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Abstract. We demonstrate an EM-based algorithm that jointly regis-
ters and clusters a group of images using an affine transformation model.
The output is a small number of prototype images that represent the dif-
ferent modes of the population. The proposed algorithm can be viewed as
a generalization of other well-known atlas construction algorithms, where
the collection of prototypes represent multiple atlases for that popula-
tion. Our experiments indicate that the employment of multiple atlases
improves the localization of the underlying structure in a new subject.
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1 Introduction

This paper introduces a general probabilistic framework to jointly co-register
and cluster a group of images. This method is applicable in a wide range of
applications, where a database of images needs to be summarized concisely,
e.g. with a small number of prototypes. In medical imaging, atlases are used
for various purposes, including structure/function localization, morphometry,
segmentation, and parcellation. Unlike the traditional approach that uses one
atlas (i.e., one mean image or one probabilistic image) to represent the whole
population, we employ the proposed algorithm to compute multiple atlases to
capture the different modes in a population. The same framework then can
be used to register a new image and determine its cluster membership. We
demonstrate the utility of having multiple atlases for the application of localizing
medial temporal brain structures in a pool of subjects that consists of healthy
controls and schizophrenics. Our experiments indicate that the best results are
achieved if the actual group memberships (schizophrenic vs. healthy) are used
and two different atlases are computed. Our clustering algorithm, on the other
hand, achieves comparably good results without the ground truth membership
information. The alignment quality of the underlying structures, as measured
by the Dice measure [4], is around 5% better than the results obtained with a
single atlas.

1.1 Prior Work

An important problem in medical imaging is the construction of an atlas from a
group of subjects. The term atlas usually refers to a probabilistic model, of which
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the parameters are learned from a training data set [14]. In its simplest form,
an atlas is a mean intensity image. Yet, richer statistics, e.g. intensity variance,
segmentation label counts, etc., can also be included in the atlas model [5].

Atlas construction requires a dense correspondence across subjects. Earlier
techniques used a template image (either a universal template, such as the MNI
template brain [3], or an arbitrary subject from the training data set [6]) to ini-
tially align the training subjects using a pairwise registration algorithm. Other
techniques have focused on determining the least biased template from the train-
ing set [11, 9, 10]. The drawback of such algorithms is that they represent the
whole population using a single template. This can be sub-optimal in situations
where there are more than one “mode” in the population. To circumvent this,
more recent approaches have proposed to co-register the group of images si-
multaneously without computing a group template [12, 16]. These algorithms,
however, don’t yield the multiple modes of the population. In [2], Blezek and
Miller have examined a method to automatically identify the modes of a popu-
lation using a mean-shift algorithm. Rather than integrating image registration
into their framework, the authors treat the transformation as a degree of freedom
over which the algorithm optimizes when computing pairwise image distances.
This resulted in an explosion of pairwise image registration instances, each of
which can be computationally expensive. An alternative strategy, employed in
[7], is to use all training images as the atlas. A new subject is registered with each
training image and segmentation label inference, for example, will be based on
a fusion of the manual labels in the training data. This approach is not suitable
for anatomical variability studies, where the subjects should be in a common
coordinate frame.

In this paper, we investigate a probabilistic framework for joint registration
of a set of images into a common coordinate frame, while clustering them into
a small number of groups, each represented by a prototype image. We employ a
simple mixture of Gaussians model and a maximum likelihood framework which
we solve using Expectation Maximization (EM). Our implementation can be
viewed as an extension of the approach of [13], which solves the registration
problem as an initial, seperate step. We demonstrate the algorithm using 3D
MR data and an affine transformation model. A recent study [1], provides a
statistical analysis of a MAP formulation based on a similar model and proves
asymptotic consistency of the final algorithm1.

2 Theory

Let {Pk}K
k=1 be a small number of prototype images that summarize the group

of images {In}N
n=1. Our model is, for all n ∈ {1, . . . , N}, there exists a k ∈

{1, . . . , K} such that:

In(Φn(x)) = Pk(x) + ε(x), ∀x ∈ Ω ⊂ R3, (1)

where Φn : Ω 7→ R3 is an admissible spatial warp, e.g., an affine transformation,
ε(x) is an independent, non-stationary Gaussian random variable with zero mean
1 Thanks to the anonymous reviewer who pointed us to this excellent paper.
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and a variance of σ2
x. Our goal is to find all prototypes Pk and variance estimates

σ2
x’s, while simultaneously solving for the Φn’s.

