterations, which count processor-local Gibbs scans. That is, during

outer iteration t (for each t = 1, 2, . . .), processor k runs a number q(t, k) of inner iter-

ations, each of which consists of a systematic scan Gibbs update [94, Algorithm A.40]

of its variables indexed by Ik. During the inner iterations on each processor, the pro-

cessors do not communicate; in particular, all inner iterations on processor k compute

Gibbs updates using out-of-date values of xi for i 62 Ik. Processors synchronize values

once per outer iteration, and we write x(t) for the globally shared value before the inner

iterations of outer iteration t. For the majority of this chapter, we fix the number of

inner iterations performed to be constant for all processors and for all outer iterations,

so that q(t, k) = q, though we describe a generalization in Theorem 7.6.7.

There are several special cases of this general scheme that may be of interest. The

Synchronous Gibbs scheme of Gonzalez et al. [42] corresponds to associating one variable

to each processor, so that |Ik| = 1 for each k = 1, 2, . . . , K (in which case we may take

q = 1 since no local iterations are needed with a single variable). More generally, it

is particularly interesting to consider the case where the partition is arbitrary and q is

very large, in which case the local Gibbs iterations can mix and exact block samples

are drawn on each processor using old statistics from other processors for each outer

iteration. Finally, note that setting K = 1 and q = 1 reduces to standard Gibbs

sampling on a single processor.

⌅ 7.5 Gaussian analysis setup

Given that Gibbs sampling iterations and Jacobi solver iterations can each be written

as iterations of a stochastic linear dynamical system (LDS), it is not surprising that

Gaussian Hogwild Gibbs sampling can also be expressed as an LDS by appropriately

composing these ideas. In this section we describe the LDS corresponding to Gaussian

Hogwild Gibbs sampling and provide convergence and error analysis, along with a
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A B C

Figure 7.1: Support pattern (in black) of the Hogwild splitting J = B � C � A with
n = 9 and the processor partition {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}.

connection to a class of linear solvers.

Given a joint Gaussian distribution of dimension n represented by a pair (J, h) as

in (7.3.1), consider a block-Jacobi splitting of J into its block diagonal and o↵-block-

diagonal components, J = Dbd�A, according to the partition. A includes the entries of

J corresponding to cross-processor terms, and this block-Jacobi splitting will model the

outer iterations in Algorithm 7.1. We further perform a Gauss-Seidel splitting on Dbd

into (block-diagonal) lower-triangular and strictly upper-triangular parts, Dbd = B�C;

these processor-local Gauss-Seidel splittings model the inner itertions in Algorithm 7.1.

We refer to this splitting J = B � C � A as the Hogwild splitting; see Figure 7.1 for an

example.

For each outer iteration of the Hogwild Gibbs sampler we perform q processor-local

Gibbs steps, e↵ectively applying the block-diagonal update B�1C repeatedly using

Ax(t) + h as a potential vector that includes out-of-date statistics from the other pro-

cessors. The resulting update operator for one outer iteration of the Hogwild Gibbs

sampling process is

x(t+1) = (B�1C)
q
x(t) +

q�1
X

j=0

(B�1C)
j
B�1

⇣

Ax(t) + h + v(t,j)
⌘

(7.5.1)

v(t,j)
iid⇠ N (0, D) (7.5.2)

where D is the diagonal of J . Note that we shape the noise diagonally because in Hog-

wild Gibbs sampling we simply apply standard Gibbs updates in the inner iterations.

⌅ 7.6 Convergence and correctness of means

Because the Gaussian Hogwild Gibbs sampling iterates form a Gaussian linear dynam-

ical system, the process is stable (i.e. its iterates converge in distribution) if and only
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if [9, Lemma 7.3.6] the deterministic part of the update map (7.5.2) has spectral radius

less than unity, i.e.

T , (B�1C)
q
+

q�1
X

j=0

(B�1C)
j
B�1A (7.6.1)

= (B�1C)
q
+ (I � (B�1C)

q
)(I � (B�1C))

�1
B�1A (7.6.2)

= (B�1C)
q
+ (I � (B�1C)

q
)(B � C)�1A (7.6.3)

= T q
ind + (I � T q

ind)Tbl, (7.6.4)

where

Tind , (B�1C) Tbl , (B � C)�1A, (7.6.5)

satisfies ⇢(T ) < 1. The term Tind is the block Gauss-Seidel update when A = 0 and the

processors’ random variables are independent, while the term Tbl is the block Jacobi

update, which corresponds to solving the processor-local linear systems exactly at each

outer iteration. The update (7.6.4) falls into the class of two-stage splitting methods

[77, 35, 34], and the next proposition is equivalent to such two-stage solvers having the

correct fixed point.

Proposition 7.6.1. If a Gaussian Hogwild Gibbs process is stable, then its mean is

µ = J�1h.

Proof. If the process is stable the mean process has a unique fixed point, from (7.5.2)

and (7.6.4) and using the definitions of Tind and Tblock we can write the fixed-point

equation for the process mean µHog as

(I � T )µHog = (I � Tind)(I � Tblock)µHog = (I � Tind)(B � C)�1h, (7.6.6)

hence (I � (B � C)�1A)µHog = (B � C)�1h and µHog = (B � C � A)�1h = J�1h.

