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Data-driven clustering reveals a fundamental subdivision
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bstract

Global organizational principles are critical for understanding cortical functionality. Recently, we proposed a global sub-division of the posterior
ortex into two large-scale systems. One system, labeled extrinsic, comprises the sensory–motor cortex, and is associated with the external
nvironment. The second system, labeled intrinsic, overlaps substantially with the previously described “default-mode” network, and is likely
ssociated with inner-oriented processing. This global partition of the cerebral cortex emerged from hemodynamic imaging data the analysis of
hich was constrained by pre-determined hypotheses. Here we applied a hypothesis-free, unsupervised two-class clustering algorithm (k-means)
o a large set of fMRI data. The two clusters delineated by this unsupervised hypothesis-free procedure showed high anatomical consistency
cross individuals, and their cortical topography coincided largely with the previously determined extrinsic and intrinsic systems. These new
lustering-based results confirm that the intrinsic–extrinsic subdivision constitutes a fundamental cortical divide.

2007 Elsevier Ltd. All rights reserved.
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. Introduction

An appealing hypothesis in cognitive neuroscience is that
he neuroanatomical organization bears direct relevance to the
ognitive computations and the functional specialization imple-
ented in the cerebral cortex. In line with this hypothesis,

arge-scale cortical partitions should reflect global functional
rinciples. Such global-scale organizational principles have
een proposed in cortical research both at the level of modality-
pecific systems (Grill-Spector & Malach, 2004; Levy, Hasson,
vidan, Hendler, & Malach, 2001; Ungerleider & Mishkin,
982; Van Essen & Maunsell, 1983), and at the level of major
ortical organization (Damasio & Damasio, 1994; Mesulam,
998). As part of the effort to understand the functional organi-

ation of the human cortex in a recent study we proposed that
he human cerebral cortex can be envisioned as a hierarchy of
euroanatomical sub-divisions, starting from large networks of

∗ Corresponding author. Tel.: +972 8 934 2758; fax: +972 8 934 4140.
E-mail address: rafi.malach@weizmann.ac.il (R. Malach).
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reas at the most global scale, and ending in columnar subdi-
isions within individual areas (Golland et al., 2007). In that
tudy we found that the wide-spread cortical activity elicited
uring free-viewing a movie (Hasson, Nir, Levy, Fuhrmann, &
alach, 2004) subdivided the posterior cortical mantle into two
ajor networks. The first network, which included major parts

f sensory–motor cortex, was robustly activated by the natu-
al movie stimuli. We labeled this network of cortical areas the
extrinsic” system, due to its evident association with the exter-
al input. Embedded among the externally activated areas of the
xtrinsic network, we found “islands” that formed a different,
omplementary network. While activity in these regions was not
riven by external stimulation, it showed a high degree of inter-
egional correlation, which suggested a common function. Since
his activity was seemingly internally driven, we labeled this net-
ork the “intrinsic” system. The major components of the intrin-

ic system included medial prefrontal areas, the posterior cin-

ulate and the precuneus, lateral inferior parietal cortex and the
nterior aspect of infero-temporal cortex (Golland et al., 2007).

The anatomical extent of the intrinsic system largely corre-
ponded to a network of areas inhibited by various cognitive

mailto:rafi.malach@weizmann.ac.il
dx.doi.org/10.1016/j.neuropsychologia.2007.10.003
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asks, termed the “default-mode”, or “task-negative” network
Fox et al., 2005; Gusnard & Raichle, 2001; Raichle et al.,
001). Indeed, many studies implicated the default network in a
ide range of internally oriented activities (Binder et al., 1999;
oldberg, Harel, & Malach, 2006; Greicius, Krasnow, Reiss, &
enon, 2003; Greicius & Menon, 2004; Greicius, Srivastava,
eiss, & Menon, 2004; Gusnard, 2005; Gusnard, Akbudak,
hulman, & Raichle, 2001; Kelley et al., 2002; Kjaer, Nowak, &
ou, 2002; Lou et al., 2004; McKiernan, D’Angelo, Kaufman,
Binder, 2006; Northoff & Bermpohl, 2004; Vogeley & Fink,

003).
The network connectivity of the default mode/intrinsic

egions was shown in a number of functional connectivity stud-
es (Fox et al., 2005; Fransson, 2005; Golland et al., 2007;
reicius et al., 2003). In addition, rest-state connectivity studies

evealed a second cortical network, including several sensory
nd attention related regions that were negatively correlated to
he default-mode network (Fox et al., 2005; Fransson, 2005). The
atter network showed partial similarity to the extrinsic regions
s defined by Golland et al. (2007). Despite using different labels
uch as task-negative/task positive, extrospective/introspective,
r extrinsic/intrinsic, all these studies suggest functionally sim-
lar large-scale partition of the cerebral cortex.