We can view the observed images as a group of spatially transformed sam-
ples from a mixture of Gaussians. Cluster k has the mean image Pk(x). The
generative process begins with a random choice for the cluster k. Each cluster
may have a different prior probability πk. Next, a zero mean non-stationary
independent Gaussian noise is added to the mean image of the cluster. This im-
age is then transformed by applying a randomly selected spatial transformation
Φ−1 to generate the observed image I. Thus, given the prototype images {Pk},
variance image Σ(x) = σ2

x, spatial transformation Φ, and prototype priors {πk}
(
∑

k πk = 1), the probability of observing the image I is2:

p(I|{Pk}, {πk}, Σ, Φ) =
∑

k

πkp(I|C = k, Pk, Σ, Φ) (2)

where C denotes the cluster that generates I. Using Eq. (1), we obtain:

p(I|C = k, Pk, Σ, Φ) =
∏

x∈Ω

N (I(Φ(x)); Pk(x), Σ(x)), (3)

where N (x; µ, σ) is the Gaussian density with mean µ and standard deviation
σ. We formulate the problem of atlas construction as a maximum likelihood
estimation:

θ∗ = arg max
θ

∑
n

log p(In|θ), (4)

where θ = {{Pk}, {πk}, Σ, {Φn}} are the parameters and p(In|θ) is defined in
Eq. (2). In this paper, we use the Expectation Maximization (EM) algorithm
to solve Eq. (4). In this context (and with some abuse of notation), the EM
algorithm can be derived in the following manner:

L(θ) =
∑

n

log p(In|θ) ≥ Eqn(k) log p(In, Cn = k|θ) + c, (5)

where qn(k) is any probability distribution, c is a constant that doesn’t depend
on θ and Eq denotes expectation with respect to q. The lower bound is a direct
consequence of Jensen’s inequality. For a fixed θ0 value, the equality holds if and
only if qn(k) = p(Cn = k|Ii, θ0). Let’s define a function Q by inserting this qn(k)
into Eq (5). Then, we have: L(θ) ≥ Q(θ; θ0), and L(θ0) = Q(θ0; θ0). The EM
algorithm can be viewed as iteratively maximizing this lower bound. Let θ(i) be
the guess of θ at the (i)th iteration. Computing Q(θ; θ(i)) is the E-step of the
(i + 1)th iteration. The M-step updates θ to maximize Q(θ; θ(i)).

2 An extension of our model would be to compute a separate variance image for each
cluster. In our experiments, the effect of this on the final result was minimal. So, to
save computational resources, we opted to have a common variance image, Σ.
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2.1 E-step:

In the E-step, the algorithm computes the posterior cluster membership proba-
bilities p̃

(i)
n (k) , p(Cn = k|In, θ(i)) for each image given the model parameters

from the previous iteration:

p̃(i)
n (k) ∝ π

(i)
k

∏

x∈Ω

N (In(Φ(i)
n (x));P (i)

k (x), Σ(x)) (6)

and
∑

k p̃
(i)
n (k) = 1 for all i. These membership probabilities can be seen as

“fuzzy membership”, where p̃n(k) = 1 for some k would indicate a “hard mem-
bership” in cluster k.
2.2 M-step:

In the M-step, the algorithm updates the model parameters, θ = {{Pk}, {πk}, Σ, {Φn}},
to maximize the expected log-likelihood as defined in Eq. (5). This entails up-
dating all prototype images Pk, the prior probabilities πk, the variance image Σ

and all image transformations Φn. For a fixed set of {Φ(i)
n }, there are closed form

expressions for the first three parameters that maximize the objective. These
can be derived by taking the derivative of the expected log-likelihood (with the
Lagrange multiplier for

∑
k πk = 1) and equating it to zero:

P
(i+1)
k (x) =

∑
n p̃

(i)
n (k)In(Φ(i)

n (x))
∑

n p̃
(i)
n (k)