The behavior of the spectral radius of the update map can be very complicated. In

Figure 7.2, we compare ⇢(T ) for q = 1 and q = 1 for models generated from a simple

random ensemble. Each point corresponds to a sampled model J = QQT + nrI with

Qij
iid⇠ N (0, 1) and r

iid⇠ Uniform[0.5, 1], and the value of each point’s vertical coordinate

is the spectral radius of the Hogwild update T when q = 1 (i.e. T = Tblock) while the

horizontal coordinate is the spectral radius of T when q = 1. Hogwild Gibbs sampling

on the model is convergent with q = 1 when the point is to the left of the vertical

red line, and it is convergent as q = 1 when the point is below the horizontal line.

The figure shows that, while convergence in the two cases shows a positive correlation,

Hogwild Gibbs can be convergent when q = 1 and not when q = 1 and it can be
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Figure 7.2: Comparing Hogwild stability on random models for extreme values of
the inner iteration count q. Each point corresponds to a sampled model, where the
horizontal coordinate is the spectral radius at q = 1 and the vertical coordinate is the
spectral radius at q = 1.

convergent when q = 1 and not when q = 1. Therefore the behavior of the algorithm

with varying q is di�cult to understand in general.

Despite the complexity of the update map’s stability, in the next subsection we give

a simple argument that identifies its convergence with the convergence of Gauss-Seidel

iterates on a larger, non-symmetric linear system. Given that relationship we then

prove a condition on the entries of J that ensures the stability of the Gaussian Hogwild

Gibbs sampling process.

⌅ 7.6.1 A lifting argument and su�cient condition

First observe that we can write multiple steps of Gauss-Seidel as a single step of Gauss-

Seidel on a larger system: given J = L � U where L is lower-triangular (including the

diagonal, unlike the notation of Section 7.3) and U is strictly upper-triangular, consider

applying Gauss-Seidel to a larger block k ⇥ k system:

 L �U
�U L

.. .
. . .
�U L

!

G-S��!
0

@

L�1

L�1UL�1 L�1

...
. . .

(L�1U)
k�1

L�1 ··· L�1UL�1 L�1

1

A

 

U
!

=

 

L�1U
...

(L�1U)k

!

(7.6.7)

Therefore one step of Gauss-Seidel on the larger system corresponds to k applications

of the Gauss-Seidel update L�1U from the original system to the last block element of

the lifted state vector.

Now we provide a lifted linear system on which Gauss-Seidel iterations correspond

to applying Gaussian Hogwild Gibbs iterations to a block component.
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Proposition 7.6.2. Two applications of the Hogwild update T of (7.6.4) are equivalent

to the update to the last block element of the state vector in one Gauss-Seidel iteration

on the (2qn) ⇥ (2qn) system

 

E �F

�F E

!

x̃ =

✓

h
...
h

◆

with E =

 B
�C B

.. .
. . .
�C B

!

F =

 

A+C
A
...
A

!

. (7.6.8)

That is, if P =
⇣

0 · · · 0 I
⌘

is n ⇥ 2qn with an n ⇥ n identity as its last block entry,

then

P

 

E

�F E

!�1 

F
!

PT = P

 

E�1F

(E�1F )2

!

PT = T 2. (7.6.9)

Proof. It su�ces to consider E�1F . Furthermore, since the claim concerns the last block

entry, we need only consider the last block row of E�1F . E is block lower-bidiagonal

and hence E�1 has the same lower-triangular form as in (7.6.7),

E�1 =

0

@

B�1

B�1CB�1 B�1

...
. . .

. . .

(B�1C)
q�1

B�1 ... B�1CB�1 B�1

1

A , (7.6.10)

and the product of the last block row of E�1 with the last block column of F yields

⇣

(B�1C)
q�1

B�1 . . . (B�1C)B�1 B�1
⌘

· �A + C A . . . A
�

(7.6.11)

= (B�1C)
q
+

q�1
X

j=0

(B�1C)
j
B�1A = T. (7.6.12)

Proposition 7.6.3. Gaussian Hogwild Gibbs sampling is convergent if Gauss-Seidel

converges on the system (7.6.8).

To give a su�cient condition for the convergence of Gauss-Seidel on the lifted system

and hence the Gaussian Hogwild Gibbs process, we first state a standard result for

Gauss-Seidel and a simple corollary.

Lemma 7.6.4 (Theorem 6.2 [22]). If J is strictly diagonally dominant then its Gauss-

Seidel update matrix is a contraction in max norm; that is, if for every i we have

|Jii| >
P

j 6=i |Jij | then letting J = L � U where L is lower-triangular and U is strictly
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upper-triangular we have

||L�1U ||1 < 1 where ||A||1 , sup
x6=0

||Ax||1
||x||1 = max

i

n
X

j=1

|Aij | (7.6.13)

and where ||x||1 , maxi |xi|.

Note that the Gauss-Seidel update being a contraction in any induced matrix norm

immediately implies it is convergent since the spectral radius is upper bounded by any

induced norm; that is, ⇢(A)  ||A|| for any induced matrix norm || · || because if v is

the eigenvector corresponding to an eigenvalue of A that achieves its spectral radius

then

||A|| = sup
x6=0

||Ax||
||x|| � ||Av||

||v|| = ⇢(A). (7.6.14)

We can extend the lemma slightly by considering generalized diagonally dominant

matrices and adapting the max norm accordingly.