The networks identified in the majority of the above studies
ere revealed by ‘seed’ based analysis of temporal fluctuations

n hemodynamic activity. While suggestive, this approach is sub-
ect to several limitations. First, it relies on the delineation of an
nitial, hypothesis driven, ‘seed’ region of interest. Second, the
patial expansion of the revealed network depends on an empir-
cally chosen threshold at which the time course correlation is
eemed significant. Third, the network structure and its inter-
ction with other networks might be specific to the particular
aradigm used in the study. For example, although the resting
tate is assumed to be task-free and, therefore, advantageous
or revealing inherent connectivity, it is also considered to show
igher activity levels in the ‘default-mode’ areas (Raichle et
l., 2001). Therefore, inter-systems dynamics (such as negative
orrelation between the two systems) observed in several rest-
ng studies could be specific to the experimental condition rather
han being a fundamental property of the cortical organization
nd functionality.
In order to examine the hypothesis of a fundamental bipartite
ivision of the cortex into intrinsic and extrinsic systems while
ypassing the above limitations, we used unsupervised cluster-
ng, which is free form a priori set hypotheses. Specifically we

2

2

s

able 1
ist of experiments in the clustering data set for each individual participant

Movie experiment 1 Movie experiment 2 Rest Intern

I
√ √ √ √

Q
√ √ √ √

M
√ √

T
√ √

Z
√ √ √ √

O
√ √ √ √

H
√ √ √ √
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pplied the simple and widely used k-means clustering algorithm
Duda & Hart, 1973; MacKay, 2003) to a large data set of fMRI
xperiments of different functional characteristics (36–60 min
n length for each subject, N = 7). This clustering procedure
ssigns cortical voxels to a predefined number of subgroups
ased on the similarity of their time-courses. Unsupervised clus-
ering eliminates the dependence on pre-determined selection of
eed-regions and correlation value thresholds for defining cor-
ical networks. Instead, the clustering algorithm automatically
earches for the representative time courses that play the role of
he regressor in the ‘seed’ based functional connectivity analy-
is. Furthermore, it adaptively adjusts the correlation threshold
or each voxel, based on its similarity to the representative time
ourse. Since this study focused on the hypothesis of a global,
i-partite organization, we limited the partition of the cortical
pace into two clusters (k = 2) only. The hypothesis tested was
hether forcing the cortical voxels to “choose” between just two

ypes of clusters the algorithm would consistently highlight the
ntrinsic/extrinsic boundary. To further explore the cluster-based
ortical topography we extended this analysis to k = 3 and k = 4.
oreover, the potential problem of biasing the resulting corti-

al subdivisions by particular experimental conditions has been
educed by performing the analysis on combined fMRI data from
everal experiments, each with different demand characteristics.
hese experiments included watching a continuous audio-visual
ovie, a block-design visual experiment, an experiment involv-

ng internal mental tasks in the absence of either sensory input
r output, and a rest-state scan.

. Methods

.1. Participants

All participants to the fMRI experiments provided written informed consent
o participate in the experiments. The Tel-Aviv Sourasky Medical Center ethics
ommittee approved the experimental protocols. Our study included seven sub-
ects who participated in a wide variety of experiments, as described below and
ummarized in Table 1. For technical reasons subjects NT and FM could not be
rought for a complete list of experiments.

Overall the functional database included 372 min of EPI scan time. The
etails of the functional studies are described below.
.2. Experiments used in the clustering analysis

.2.1. Repeated movie experiment
This experiment included an uninterrupted, 969 s long segment of the clas-

ical western “The Good the Bad and the Ugly” directed by Sergio Leone. Each

al tasks Visual localizer Face morphing Total time (min)
√

60√
60√
40.65√
35.85√
55.8√
60√
60
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Table 2
List of protocol-driven visual experiments
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ubject was exposed to the same movie segment in two different sessions (for
etails see Golland et al., 2007).

.2.2. Rest experiment
In this experiment, participants laid in the scanner with their eyes closed.

hey were instructed to pay close attention to any “visual-like” percept that
ight occur during the scan (e.g., dots), and to report it following the scan. The

xperiment was 615 s long (Nir, Hasson, Levy, Yeshurun, & Malach, 2006).
here were five participants in this experiment.

.2.3. Visual experiments

.2.3.1. Visual localizer. Visual stimulation was composed of 15 s colour movie
lips from four categories (faces, buildings, navigation, and objects), followed
y 6 s blank screen. The experiment was 732 s long. No task was required. Five
ubjects in our set participated in this study (Levy et al., 2001).

.2.3.2. Face morphing. Each epoch was 12 s long and contained visual facial
timuli with various degrees of morphing variability followed by a 6 s of blank
creen. During the experiment, one or two consecutive repetitions of the same
mage occurred in each epoch. Subjects performed a “one-back” task. The
xperiment was 480 s long (Gilaie-Dotan & Malach, 2006). Data was included
or two participants in our set who didn’t participate in the visual localizer
xperiment.

.2.4. Internal tasks experiment
This experiment included three different tasks: in the first ‘mental calcula-

ion’ condition, participants consecutively subtracted 13 starting at 1000; in the
econd ‘internal speech’ condition, participants were instructed to silently speak
n a continuous manner as similar as possible to a thought flow. In the third,
semantic memory’ condition, participants were instructed to retrieve words
elonging to ‘animals’ category.

All the conditions were performed silently with no outward articulation.
articipants kept their eyes closed throughout the recording. An interleaved
lock design was used in this experiment. Each epoch lasted 18 s, followed by a
s rest. Each condition was repeated eight times. Short (500 ms) “beep” sounds
arked the transition between the experimental epoch and rest. There were five

articipants in this study.

.3. Protocol-driven visual experiment used in the

ctivation/deactivation analysis

To map general regions which undergo activation/deactivation comparing
o baseline we combined a series of visual experiments available for each par-
icipant, in addition to the two visual experiments described above (labeled in

a

2

a

able 2 as Experiments 7 and 8). A “one-back” task was used in a block-design
tructure.