(7)

Σ(i+1)(x) =
1
N

∑

n,k

p̃(i)
n (k)(In(Φ(i)

n (x))− P
(i+1)
k (x))2 (8)

π
(i+1)
k =

∑
n p̃

(i)
n (k)

∑
n,k p̃

(i)
n (k)

. (9)

Given these updated model parameters, the new transformations can be com-
puted by optimizing:

Φ(i+1)
n = arg min

Φ

∑

x∈Ω

(In(Φ(x))− P̄
(i)
n (x))2

Σ(i+1)(x)
, (10)

where P̄
(i+1)
n =

∑
k p̃

(i)
n (k)P (i+1)

k is the “effective prototype” (i.e., target image
in registration) for image In at iteration i. This is simply a weighted average of
the current prototypes and the weights are membership probabilities.

Equations (7,8,9), and (10) implement a generalized EM, where the optimiza-
tion is done with coordinate-ascent and the convergence of the log-likelihood
to a local optimum is guaranteed. We solve (10) using an iterative gradient-
descent type optimizer, an affine transformation model and a multi-resolution
pyramid strategy. In contrast to traditional approaches, each image is registered
to a different target image: a unique average of the current prototype images,
where the averaging is done in a weighted fashion and the weights are corre-
sponding membership probabilities. Note that the registration of each image
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a) b) c) d) e) f )

Fig. 1. Synthetic 2D results. Prototype images for three different numbers of clusters:
1 (a), 2 (b,c), and 3 (d,e,f).

can be done in parallel. As discussed in other group-wise registration papers,
e.g. [12, 16], we need to anchor the registration parameters to avoid global drifts
across subjects. A suitable constraint is that each point in the atlas coordi-
nate frame lies at the average location of corresponding points in the subjects,
i.e., 1

N

∑
n Φ

(i)
n (x) = x, ∀x ∈ Ω ⊂ R3 at each iteration i. With the affine trans-

formation, this constraint can be satisfied by applying the inverse of the average
affine transformation to all subject transformations after the M-step.

3 Empirical Results

3.1 2D Simulations

As a proof of concept, we implemented and tested our algorithm on a group
of synthetic 2D images of size 256 × 256 and a 9-parameter affine transforma-
tion model. Three original images were used to generate a group of 34 images
simulating the process described in Section 2. The number of images from each
prototype, the affine transformation parameters3 and the added Gaussian noise4

were randomly generated. Figure 1 shows the prototype images for three values
of k: 1, 2, and the correct choice of 3. For the last choice, the algorithm could
separate out the three original images used to generate the whole group.

3.2 3D MR data

We used MR brain images of 16 patients with first episode schizophrenia and
17 healthy subjects to compute atlases. Because first episode patients are rel-
atively free of confounds such as the long-term effects of medication, there are
only subtle structural differences between the two groups, which are difficult to
identify by looking at individual scans. A detailed description of the data and
related findings are reported in [8]. The images also contained manual labels of
medial temporal lobe structures: the Superior Temporal Gyrus, Hippocampus,
Amygdala and Parahippocampal Gyrus. We used these segmentation labels and
the group membership information to explore the proposed clustering approach.
As input, we provided our algorithm with the 33 MR volumes (with no mem-
bership or label information). To normalize for global differences in scale and
orientation, we ran the algorithm with k = 1 and the registration parameters
from this step was used to initialize the algorithm with k = 2. Figure 2 shows
slices from the two output prototype volumes. The first prototype is formed by
3 All zero mean, standard dev: translations 10 pixels, rotation 0.3 radian, log scale 0.1
4 zero mean, 0.1*(max intensity value) standard dev.
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17 brains, 11 of which are healthy controls. The second prototype is an average
of 16 subjects, 10 of which are schizophrenics. We call these atlases C1 and C2,
respectively. As benchmarks we computed two types of atlases: we employed
the same algorithm with k = 1 on healthy-controls (CON) and schizophrenic
patients (SZ) separately to compute two atlases (CON and SZ), and all subjects
together to compute one atlas (POOL) for the whole population.