Corollary 7.6.5. If J is strictly generalized diagonally dominant then its Gauss-Seidel

update matrix is a contraction in a weighted max norm; that is, if there exists an r 2 Rn

with r > 0 entrywise such that for every i we have ri|Jii| >
P

j 6=i rj |Jij |, then letting

J = L � U where L is lower-triangular and U is strictly upper-triangular we have

||L�1U ||r1 < 1 where ||A||r1 , sup
x6=0

||Ax||r1
||x||r1

= max
i

1

ri

n
X

j=1

|Aij |rj (7.6.15)

and where ||x||r1 , maxi
1
ri

|xi|.

Proof. Let R , diag(r) and note that JR is strictly diagonally dominant. Therefore by

Lemma 7.6.4 we have that

1 > ||R�1L�1UR||1 = max
x6=0

||R�1L�1URx||1
||x||1 (7.6.16)

= max
x 6=0

||L�1URx||r1
||x||1 (7.6.17)

= max
x 6=0

||L�1U ||r1
||x||r1

= ||L�1U ||r1 (7.6.18)

where we have used ||x||r1 = ||R�1x||1 and on the last line substituted x 7! R�1x.
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With generalized diagonal dominance as a su�cient condition for Gauss-Seidel con-

vergence, we can use the lifting construction of Proposition 7.6.2 to give a su�cient

condition for the convergence of Gaussian Hogwild Gibbs.

Theorem 7.6.6. If J is strictly generalized diagonally dominant, that is if there exists

an r 2 Rn with r > 0 entrywise such that

ri|Jii| >
X

j 6=i

rj |Jij |, (7.6.19)

then Gaussian Hogwild Gibbs sampling is convergent for any fixed variable partition and

any fixed number of inner iterations. Further, we have ||T ||r1 < 1.

Proof. Since each scalar row of the coe�cient matrix in (7.6.8) contains only entries from

one row of J and zeros, it is generalized diagonally dominant with a scaling vector that

consists of 2q copies of r. Gauss-Seidel iterations on generalized diagonally dominant

systems are convergent by Lemma 7.6.4 and so by Proposition 7.6.3 the corresponding

Gaussian Hogwild Gibbs iterations are convergent.

To show the stronger result that the update is a contraction, first we define eT to be

the Gauss-Seidel update matrix for the system (7.6.8), i.e.

eT ,
 

E

�F E

!�1 

F
!

, (7.6.20)

and we define er to be 2q copies of r. For any x 2 Rn we have

||x||r1 = ||PTx||er1 > || eTPTx||er1 � ||P eTPTx||r1 = ||Tx||r1 (7.6.21)

where we have used the orthogonality of P and Corollary 7.6.5.

Note that the lifting construction in (7.6.8) immediately generalizes to the case

where the number of inner iterations varies from processor to processor. Furthermore,

the proof of Theorem 7.6.6 shows that T is a contraction in || · ||r1 regardless of the

partition or structure or inner iteration counts. Therefore we can immediately generalize

the result to the non-stationary case, where the numbers of inner iterations and even

the partition structure vary across outer iterations.

Theorem 7.6.7. If J is strictly generalized diagonally dominant, then for any inner

iteration schedule q with 1  q(t, k) < qmax (for t = 1, 2, . . ., k = 1, 2, . . . , K, and

any qmax < 1) and any sequence of partitions I(t) = {I(t)
1 , . . . , I(t)

K } Gaussian Hogwild

Gibbs is convergent.
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Proof. We write T for the set of all possible update maps T , where T (t) is a function

of both q(t, k) and I(t). The process is convergent if the joint spectral radius [95, 62]

of T satisfies

⇢(T ) , lim
`!1

sup{||T1 · · · T`||
1

` : Ti 2 T } < 1 (7.6.22)

where || · || is any matrix norm. We use the matrix norm induced by the vector norm

|| · ||r1 defined in (7.6.15) and note that any induced norm is submultiplicative, so that

for any matrices T1 and T2

||T1T2||r1  ||T1||r1||T2||r1. (7.6.23)

Then, using the submultiplicative property and the contraction property from Theo-

rem 7.6.6, for any ` and any T1, T2, . . . , T` 2 T we have

(||T1 · · · T`||r1)
1

`  (||T1||r1 · · · ||T`||r1)
1

`  1 � ✏ (7.6.24)

for some ✏ > 0 using the fact that T is finite. Therefore ⇢(T ) < 1 and the process is

convergent.

Generalized diagonally dominant matrices are also known as H-matrices [9, Defini-

tion 5.13]; see Berman and Plemmons [9, Theorem 5.14] for a long list of equivalent

characterizations. For an H-matrix to be a valid precision matrix it must also be posi-

tive semidefinite (PSD). Such matrices can also be described as having factor-width two

[13]; that is, a PSD H-matrix J can be factored as J = GGT where G is a rectangular

matrix in which each column has at most two nonzeros.

In terms of Gaussian graphical models, generalized diagonally dominant models in-

clude tree models and latent tree models (since H-matrices are closed under Schur com-

plements), in which the density of the distribution can be written as a tree-structured

set of pairwise potentials over the model variables and a set of latent variables. Latent

tree models are useful in modeling data with hierarchical or multiscale relationships,

and this connection to latent tree structure is evocative of many hierarchical Bayesian

models. PSD H-matrices also include walk-summable matrices [75], for which the Gaus-

sian Loopy Belief Propagation algorithm converges and yields correct mean estimates.