.4. Data acquisition

Participants were scanned in a 1.5 T Signa Horizon LX 8.25 GE MRI scanner
quipped with a standard head coil. Blood oxygenation level-dependent (BOLD)
ontrast was obtained with gradient-echo echo-planar imaging (EPI) sequence
TR = 3000, TE = 55, flip angle = 90, field of view 24 cm × 24 cm, matrix size
0 × 80, functional voxel size: 3 × 3 × 4). The scanned volume included 24–27
early axial slices of 4 mm thickness and 1 mm gap, covering the whole cor-
ical surface. T1-weighted high-resolution (1 mm × 1 mm × 1 mm) anatomical
mages and 3D-spoiled gradient echo (SPGR) sequence were acquired for each
ubject.

.5. Data analysis

.5.1. Preprocessing
fMRI data were analyzed using the BrainVoyager software package (R.

oebel, Brain Innovation, Masstricht, The Netherlands) and in-house, Matlab-
ased software. The functional images were superimposed on anatomical images
nd incorporated into the three-dimensional data sets through trilinear interpo-
ation. The complete data set was transformed into Talairach space. The cortical
urface was reconstructed from the three-dimensional SPGR scan, unfolded,
ut along the calcarine sulcus, and flattened. The obtained activation maps
ere superimposed on the unfolded cortex. Pre-processing of functional scans

ncluded 3D motion correction, linear trend removal and slice scan time cor-
ection. Filtering out of low frequencies of up to 10 cycles per experiment was
pplied to the repeated movie experiment, of up to 6 cycles to the “rest” exper-
ment; and of up to 4 cycles to the visual localizer, face morph and internal
asks experiments. The data were spatially smoothed with a Gaussian filter of
ull width half maximum value (FWHM) of 8 mm. Since this study focused
n cortical structures only, the analysis was limited to the cortical gray matter,
herefore only voxels in the cortical segmentation mask were included. To mini-

ize noise artifacts, we excluded voxels with low mean activation value (below
0% of the median of all included voxels), and cropped the first five time points
n each time course. To exclude the effects of signal magnitude and to focus
he analysis on patterns of co-variation, we converted the values in each time
ourse to z-scores, i.e., subtracted the mean value and divided by the standard
eviation. We note that this normalization fits well with employing correlation

s a similarity measure, as described below.

.5.2. k-Means clustering
Formally, we seek a partition of a set of voxels into two or more subsets, i.e.,

mapping from voxel indices v ∈ {1, . . . , V } to cluster labels k ∈ {1, . . ., K}.
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e employ the well-known k-means clustering algorithm (Duda & Hart, 1973)
o perform this subdivision. The objective function optimized in the estimation
s defined in terms of time course similarity in each subset:

=
V∑

v=1

d2(yv, mk(v)),

here yv is the time course of voxel v, mk(v)is the mean time course of the
oxel’s assigned cluster, and d2(·,·) is the squared distance function. This for-
ulation leads to a non-linear optimization problem that is solved iteratively.
he algorithm alternates between estimating the cluster membership function
(v), by assigning each voxel to the closest cluster center, and updating each
luster’s mean time course.

The resulting partition crucially depends on the choice of the distance func-
ion. In this study, we adopt a commonly used approach of defining similarity
etween time courses as their correlation coefficient:

(x, y) =
∑T

t=1(x[t] − x̄)(y[t] − ȳ)√∑T

t=1(x[t] − x̄)2
∑T

t=1(y[t] − ȳ)2

here x and y are the time courses of length T, and x̄ denotes the mean value
f vector x. The squared distance between two time courses is then naturally
efined as d2(x, y)=1 − ρ(x, y). We treated multiple experiments as independent
amples from the same generative process, using a natural extension of the
istance function definition:

2(x, y) = 1 −
∑M

m=1

∑Tm

t=1(xm[t] − x̄)(ym[t] − ȳ)√∑M

m=1

∑Tm

t=1(xm[t] − x̄)2
∑M

m=1

∑Tm

t=1(ym[t] − ȳ)2

here M is the number of experiments, and subscripts denote different experi-
ents.

We employed a robust estimation procedure in determining the cluster mean
ime courses during clustering. At each iteration of the clustering algorithm, all
oxels assigned to a particular system participate in the initial estimate of the
ystem’s mean time course. The final mean time course estimate is computed
sing only the voxels whose correlation with the initial estimate exceeds an
mpirically selected threshold (0.15).

To validate that the clustering results were strongly driven by the fMRI
ata rather than a regularization properties of a particular clustering method,
e also evaluated a full Gaussian mixture modeling and the spectral clustering

s alternative algorithms for determining the partition of voxels into functional
ystems. In our experience, using a full covariance matrix in the mixture model is
mpractical due to a large number of time points T; using a diagonal covariance

atrix with variable variance elements is more appropriate in this case. The
artitions estimated through mixture modeling and spectral clustering were very
imilar to those obtained through k-means clustering, providing further evidence
f the robustness of clustering results. The percentages of voxels per participant
hat were labeled consistently across all methods were 93%, 94%, 87%, 93%,
5%, 90%, and 87%.

.6. Group analysis

Clustering was performed for each participant separately. However, in order
o evaluate the consistency of the resulting partitions, we compared the cluster

aps across all participants. Transforming all the data into the Talairach space
llowed us to directly compare cluster labels assigned to each voxel across
ifferent subjects. We note that anatomical differences among participants can
ause misalignment of functional areas, contaminating the resulting group mea-
urements. Similar to other methods in fMRI analysis, our group-wise results
hould directly benefit from improvements in spatial normalization methods that
mprove anatomical agreement across subjects.