Next, we used the manual labels to explore the alignment of the ROI’s across
the subjects. To quantify this, we used a label entropy measure, defined as:
E = −∑

x

∑
l f(x; l) log f(x; l), where f(x; l) denotes the frequency (or, prior

probability) of structure l at location x in the common atlas space. A small
entropy is an indication of overall good label alignment and a sharper label
frequency image. If we have two atlases for a population, the combined label
entropy for that population can be computed as a weighted sum: π1E1 + π2E2,
where πi and Ei are the prior probability and marginal entropy of atlas i. For
CON and SZ, the prior probabilities were computed as: 17/33 and 16/33. Table 1
lists the label entropy measures. Based on these results we conclude that, in the
individual CON and SZ atlases, the label maps are aligned much better than in
the POOL atlas space. The proposed clustering algorithm also yields two atlases
where label maps are significantly better aligned than POOL.

A sharper label frequency image suggests a better localization of the un-
derlying structure for a new subject [15]. To test the predictive power of the
atlases, we computed a pairwise Dice measure [4] between each subject and the
corresponding 50% probability volume5 for the three different approaches. For
POOL, we registered all subjects to an atlas computed with all other subjects.
For CON/SZ, the ground truth membership was used to determine the atlas
the new subject was registered with. A schizophrenic, for example, was regis-
tered into SZ space. The Dice overlap was computed with the 50% probability
volume of all other schizophrenics in SZ space. For C1 and C2, we employed
Equations (6) and (10) to iteratively compute the cluster membership and reg-
ister with the effective prototype. The final membership probability was used
to assign the new subject to a cluster. All other subjects assigned to that clus-
ter were used to compute the 50% probability volume. Label-specific dice values
were averaged over all labels to get one measurement per subject. Figure 3 shows
a box-plot of these values for the three atlas spaces. CON/SZ and C1/C2 achieve
significantly better predictive power than POOL (one-sided t-test, p < 0.05).

These results suggest that the schizophrenics vs. controls partitioning of the
data set captures the dominant anatomical variability in structures we have
manual labels for. This is not surprising, given the involvement of these ROI’s
in schizophrenia development. Note that the sharper frequency images obtained
using a multiple atlas strategy can be a consequence of having a smaller number
of subjects in each atlas. However, the improved overlap for the new subjects,
which were excluded in the atlas, is encouraging and supports the usefulness of
the proposed approach for segmentation.

5 For each label, the 50% probability volume is the region in the corresponding atlas
where that label occurred in at least half of the subjects, excluding the test subject.
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Fig. 2. Axial slices of two prototypes (healthy-dominant, left, and schizophrenic dom-
inant, right) and the absolute difference image (middle).

Table 1. Label Entropies

Atlas Pooled Healthy Controls Schizophrenics C1 C2
Marginal Entropy 45,814 45,239 42,045 44,842 43,367
Combined Entropy 45,814 43,987 44,139

4 Discussion

The proposed algorithm is a generalization of well-known unbiased atlas regis-
tration algorithms: k = 1 is equivalent to the implementations that repeatedly
register to a dynamic mean image, e.g. [9]; k = N corresponds to keeping all
subjects as atlases, similar to [7]; and the entropy-based group-wise registration
approach of [16] can be viewed as a non-parametric version of the proposed
algorithm. A novelty of our framework is that for a new subject it computes
membership probabilities, which, for example, can be used as weights for a de-
cision fusion-type analysis where inferences from each atlas are combined, e.g.
[7].
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Fig. 3. Predictive power of the three atlases: For each subject, the average dice with
the 50-percent atlas volume was computed. Blue boxes indicate the lower and upper
quartiles, red lines are the medians. The lines extend to 1.5 times the inter-quartile
spacing. Data points outside of the lines are outliers.
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The proposed framework can be extended in various ways. The EM method
yields an algorithm where the cluster assignments are “soft”. An alternative
approach can be to perform “hard clustering” at each iteration. Additionally,
one can employ a richer, nonlinear transformation model, with a prior on the
transformations. Also, more liberal image-to-image distance metrics, such as
Mutual Information, can be motivated using more flexible models than a simple
additive Gaussian. This should produce better results in cases where inter-image
intensity variations are significant.
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