More broadly, diagonally dominant systems are well-known for their tractability and

applicability in many other settings [63], and Gaussian Hogwild Gibbs provides another

example of their utility.

Because of the connection to linear system solvers known as two-stage multisplit-

tings, these results can be identified with Theorem 2.3 of Frommer and Szyld [34], which

shows that if the coe�cient matrix is an H-matrix then the corresponding two-stage

iterative solver is convergent. Indeed, by the connection between solvers and samplers
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one can prove these convergence theorems as corollaries to Frommer and Szyld [34,

Theorem 2.3] (or vice-versa), though our proof technique is much simpler. The other

results on two-stage multisplittings [34, 77], including the results on asynchronous it-

erations, can also be applied immediately for results on the convergence of Gaussian

Hogwild Gibbs sampling.

The su�cient conditions provided by Theorems 7.6.6 and 7.6.7 are coarse in that

they provide convergence for any partition or update schedule. However, given the

complexity of the processes, as exhibited in Figure 7.2, it is di�cult to provide general

conditions without taking into account some model structure.

⌅ 7.6.2 Exact local block samples

Convergence analysis simplifies greatly in the case where exact block samples are drawn

at each processor because q is su�ciently large or because another exact sampler [90,

29] is used on each processor. This regime of Hogwild Gibbs sampling is particularly

interesting because it minimizes communication between processors.

In (7.5.2), we see that as q ! 1 we have T ! Tblock; that is, the deterministic part

of the update becomes the block Jacobi update map, which admits a natural su�cient

condition for convergence:

Proposition 7.6.8. If ((B � C)�
1

2 A(B � C)�
1

2 )2 � I, then block Gaussian Hogwild

Gibbs sampling converges.

Proof. Since similarity transformations preserve eigenvalues, with Ā , (B�C)�
1

2 A(B�
C)�

1

2 we have ⇢(Tblock) = ⇢((B � C)
1

2 (B � C)�1A(B � C)�
1

2 ) = ⇢(Ā) and since Ā is

symmetric Ā2 � I ) ⇢(Ā) < 1 ) ⇢(Tblock) < 1.

⌅ 7.7 Variances

Since we can analyze Gaussian Hogwild Gibbs sampling as a linear dynamical system,

we can write an expression for the steady-state covariance ⌃Hog of the process when it is

stable. For a general stable LDS of the form x(t+1) = Tx(t) + v(t) with v(t) ⇠ N (0, ⌃inj)

where ⌃inj is the injected noise of the system, the steady-state covariance is given by

the series
P1

t=0 T t⌃injT tT, which is the solution to the linear discrete-time Lyapunov

equation ⌃ = T⌃TT + ⌃inj in ⌃ [20, 105].

The injected noise ⌃inj for the the Hogwild iterations is determined by the inner

iterations, which itself is a linear dynamical system with injected noise covariance D,

the diagonal of J . For Hogwild sampling we have ⌃inj = (I � T q
ind)(B � C)�1D(B �

C)�1(I � T q
ind)

T. The target covariance is J�1 = (B � C � A)�1.

Composing these expressions we see that the Hogwild covariance is complicated in

general, but we can analyze some salient properties in at least two regimes of particular
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Algorithm 7.2 Hogwild Gibbs with Symmetric Local Sweeps

Input: Joint distribution over x = (x1, . . . , xn), partition {I1, . . . , IK} of {1, 2, . . . , n}
Initialize x̄(1)

for t = 1, 2, . . . do
for k = 1, 2, . . . , K in parallel do

x̄(t+1)
Ik  LocalGibbs(x̄(t), Ik, q(t, k))

function LocalGibbs(x̄, I, q)
for j = 1, 2, . . . , q do

for i 2 I in order do
x̄i  sample xi|x¬i = x̄¬i

for i 2 I in reverse order do
x̄i  sample xi|x¬i = x̄¬i

return x̄

interest: first when A is small so that higher-order powers of A can be ignored, and

second when local processors draw exact block samples (e.g. when q !1).

⌅ 7.7.1 Low-order e↵ects in A

Intuitively, the Hogwild strategy works best when cross-processor interactions are small,

and so it is natural to analyze the case when A is small and we can discard terms that

include powers of A beyond first or second order. To provide an analysis for the low-

order regime, we first describe a variant of the Hogwild Gibbs algorithm that enables

more detailed spectral analysis. We also fix notation for derivatives. The results in

this subsection assume that the Hogwild process is convergent, which is guaranteed for

small enough A by continuity of the spectral radius.

For the remainder of Section 7.7.1 we analyze a slight variant of the Hogwild Gibbs

algorithm in which processor-local Gibbs update sweeps are performed once in order

and once in reverse order for each local iteration, as shown in Algorithm 7.2. This

variant is more amenable to spectral analysis because its corresponding inner splitting

has more structure than the Gauss-Seidel inner splitting of Algorithm 7.1. To see the

di�culty with the Gauss-Seidel inner splitting, consider the splitting

0
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This Gauss-Seidel update is not diagonalizable; its Jordan form is

0

B

@

0 0.7

0.72 0.7

0.73 0.72

1

C

A

=

0

B

@

�0.35 5
14 � 5

14

0 0.5 0.5

0 0.35 �0.35

1

C

A

0

B

@

0 1

0

0.98

1

C

A

0

B

@

�0.35 5
14 � 5

14

0 0.5 0.5

0 0.35 �0.35

1

C

A

�1

(7.7.2)

and so there is no basis of eigenvectors for the invariant subspace with eigenvalue 0. In

general, a Gauss-Seidel update matrix may not be diagonalizable, and little can be said

about its eigenvalues.