In addition to estimating the optimal decomposition of the cortex into clus-

ers, we also had to assign the cluster labels in a consistent way (i.e., the extrinsic
ystem being labeled as cluster number 1 in all subjects). Cluster correspondence
cross subjects was established automatically by selecting the permutation of
he cluster labels for each subject that maximized the agreement in the voxel
abels across subjects. In order to quantify the repeatability of clustering across

s
p
b
s
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articipants, we computed group consistency maps for each cluster. In the group
onsistency map for a particular cluster, each voxel was assigned the proportion
of subjects whose individual clustering maps associated this voxel with the

luster of interest. The group consistency map quantifies agreement in clustering
cross participants with respect to the selected cluster.

.7. Activation/deactivation maps

In order to assess the selective activations and de-activations in individual
articipants elicited by the combined protocol-driven visual experiments, we
pplied the standard General Linear Model analysis (Friston, 1995). A box-car
redictor with hemodynamic delay of 3 s was constructed for all visual condi-
ions and the model was independently fitted to the time course of each voxel. A
egression coefficient was calculated for each predictor using the least-squares
lgorithm. After computing the coefficients for all regressors, we performed a
wo-tailed t-test of all visual conditions versus fixation on concatenated experi-

ents, following the fixed-effect model (Fig. 3, p < 0.001, uncorrected).

. Results

.1. Two complementary networks

The clustering computation produced a spatially coherent
rouping of cortical activity in two networks; this pattern was
natomically consistent across participants (Fig. 1). To esti-
ate the anatomical consistency of this division we created a

roup-level consistency map, which summarized the individ-
al maps normalized into Talaraich space. The group-level map
emonstrated the stability of the bi-partite patterns of individual
articipants (Fig. 2).

The anatomical distribution of one of the two systems
marked in blue in the figures) included auditory, visual and
omato-sensory cortices, the motor cortex, and a fronto-parietal
etwork associated with attention (Corbetta & Shulman, 2002).
he second system (marked in green in the figures) included

he posterior cingulate/precuneus (PCing/Pcun), lateral inferior
arietal cortex (IPC), the anterior part of inferior tempo-
al cortex, a small region in the posterior inferior frontal
yrus (pIFG), and major parts of medial and lateral prefrontal
ortex.

In our previous study, searching for activation in response
o natural audio-visual stimuli, we found a similar subdivision
nto two large-scale systems, which we labeled “extrinsic” and
intrinsic” systems (Golland et al., 2007). To compare the clus-
ering results with our previous findings, we superimposed the
orders of the intrinsic system identified through functional con-
ectivity and reported in Golland et al. (2007) on the clustering
atterns computed here. Since both types of analysis were per-
ormed on the same subjects, we could directly compare the
ndividual results for each subject. Fig. 1 shows considerable
greement in the boundaries of the intrinsic system identified
y the two methods. Critically, this agreement was consistent
cross different individuals demonstrating that the clustering
esult was not a consequence of random partition of the cortical

urface. Given the close similarity of the clustering results to our
revious findings, we maintained the labeling of the clustering-
ased partition of the cortex as extrinsic and intrinsic cortical
ystems.
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Fig. 1. The topography of clustering-based two-systems partition of cortical space. Individual clustering into two global systems, presented on unfolded cortical
hemispheres for each subject. Clustering results for subject ZH are presented on an inflated and unfolded cortex (left upper corner). Borders of the intrinsic system
f stron
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rom Golland et al. (2007) are marked by white lines for comparison. Note the
nd the results from the previous study, despite the differences in the experimen
S: central sulcus; LS: lateral sulcus; IPS: intra-parietal sulcus; STS: superior t

We also examined the within-system coherence of the fMRI
ignals by examining the average correlation of the voxels’ time
ourses within each system with that system’s mean time course.
oth the intrinsic and the extrinsic systems showed a similar

evel of internal coherence: extrinsic = 0.497, S.E.M. = 0.017;
ntrinsic = 0.498, S.E.M. = 0.013.

.2. Exploring the anatomy and the functionality of the
ntrinsic network
The neuroanatomical organization of the intrinsic system
eems to coincide largely with the previously reported “default-
ode” or “task negative” networks that were essentially defined

T
t
p
o

g anatomical agreement between the clustering results of the current analysis
tup and methodology. SFS: superior frontal sulcus; IFS: inferior frontal sulcus;
ral sulcus; ITS: inferior temporal sulcus; PCing: posterior cingulate.

y deactivation during a large array of perceptual and cognitive
asks (Gusnard & Raichle, 2001; Mazoyer et al., 2001; Shulman,
iez et al., 1997). In order to directly examine the similarity
etween the intrinsic network and the “task-negative” activation
aps, we combined the data from all visual, protocol-driven

xperiments that were available for the subjects in our study
nd mapped the regions which showed activity above or below
he baseline fixation condition across all these experiments
see Table 2 for the list of experiments for each participant).

hese activation and deactivation maps were compared with

he intrinsic system identified through clustering in individual
articipants. As shown in Fig. 3A, a considerable proportion
f regions which showed deactivation during visual stimulation
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Fig. 2. Group-level consistency map. In the group consistency map for a particular network, each voxel was assigned the value of the proportion (P) of subjects
whose individual clustering maps associated this voxel with the network of interest. The color depicts the strength of agreement (proportion) in clustering across
subjects with respect to the selected network. Dark colors mark regions of full agreement (P = 1) among individual results. Maps are presented on inflated (top) and
u

m
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nfolded left (LH) and right (RH) hemispheres.