The inner splitting update matrix for Algorithm 7.2 is that of symmetric Gauss-

Seidel, or Symmetric Successive Over-Relaxation (SSOR) with unit relaxation parame-

ter [22]. This update has much clearer spectral properties, as we show in the following

lemma. This lemma extends slightly a standard result that the eigenvalues of the SSOR

update are real [22, p. 299].

Lemma 7.7.1. Let J � 0 and let J = D �L�LT, where D is the diagonal of J and L

and LT are its strictly lower- and upper-triangular parts, respectively. The symmetric

Gauss-Seidel update matrix

(D � LT)�1L(D � L)�1LT (7.7.3)

is diagonalizable, and furthermore its eigenvalues are real and in [0, 1).

Proof. We first show (7.7.3) is similar to a positive semidefinite matrix whenever J

is symmetric. By applying the similarity transformation X 7! P�1XP where P ,
(D � L)�1D

1

2 , we see (7.7.3) has the same eigenvalues as

D� 1

2 LT(D � LT)�1D
1

2 D� 1

2 L(D � L)�1D
1

2 = Y Z (7.7.4)

where Y , D� 1

2 LT(D � LT)�1D
1

2 and Z , D� 1

2 L(D � L)�1D
1

2 . Note that

LT(D � LT)�1 = (D � (D � LT))(D � LT)�1 = D(D � LT)�1 � I (7.7.5)

and similarly L(D � L)�1 = D(D � L)�1 � I. Hence

Z = D�1/2L(D � L)�1D1/2 = D1/2(D � L)�1D1/2 � I (7.7.6)

=
h

D1/2(D � LT)�1D1/2 � I
iT

=
h

D�1/2LT(D � LT)�1D1/2
iT

= Y T (7.7.7)

and so Y Z = Y Y T is positive semidefinite and has nonnegative (real) eigenvalues.

Furthermore, when J � 0 the eigenvalues have absolute value less than unity because

symmetric Gauss-Seidel is convergent on positive definite systems.
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A CT C D

Figure 7.3: Support pattern (in black) of the splitting for Hogwild Gibbs with sym-
metric local sweeps, J = D � CT � C � A, with n = 9 and the processor partition
{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}.

To model Algorithm 7.2 with its symmetric Gauss-Seidel inner splitting, given a

precision matrix J we split J = Dbd � A into block diagonal and block o↵-diagonal

parts as in Section 7.5, then further split Dbd = D � CT � C into diagonal, strictly

lower-triangular, and strictly upper-triangular parts. Note that B = D � CT, and so

compared to the splitting presented in Section 7.5, we now split J = D � CT � C � A

instead of J = B � C � A. Additionally, though we have B � C = D � CT � C, in the

equations in this section we continue to use B � C for simplicity and consistency with

other sections. See Figure 7.3 for an example of the sparsity pattern of A, CT, C, and

D, and compare to Figure 7.1.

The inner-splitting update matrix for Algorithm 7.2 is then the block-diagonal ma-

trix S , (D � C)�1CT(D � CT)�1C. Comparing to (7.6.4), the deterministic part of

the update map becomes

T , Sq + (I � Sq)Tbl (7.7.8)

for the same definition of Tbl as in (7.6.5), and the discrete-time Lyapunov equation for

the Hogwild covariance remains

⌃Hog = T⌃HogT
T + ⌃inj (7.7.9)

where now ⌃inj = (I�Sq)(B�C)�1D(B�C)�1(I�Sq)T. Similarly, in other expressions

we can replace each occurrence of Tind = B�1C with S. In the following analysis, we

use the fact that S has a complete basis of eigenvectors and that its eigenvalues are real

and lie in [0, 1).

Next, we fix notation for derivatives, following the notation used in Pressley [91].

Let Rn⇥n denote the space of real n ⇥ n matrices. For a function f : Rn⇥n ! Rn⇥n, we

write its derivative at X 2 Rn⇥n as the linear map DXf : Rn⇥n ! Rn⇥n defined by

DXf(Y ) , d

dt
f(X + tY )

�

�

�

�

t=0

8 Y 2 Rn⇥n (7.7.10)
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where the di↵erentiation is performed element-wise. Similarly, we write the second

derivative at X 2 Rn⇥n as the symmetric bilinear form D2
Xf : Rn⇥n ⇥ Rn⇥n ! Rn⇥n

defined3 by

D2
Xf(Y, Y ) =

d2

dt2
f(X + tY )

�

�

�

�

t=0

8 Y 2 Rn⇥n. (7.7.11)

Finally, we write the Taylor approximation for f around the point 0 as

f(X) = f(0) + D0f(X) +
1

2
D2

0f(X,X) + O(||X||3) (7.7.12)

where || · || is any submultiplicative matrix norm.

To analyze the Hogwild covariance error to low order in A, we write both the

exact covariance and the Hogwild covariance as functions of the symmetric matrix A,

respectively ⌃(A) and ⌃Hog(A). We write the Taylor expansion of ⌃Hog around 0 as

⌃Hog(A) = ⌃(0) + D0⌃Hog(A) +
1

2
D2

0⌃Hog(A, A) + O(||A||3), (7.7.13)

where ⌃(0) = (B � C)�1, and compare it to the exact series expansion for the target

covariance ⌃ = J�1 given by

J�1 = [B � C � A]�1 (7.7.14)

= (B � C)�
1

2

h

I � (B � C)�
1

2 A(B � C)�
1

2

i�1
(B � C)�

1

2 (7.7.15)

= (B � C)�
1

2

h

I + (B � C)�
1

2 A(B � C)�
1

2

+((B � C)�
1

2 A(B � C)�
1

2 )2 + · · ·
i

(B � C)�
1

2 (7.7.16)

= ⌃(0) + (B � C)�1A(B � C)�1

+ (B � C)�1A(B � C)�1A(B � C)�1 + O(||A||3). (7.7.17)

In particular, to understand low-order e↵ects in A, we compare the lowest-order terms

that disagree in the two expansions.

We measure the total error as ||⌃Hog(A) � ⌃(A)||P,Fro, where

||X||P,Fro , ||P�1XP�T||Fro and ||X||Fro , tr(XTX) (7.7.18)

and where P , (D � CT)�1D
1

2 is the similarity transformation used in the proof of

3A symmetric bilinear form R on a vector space V is defined by the quadratic form Q with Q(u) =
R(u, u) for all u 2 V via the polarization identity 4R(u, v) = Q(u+ v)�Q(u� v). Thus to define the
second derivative it su�ces to define the corresponding quadratic form, as in (7.7.11). In our analysis
based on Taylor series expansion, we only use the quadratic form.
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Lemma 7.7.1. In the following, we analyze the error on the block-diagonal and the error

o↵ the block-diagonal separately, decomposing

||⌃Hog(A) � ⌃(A)||P,Fro =

||⇧bd(⌃Hog(A) � ⌃(A))||P,Fro + ||⇧obd(⌃Hog(A) � ⌃(A))||P,Fro (7.7.19)

where ⇧bd and ⇧obd project to the block-diagonal and o↵-block-diagonal, respectively,

and we have used the fact that P is itself block-diagonal.

Block-diagonal error

To analyze the low-order e↵ects of A on the block-diagonal error, we first di↵erentiate

(7.7.9) to write an equation for D0⌃Hog(A):

D0⌃Hog(A) � SqD0⌃Hog(A)SqT = eA(1) � Sq
eA(1)SqT � (I � Sq) eA(1)(I � Sq)T (7.7.20)

where eA(1) , (B � C)�1A(B � C)�1 = D0⌃(A) is the first-order term in the expansion

for the exact covariance in (7.7.16). Note, however, that because A is zero on its block-

diagonal, ⇧bd(D0⌃Hog(A)) = 0 = ⇧bd( eA(1)) so the first-order terms in both expansions,

(7.7.16) and (7.7.13), are identical on the block-diagonal.

To compare second-order terms on the block-diagonal, we di↵erentiate (7.7.9) twice

to write an equation for D2
0⌃Hog(A):

⇧bd

⇣

D2
0⌃Hog(A, A) � SqD2

0⌃Hog(A, A)SqT
⌘

= 2⇧bd

⇣

(I � Sq) eA(2)(I � Sq)T
⌘

(7.7.21)

where eA(2) , (B�C)�1A(B�C)�1A(B�C)�1 = 1
2D

2
0⌃(A, A) is the second-order term

in the expansion for the exact covariance in (7.7.16). Using (7.7.21) and the fact that

S has a complete set of eigenvectors, we can decompose the error in the second-order

terms as
�

�

�

�

�

�

�

�

⇧bd

✓

1

2
D2

0⌃Hog(A, A) � eA(2)

◆

�

�

�

�

�

�

�

�

2

P,Fro

=
X

k2[K]

X

(i,j)2I2

k

|ea(2)ij |2f(�q
i , �

q
j)

2 (7.7.22)

where each (�i, �j) is a pair of eigenvalues of a block of S, and ea(2)ij , (QTP�1
eA(2)P�TQ)ij ,

where Q is the orthogonal matrix such that QTP�1SPQ is diagonal. The function

f : (�1, 1)2 ! R+ is defined by

f(�q
i , �

q
j) ,

�

�

�

�

�

1 � (1 � �q
i )(1 � �q

j)

1 � �q
i�

q
j

�

�

�

�

�

. (7.7.23)
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Figure 7.4: A plot of the function f defined in (7.7.23).

Hence we can understand the error by analyzing the values of f(�q
i , �

q
j) for all the pairs

of eigenvalues of S. For a detailed derivation, see Appendix A.

We plot the function f in Figure 7.4. In the figure, the color corresponds to the

value of f on a logarithmic scale, and we label some level sets of f . Note in particular

that f(0, 0) = 0 and that 0  f(x, y) < 1 for (x, y) 2 [0, 1)2. Due to Lemma 7.7.1, we

need only consider the nonnegative quadrant [0, 1)2, which corresponds to the upper-

right of the figure. Using these properties of f and the decomposition (7.7.22) yields

the following proposition.