atched the anatomical loci of the intrinsic network as defined
y clustering. However, the deactivation foci appeared to be con-
istently smaller in extent than the clustering-defined intrinsic
oundaries, and were confined primarily to the posterior cortex.
his might suggest that the visually induced deactivation marks
egions that constitute a regional sub-set within the intrinsic net-
ork (see Fransson, 2006). In addition, we found small patches
f deactivation in auditory and language regions. However, as
reviously shown, these patches of deactivations are modality

a
a
o
W

pecific and are not part of the default system (Shulman, Corbetta
t al., 1997), nor of the intrinsic system defined in our study.

In order to directly evaluate the consistency of modulation
roduced by external input in the extrinsic and intrinsic systems,
e compared the variability of the average systems’ dynamics
cross participants in different experimental conditions. If an
ctivity of a region is driven by external input, the dynamics
f activity in this region should be similar across participants.
e calculated the average signal from the entire intrinsic and
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Fig. 3. (A) Activations and Deactivations during visual stimulation. Activation (orange–yellow) and deactivation (blue–green) maps in concatenated series of visual
experiments presented individually for each subject (fixed effect, p < 0.001, uncorrected). The borders of the clustering-based partition are shown as white lines. Note
that many regions within the intrinsic network undergo deactivation during visual stimulation. Additional patches of deactivation can be observed in the auditory and
language related areas, likely due to the purely visual nature of stimulation. (B) Inter-subject variability of averaged activity in the extrinsic and intrinsic networks.
During sensory stimulation (visual localizer and movie), but not during rest state, the variability of activation in the extrinsic system across subjects (blue bars) is
s decou
c trinsi
( insic

e
v
l
s

ubstantially lower than that in the intrinsic system (green bars), reflecting the
ourse of activity in individual subjects, averaged over the entire extrinsic and in
upper panel) is more consistent across subjects than the activity within the intr
xtrinsic systems within each participant. The evaluation of the
ariability of activity across participants was based on calcu-
ating the variance of these individual, z-normalized average
ignals from the group mean signal. As shown in Fig. 3B, the

a
t
d
(

pling of the intrinsic system’s activity from the external stimulation. (C) Time
c networks, during movie presentation. The activity within the extrinsic system
system (bottom panel) during presentation of continuous audio-visual movie.
verage inter-subject variability of activity in the extrinsic sys-
em was significantly lower than that in the intrinsic system
uring protocol-driven visual stimulation (external localizer)
extrinsic: 0.57 ± 0.07; intrinsic: 0.77 ± 0.02; n = 5; p < 0.046)



sycho

a
(
c
a
a
t
0
v
t
p
s
i
f
a
f

3

o
k
t
r
c
w
s
a

F
h
v
c
t

Y. Golland et al. / Neurop

s well as during passive viewing of an audio-visual movie
extrinsic: 0.73 ± 0.01; intrinsic: 0.87 ± 0.02; n = 7; p < 0.003,
alculated per participant, per presentation and then aver-
ged across two presentations). In contrast, during rest, in the
bsence of external stimulation, the inter-subject variability of
hese two systems was similar (extrinsic: 0.79 ± 0.03; intrinsic:
.78 ± 0.03; n = 5). The difference in the level of inter-subject
ariability of activity could also be discerned in the networks’
ime courses sampled from individual subjects during the movie
resentation (Fig. 3C). The time courses of activity in the extrin-
ic system were more similar across subjects than those in the

ntrinsic system. The nature of inter-subjects variability of the
MRI activity within each system further demonstrates that the
ctivity of the intrinsic system shows a substantial dissociation
rom the external sensory input.

l
p
f
T

ig. 4. The topography of clustering-based three-systems partition of cortical space.
emispheres for each subject. Clustering results for subject EQ are presented on an
isual retinotopic borders are delineated by light color on the unfolded cortical map. B
omparison. Note that while the Intrinsic system borders show strong agreement wit
he rest.
logia 46 (2008) 540–553 547

.3. Additional levels of clustering

In order to further explore the global pattern of cortical
rganization, we performed an additional analysis, imposing
= 3 constraint. For all participants the pattern of division into

hree systems was identical. The borders of the intrinsic system
emained highly similar to the one revealed with k = 2 (per-
entages of voxels per participant that changed their labeling
ere: 8%, 3%, 10%, 3%, 13%, 12%, and 11%). As can be

een in Fig. 4, the extrinsic system was divided into visual areas
nd the rest of sensory/motor/attentional areas. Calculating the

abeling consistency for k = 4 we obtained similar results (the
ercentage of voxels per participant that changed their labeling
rom k = 2 to 4 were 5%, 5%, 9%, 5%, 10%, 8%, and 10%).
his result provides additional support to the observation that

Individual clustering into three global systems, presented on unfolded cortical
inflated and unfolded cortex (right upper corner). In addition, in this subject,
orders of the intrinsic system from Fig. 1 (k = 2) are marked by white lines for

h k = 2 results, the Extrinsic system is further subdivided into visual areas and
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t the most global level of the hierarchy the cortical mantle is
onsistently divided into two systems. However, each of these
ystems may be further subdivided into functionally specific
ub-systems.

. Discussion

.1. Two-system decomposition

The contribution of this study is twofold. First, it points to
he potential usefulness of hierarchical clustering schemes for
lobal cortical parcellation. Second, it provides further support
o the previously hypothesized subdivision of the cortex into
wo large cortical systems. Applied to large arrays of functional
ata, the two systems clustered by the unsupervised k-means
lgorithm, had anatomical topographies that were highly con-
istent across participants. Direct anatomical exploration of this
i-partite organization showed agreement with both our previous
tudy and other studies reported in the literature.

One of the two systems described in this study is the “extrin-
ic” system that corresponds to the well-studied sensory/motor
ortex. The functional characteristics of this system have been
xplored in detail by numerous studies. At the most general
evel regions involved in the extrinsic system are dedicated to
rocessing and responding to various aspects of sensory infor-
ation originating in the external world. The second system

s the “intrinsic” one, which complements the extrinsic sys-
em. The functional characteristics of the intrinsic system are
ot fully established yet. Careful examination of the anatomy
nd functionality of the intrinsic system revealed a substantial
verlap with regions that undergo inhibition during intense cog-
itive and perceptual tasks (Mazoyer et al., 2001; Shulman, Fiez
t al., 1997). Influenced by this unusual activation pattern, the
atter regions were labeled “default” or “task negative” brain net-
orks (Fox et al., 2005; Gusnard & Raichle, 2001; Raichle et al.,
001). Studies investigating the functional specialization in this
etwork suggested that it plays a role in self-oriented processes
Goldberg et al., 2006; Gusnard, 2005; Gusnard et al., 2001;
elley et al., 2002; Kjaer et al., 2002; Lou et al., 2004; Northoff
Bermpohl, 2004). Additionally, regions involved in this net-

ork were associated with a sense of agency (Vogeley & Fink,
003), social interactions (Gallagher & Frith, 2003; Iacoboni et
l., 2004), or episodic memory (Greicius et al., 2003; Greicius

Menon, 2004; Greicius et al., 2004). All these studies are
argely consistent with the definition proposed on our previous
tudy (Golland et al., 2007) of intrinsic, self-oriented processes
s opposed to extrinsic, world oriented processes.

However, given the complexities of cortical function, it is not
urprising that certain functions do not fall simply into either the
xtrinsic or intrinsic subdivisions. One example is social inter-
ction, which may appear superficially to engage only extrinsic
ignals. However, recent studies suggested that social inter-
ction also involves self-related “simulations” of the “others”

eelings, intentions and actions (Mitchell, Banaji, & Macrae,
005), which is compatible with the presumed engagement of the
ntrinsic system in social interaction. A second issue is mental
magery, which, again, may appear to be based on intrinsic activ-

i
t
t
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ty. However, as a number of studies have demonstrated, mental
magery actually involves, at least partially, re-activation of
ensory, “extrinsic” cortex (Amedi, Malach, & Pascual-Leone,
005; Ishai & Sagi, 1995; Kosslyn, Behrmann, & Jeannerod,
995; O’Craven & Kanwisher, 2000).

The anatomical boundaries of the intrinsic system estimated
y the unsupervised clustering procedure were also consistent
ith previous studies from our laboratory (Goldberg et al., 2006;
olland et al., 2007). Furthermore, they were also compatible
ith other studies that examined the topography of the default
ode/task-negative/introspective system (Binder et al., 1999;
ox et al., 2005; Fransson, 2005; Greicius et al., 2003; Shulman,
iez et al., 1997). This consistency is evident in Fig. 5 where

he distribution of the default/intrinsic regions that have been
escribed in previous studies are superimposed on the intrinsic
ystem as determined by the current clustering analysis. How-
ver, it should be noted that direct comparison of the deactivation
oci that are typical of the default mode suggest they are of a more
ocalized nature compared to the intrinsic network as defined
ere (see Fig. 3).

.2. Prior evidence for two-system organization

While far reaching, the bi-partite fundamental organization
f the cerebral cortex is supported by several lines of studies.
ur previous study addressed the bi-partite hypothesis (Golland

t al., 2007) using a different experimental set up and ana-
ytic methods. Using natural viewing of audio-visual movie and
orrelation analysis, we showed this global cortical partition,
ncorporating functional and anatomical aspects. We revealed
hat the posterior cortex could be envisioned as two anatomi-
ally complementary interconnected systems. While large parts
f the extrinsic system were robustly activated by a natural-
stic audio-visual movie, the activity of the intrinsic system
as dissociated from this external input. Similarly, resting

tate connectivity studies revealed two spontaneously emerging
etworks, partially matching the extrinsic/intrinsic subdivision
hown in the current study. For example, Nir et al. (2006) demon-
trated wide-spread activity that is seemingly distinguished
long the intrinsic/extrinsic boundaries reported here. Fox et al.
2005) demonstrated two negatively correlated networks dur-
ng passive resting state. One of these networks included the
efault-mode network while the other contained while the other
ontained the dorsal attention network (Corbetta & Shulman,
002) in the inferior parietal and superior frontal regions, in
ddition to dorsal-lateral and ventral prefrontal regions, insula
nd supplementary motor area. Other studies have also shown
egative correlations between subcomponents of the intrinsic
nd extrinsic systems (Fransson, 2005; Greicius et al., 2003;
ampson, Peterson, Skudlarski, Gatenby, & Gore, 2002). In

oncert, these studies incorporate similar distinctions, such
s task-negative/task-positive (Fox et al., 2005) or introspec-
ive/extrospective (Fransson, 2005) networks.
It is important to clarify that this antagonistic relationship
s by no means unique to the intrinsic/extrinsic specializa-
ion. In fact antagonistic, “push pull” relationships are common
o cortical function at all spatial scales—from single units to
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Fig. 5. Comparison with other studies. Summary of the default-mode/intrinsic activity obtained from Talairach coordinates reported in seven different studies. The
g sisten
a

e
u
e
p
&
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c
u
R
p
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e

b
h
a

roup consistency map of the intrinsic network is presented for two levels of con
greement of the intrinsic network topography with other related studies.