Proposition 7.7.2. Using || · || = || · ||P,Fro, we have

(1) For all q � 1, the block-diagonal Hogwild covariance satisfies

||⇧bd (⌃Hog(A) � ⌃(A))|| < ||⇧bd (⌃(0) � ⌃(A))|| + O(||A||3); (7.7.24)

(2) The dominant (second-order) error term decreases with increasing q in the sense

that
�

�

�

�⇧bd

�

D2
0⌃Hog(A, A) � D2

0⌃(A, A)
�

�

�

�

� ! 0 (7.7.25)

monotonically as q ! 1.
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Proof. (1) is immediate from the decomposition (7.7.22), Lemma 7.7.1, and the obser-

vation that 0  f(x, y) < 1 for (x, y) 2 [0, 1)2. To show (2), first we note that since

limq!1 �q
i = 0 for each eigenvalue �i of S and because f is continuous at (0, 0), we

have that limq!1 f(�q
i , �

q
j) = f(0, 0) = 0 for every pair. Monotonicity follows from the

fact that if for any (x0, y0) 2 [0, 1)2 we define a path �(t) = (xt
0, y

t
0)

T for t 2 R+, then

we have
d

dt
�(t) =

⇣

ln(x0)xt
0 ln(y0)yt0

⌘T
< 0 (7.7.26)

element-wise, and since

rf(x, y) =
⇣

(1�y)2

(1�xy)2
(1�x)2

(1�xy)2

⌘T
> 0 (7.7.27)

element-wise, we have d
dtf(�(t)) = hrf(xt

0, y
t
0),

d
dt�(t)i < 0 and f is monotonically

decreasing along �.

Proposition 7.7.2 shows that, to second order in A, the block-diagonal of the Hogwild

covariance is always improved relative to simply ignoring cross-processor e↵ects by ap-

proximating A = 0, and that the amount of second-order improvement is monotonically

increasing with the number of local iterations q.

O↵-block-diagonal error

Returning to the first-derivative equation (7.7.20), we see that both D0⌃Hog(A) and
eA(1) are nonzero o↵ the block-diagonal, and therefore to analyze the o↵-block-diagonal

covariance error for small A we compare the first-order terms. Analogous to the argu-

ment in the previous section, as derived in Appendix A we can decompose the error in

the first-order terms as
�
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�

�

�
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2 (7.7.28)

where each (�i, �j) is a pair of eigenvalues from distinct blocks of S and we set ea(1)ij ,
(QTP�1

eA(1)P�TQ)ij , where Q is the orthogonal matrix such that QTP�1SPQ is diag-

onal. The function g : (�1, 1)2 ! R+ is defined by

g(�q
i , �

q
j) ,

�

�

�

�

�

(1 � �q
i )(1 � �q

j)

1 � �q
i�

q
j

�

�

�

�

�

. (7.7.29)

We plot the function g in Figure 7.5. In the figure, the color corresponds to the

value of g on a logarithmic scale, and we label some level sets of g. Note in particular
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Figure 7.5: A plot of the function g defined in (7.7.29).

that g(0, 0) = 1 and that 0  g(x, y) < 1 for (x, y) 2 [0, 1)2. Using these properties of

g and the decomposition (7.7.28) yields the following proposition.

Proposition 7.7.3. Using || · || = || · ||P,Fro, we have

(1) For all q � 1, the o↵-block-diagonal diagonal Hogwild covariance satisfies

||⇧obd (⌃Hog(A) � ⌃(A))||  ||⇧obd (⌃(0) � ⌃(A))|| + O(||A||2) (7.7.30)

where the inequality is strict if S has a nonzero eigenvalue;

(2) The dominant (first-order) error term increases with increasing q in the sense

that

||⇧obd (D0⌃Hog(A, A) � D0⌃(A, A))|| ! ||⇧obd (⌃(0) � ⌃(A))|| (7.7.31)

monotonically as q ! 1.

Proof. As in the proof for Proposition 7.7.2, (1) follows immediately from the decompo-

sition (7.7.28), Lemma 7.7.1, and the observation that 0  g(x, y) < 1 for (x, y) 2 [0, 1)2.

To show (2), note that limq!1 g(�q
i , �

q
j) = 1. By comparing the level sets of g to those
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of f , we see that if for any (x0, y0) 2 [0, 1)2 we define �(t) = (xt
0, y

t
0)

T for t 2 R+, then

we have d
dtg(�(t)) = hrg(xt

0, y
t
0),

d
dt�(t)i > 0 and so g is monotonically increasing along

the path �.

Proposition 7.7.3 shows that, to first order in A, the o↵-block-diagonal of the Hog-

wild covariance is always an improvement relative to the A = 0 approximation (assum-

ing S has a nonzero eigenvalue), yet the amount of first-order improvement is monoton-

ically decreasing with the number of local iterations q. Therefore there is a tradeo↵ in

covariance performance when choosing q, where larger values of q improve the Hogwild

covariance on the block diagonal but make worse the covariance error o↵ the block

diagonal, at least to low order in A.