ntire systems. However, local antagonistic relationships emerge
nder highly restricted cognitive tasks and sensory stimuli. For
xample, an antagonistic relationship has been described for
eripheral versus central visual attentional shifts (e.g., Dechent

Frahm, 2003; DeYoe et al., 1996) or for modality specific
ctivity (e.g., Amedi et al., 2005; Shulman, Fiez et al., 1997). In

ontrast, the Intrinsic/Extrinsic antagonism appears to emerge
nder a wide range of cognitive states and stimuli (see Gusnard &
aichle, 2001 for review), ranging form intense sensory–motor
rocessing (Goldberg et al., 2006), mind wondering (Mason et

f
t
d
n

cy: P = 0.75, marked in green; P = 1, marked in dotted lines. Note the substantial

l., 2007), to rest periods (e.g., Fox et al., 2005, but see Golland
t al., 2007).

Using a model-free unsupervised clustering method and com-
ining various experiments into a large data set we provide
ere further evidence that the bi-partite partition is a general,
natomically consistent principle of cortical organization. The

unctional profile of activity within these two systems supports
he extrinsic/intrinsic model, as well as other similar partitions
escribed above (Fox et al., 2005; Fransson, 2005). During exter-
al stimulation (visual localizer and movie experiments) the
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ystem-level average activity in the extrinsic system was signif-
cantly more similar across subjects then the average activity of
he intrinsic system. During resting state, however, the average
ctivity in these systems was similar. These results support our
ypothesis that the various regions of the “extrinsic” network,
s outlined by the unsupervised clustering algorithm, are ded-
cated to processing different aspects of external information,
herefore, leading to similar neuronal dynamics across subjects.
n contrast, the “intrinsic” network activity is dissociated form
xternal input, and under intense task demands is even inhib-
ted by it. Thus, it can be hypothesized to be oriented towards
ndogenous, individual-oriented processes.

.3. Clustering approach to cortical partition

Although the clustering approach could be conceived as a
eneralization of a seed-based functional connectivity analysis
t is different from it in several important ways. The seed-based
unctional connectivity analysis (Biswal, Yetkin, Haughton, &
yde, 1995; Friston, Frith, Fletcher, Liddle, & Frackowiak,
996; Friston, Frith, Liddle, & Frackowiak, 1993) is hypoth-
sis dependent since it relies on the definition of an initial,
ypothesis-driven, ‘seed’ region of interest. In addition, con-
ectivity analyses frequently rely on explicit assumptions on
ntra-system dynamics. For example, the two-system organi-
ation described in several resting-state connectivity studies
e.g., Fox et al., 2005; Fransson, 2005) has been detected while
ssuming negative correlations between the activity in these
wo systems. Antagonistic relationships, however, do not nec-
ssarily characterize the dynamics of activity in the intrinsic
nd extrinsic regions (Greicius & Menon, 2004; Golland et al.,
007). These inconsistencies could reflect, for example, differ-
nces in the demand characteristics of different tasks, which
nfluence the degree of activation/deactivation in regions associ-
ted with the extrinsic and intrinsic systems (Greicius & Menon,
004; McKiernan et al., 2006; McKiernan, Kaufman, Kucera-
hompson, & Binder, 2003; Weissman, Roberts, Visscher,

Woldorff, 2006). A second possible source of variabil-
ty among studies is the whole-brain modulation in activity
global signal). This modulation can dramatically modify the
cross-regional correlation (Arndt, Cizadlo, O’Leary, Gold, &
ndreasen, 1996; Friston et al., 1996; Greicius & Menon,
004).

Unsupervised clustering procedures like the one used in
he present study or other data-driven approaches (see below)
emove the dependence on pre-determined hypotheses and elim-
nate the need for assuming a priori a particular intra-system
ynamics (e.g., negative-correlations). The k-means clustering
imultaneously estimates the representative time courses that
eplace the seed time courses in functional connectivity anal-
sis and assigns each voxel to a particular system based on its
imilarity to the representative time courses. The algorithm han-
les automatically a broad range of intra-system dynamics, as

ong as the basic assumption of monotonic similarity holds true,
hat is, that voxels in a particular system have higher correla-
ion with the system’s representative time course than with the
epresentative time courses of other systems.

p
T
p
w
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.4. Other data-driven approaches

Other unsupervised clustering methods such as the Principal
omponent Analysis (PCA) (Duda & Hart, 1973) and the Inde-
endent Component Analysis (ICA) (Bell & Sejnowski, 1995)
rovide alternative models of functional connectivity treating
he data as linear combination of components (i.e., spatial maps
ith associated time courses).
All these methods have been extensively explored in the

ontexts of regression-based detection (Baumgartner, Scarth,
eichtmeister, Somorjai, & Moser, 1997; Beckmann & Smith,
004, 2005; Fadili, Ruan, Bloyet, & Mazoyer, 2000; Filzmoser,
aumgartner, & Moser, 1999; Friston et al., 1993; Golay et
l., 1998; Goutte, Toft, Rostrup, Nielsen, & Hansen, 1999;
cKeown et al., 1998; Moser, Diemling, & Baumgartner, 1997;

hirion & Faugeras, 2004; Voultsidou, Dodel, & Herrmann,
005). The fuzzy variants of clustering (Baumgartner et al.,
997; Moser et al., 1997), PCA (Friston et al., 1993) and
CA (Beckmann & Smith, 2004, 2005; McKeown et al., 1998)
ere successfully used to extract and eliminate components

hat contain physiological noise unrelated to the activation pro-
ocol, substantially improving performance of the standard,
egression-based detection. They are also used in protocol-
ree rest scan experiments to isolate the components of fMRI
ignal induced by physiological rhythms, significantly improv-
ng robustness of subsequent functional connectivity analysis
De Luca, Beckmann, De Stefano, Matthews, & Smith, 2006).
pecifically, many studies utilized ICA to map various global
etworks of interest (Bartels & Zeki, 2005; Beckmann, DeLuca,
evlin, & Smith, 2005; Damoiseaux et al., 2006; De Luca et al.,
006) as well as regions related to the default mode network
Greicius & Menon, 2004; Greicius et al., 2004). ICA is quite
romising in offering a component-based decomposition of the
patiotemporal fMRI data, but the interpretation of the resulting
omponent maps remains challenging.

We find the parcelation model used by k-means clustering
o be particularly useful in explaining functional connectivity at
ifferent scales when integrated into a hierarchical estimation
rocedure. Application of this type of clustering in fMRI analy-
is has so far focused on grouping voxels into small, functionally
omogeneous regions (Cordes, Haughton, Carew, Arfanakis, &
aravilla, 2002; Filzmoser et al., 1999; Goutte et al., 1999;

hirion & Faugeras, 2004). In contrast, here we demonstrate
he benefit of using clustering to construct a top-down model of
lobal patterns of activation spanning the entire brain.

Assuming a hierarchical organization, the clustering algo-
ithm is applied iteratively to create a hierarchy of increasingly
oherent functional regions. Using this approach we demon-
trated that a bi-partite constraint provides a robust and
onsistent subdivision. As a next step, these major cortical
ystems could be subdivided into more functionally specific
ub-systems. Given the success of the initial subdivision to
atch a number of previous findings, the hierarchical approach
romises to yield reliable delineations at finer levels as well.
he results of k = 3 clustering, presented in this paper, sup-
ort this approach by showing delineation of the visual system
ithin the extrinsic system on the one hand and by being con-
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istent with the k = 2 results on the other hand. Thus we propose
hat the approach demonstrated in this study could be widely
pplicable to neuroanatomical research in revealing data-driven
ubdivisions within the human cortex.

.5. Neuroanatomical variability

Using the data-driven unsupervised clustering and large
rrays of functionally different studies, we provided evidence
hat the human cortical mantle can be partitioned into two
natomically consistent global systems. By incorporating the
nternal–external dimension, we propose to view these results
s a general model of cortical organization which summarizes
any local findings into a functional hierarchy of the human

ortex. However, like any general model, the bi-partite organi-
ation should be considered with caution both at the functional
nd at the neuroanatomical levels.

At the neuroanatomical level, before adopting the clear cut
istinction between the intrinsic and extrinsic systems we should
e aware of the variability that can be observed among individual
articipants in the present study (Fig. 1) and in comparison with
revious studies (Fig. 5). Interestingly, this variability is most
onspicuous in the prefrontal regions and might be explained
y the particular experimental paradigms used in the current
tudy, which targeted primarily the activation of posterior cor-
ical regions. Advanced research exploring connectivity under
aradigms emphasizing frontal activations could prove useful
n further tuning of the prefrontal involvement in the intrinsic
nd extrinsic networks. On a more general level, it is plausi-
le that some cortical systems are not essentially ‘extrinsic’ or
intrinsic’, but have an intermediate functionality.

.6. On-going versus “intrinsic” activity

At the functional level, the role of the intrinsic system in
uman cognition awaits further elucidation. In our previous
tudy we found that the activity in the intrinsic system is decou-
led from external input. Similarly, other studies showed that the
quivalent default system is more active during rest than during
erforming perceptual and cognitive tasks (Mazoyer et al., 2001;
cKiernan et al., 2003; Shulman, Fiez et al., 1997). However,

ctivity decoupled from external input can hardly serve as a
unctional signature of the intrinsic system. A number of recent
tudies have demonstrated that the extrinsic system is also inces-
antly engaged in ongoing, spatially structured, background
ctivity, even in the absence of experimentally induced exter-
al input (Arieli, Sterkin, Grinvald, & Aertsen, 1996; Biswal,
eYoe, & Hyde, 1996; Nir et al., 2006). Thus, both the intrin-

ic and extrinsic systems may manifest a reflective, spontaneous
nd input-unrelated cortical activity, whose function is still enig-
atic (Raichle, 2006). The term “intrinsic”, as used here, points

o the self-directed orientation of this system, rather than imply-
ng a unique involvement with spontaneous, on-going activity.

n that sense, its “intrinsic” activity can be applied to contextu-
lly appropriate external input. Clearly, the intriguing functional
haracteristics of this newly discovered system awaits further
laboration.

D
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