We validate these qualitative findings in Figure 7.6. Model families parameterized

by t are generated by first sampling J = B � C � A = QQT with Qij
iid⇠ N (0, 1) where

Q is n ⇥ n and then letting J(t) = B � C � tA, so that t = 0 corresponds to a model

with zero o↵-block-diagonal entries and o↵-block-diagonal e↵ects increase with t. The

sampling procedure is repeated 10 times with n = 150 and a partition with K = 3 and

each |Ik| = 50. The plotted lines show the average error (with standard deviation error

bars) between the block diagonal of the true covariance ⌃(t) = J(t)�1 and the block

diagonal of the Hogwild covariance ⌃Hog(t) as a function of t for q = 1, 2, 3, 4, 100, where

varying q shows the e↵ect of local mixing rates. That is, in Figure 7.6(a) each line plots

the block-diagonal error ||⇧bd(⌃(t)�⌃Hog(t))||P,Fro and in Figure 7.6(b) each line plots

the o↵-block-diagonal error ||⇧obd(⌃(t) � ⌃Hog(t))||P,Fro. Note that separate black line

is plotted for ||⇧bd(⌃(t) � ⌃(0))||P,Fro and ||⇧obd(⌃(t) � ⌃(0))||P,Fro, respectively; that

is, the black lines plot the respective errors when ignoring cross-processor e↵ects and

approximating A = 0.

Figure 7.6(a) shows that to first order in t the block diagonal of the process co-

variance ⌃Hog is identical to the true covariance ⌃, since all slopes are zero at t = 0.

Second-order e↵ects contribute to improve the Hogwild covariance relative to the A = 0

approximation. Furthermore, we see that the second-order e↵ects result in lower errors

on the block diagonal when there is more processor-local mixing, i.e. larger values of q.

Similarly, Figure 7.6(b) shows that first-order e↵ects contribute to improve the Hogwild

o↵-block-diagonal covariance relative to the A = 0 approximation. The Hogwild slopes

at t = 0 are lower than that of the A = 0 approximation, and the relative improve-

ment decreases monotonically as q grows and the slopes approach that of the A = 0

approximation. These features and their dependence on q are described in general by

Propositions 7.7.2 and 7.7.3.

Figure 7.6(b) also shows that, for larger values of t, higher-order terms contribute

to make the Hogwild o↵-block-diagonal covariance error larger than that of the A = 0

approximation, especially for larger q. The setting where q is large and global commu-
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(a) ⇧bd projects to the block diagonal

(b) ⇧obd projects to the o↵-block-diagonal

Figure 7.6: Typical plots of the projected error ||⇧(⌃(t) � ⌃Hog(t))||P,Fro for random
model families of the form J(t) = B � C � tA. In (a) ⇧ projects to the block diagonal;
in (b) ⇧ projects to the o↵-block-diagonal. The sampled models had ⇢(S) ⇡ 0.67.
Hogwild covariances were computed numerically by solving the associated discrete time
Lyapunov equation [111, 112].
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nication is infrequent is of particular interest because it reflects greater parallelism (or

an application of more powerful local samplers [90, 29]). In the next subsection we show

that this case admits a special analysis and even an inexpensive correction to recover

asymptotically unbiased estimates for the full covariance matrix.

⌅ 7.7.2 Exact local block samples

As local mixing increases, e.g. as q ! 1 or if we use an exact block local sampler

between global synchronizations, we are e↵ectively sampling in the block lifted model

of Eq. (7.3.13) and therefore we can use the lifting construction to analyze the error in

variances.

Proposition 7.7.4. When local block samples are exact, the Hogwild covariance ⌃Hog

satisfies

⌃ = (I + (B � C)�1A)⌃Hog and ||⌃ � ⌃Hog||  ||(B � C)�1A|| ||⌃Hog|| (7.7.32)

where ⌃ = J�1 is the exact target covariance and || · || is any submultiplicative matrix

norm. In particular, we may compute

⌃ = ⌃Hog + (B � C)�1A⌃Hog (7.7.33)

as a correction which requires only a large matrix multiplication and solving the processor-

local linear systems because B � C is block-diagonal.

Proof. Using the block lifting in (7.3.13), the Hogwild process steady-state covariance

is the marginal covariance of half of the lifted state vector, so using Schur complements

we can write

⌃Hog = ((B � C) � A(B � C)�1A)�1 (7.7.34)

= (B � C)�
1
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2 . (7.7.35)

We can compare this series to the exact expansion in (7.7.16) to see that ⌃Hog includes

exactly the even powers, so therefore

⌃ � ⌃Hog = (B � C)�
1

2

h

((B � C)�
1

2 A(B � C)�
1

2 )
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1
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1
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i

(B � C)�
1

2 (7.7.36)

= (B � C)�1A⌃Hog. (7.7.37)
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Note that this result does not place any assumptions on the o↵-block-diagonal A.

⌅ 7.8 Summary

We have introduced a framework for understanding Gaussian Hogwild Gibbs sampling

and shown some results on the stability and errors of the algorithm, including (1) quan-

titative descriptions for when a Gaussian model is not too dependent to cause Hogwild

sampling to be unstable (Proposition 7.6.2, Theorems 7.6.6 and 7.6.7, Proposition 7.6.8);

(2) given stability, the asymptotic Hogwild mean is always correct (Proposition 7.6.1);

(3) in the low-order regime with small cross-processor interactions, there is a tradeo↵

between the block-diagonal and o↵-block-diagonal Hogwild covariance errors (Propo-

sitions 7.7.2 and 7.7.3); and (4) when local samplers are run to convergence we can

bound the error in the Hogwild variances and even e�ciently correct estimates of the

full covariance (Proposition 7.7.4). We hope these ideas may be extended to provide

further insight into Hogwild Gibbs sampling, in the Gaussian case and beyond.


