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In non-rigid registration, the tradeoff between warp regularization and image fidelity is typically deter-
mined empirically. In atlas-based segmentation, this leads to a probabilistic atlas of arbitrary sharpness:
weak regularization results in well-aligned training images and a sharp atlas; strong regularization yields
a ‘‘blurry” atlas.

In this paper, we employ a generative model for the joint registration and segmentation of images. The
atlas construction process arises naturally as estimation of the model parameters. This framework allows
the computation of unbiased atlases from manually labeled data at various degrees of ‘‘sharpness”, as
well as the joint registration and segmentation of a novel brain in a consistent manner.

We study the effects of the tradeoff of atlas sharpness and warp smoothness in the context of cortical
surface parcellation. This is an important question because of the increasingly availability of atlases in
public databases, and the development of registration algorithms separate from the atlas construction
process. We find that the optimal segmentation (parcellation) corresponds to a unique balance of atlas
sharpness and warp regularization, yielding statistically significant improvements over the FreeSurfer
parcellation algorithm. Furthermore, we conclude that one can simply use a single atlas computed at
an optimal sharpness for the registration–segmentation of a new subject with a pre-determined, fixed,
optimal warp constraint. The optimal atlas sharpness and warp smoothness can be determined by prob-
ing the segmentation performance on available training data. Our experiments also suggest that segmen-
tation accuracy is tolerant up to a small mismatch between atlas sharpness and warp smoothness.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

In this work, we propose a generative model for the joint regis-
tration and parcellation of cortical surfaces. We formulate the atlas
construction process as estimation of the generative model param-
eters. This provides a consistent framework for constructing the
atlas as well as the registration and segmentation of a novel sub-
ject. We explore the effects of registration regularization on the at-
las construction and the segmentation of a new image. We
conclude that optimal segmentation corresponds to a unique bal-
ance of atlas sharpness and warp regularization. However, the seg-
mentation accuracy is tolerant up to a small mismatch between
atlas sharpness and warp smoothness.
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1.1. Probabilistic atlases

Probabilistic atlases are powerful tools in segmentation (Ash-
burner and Friston, 2005; Collins et al., 1999; Desikan et al., 2006;
Fischl et al., 2002, 2004; Pohl et al., 2006; Van Leemput et al.,
1999). The simplest probabilistic segmentation atlas provides only
the prior probability of labels at a spatial position and no informa-
tion about the expected appearance of the image. One uses this type
of atlas to initialize and to guide the segmentation of a new image
(Van Leemput et al., 1999). More sophisticated algorithms deform
the atlas to the new image and transfer label probabilities from
the atlas to the image (Ashburner and Friston, 2005, 2006). These
label probabilities are then combined with the intensity of the
new image to produce the final segmentation. We note that the
phrase ‘‘image intensities” is used in a generic sense to indicate all
image-derived features, such as MR intensity or cortical geometry.
In this approach, the relationship between labels and image intensi-
ties is estimated in the new image and not from the training images
used to compute the atlas.

More complex probabilistic atlases provide statistics on the
relationship between the segmentation labels and the image
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intensities (Desikan et al., 2006; Evans et al., 1993; Fischl et al.,
2002, 2004; Pohl et al., 2006). The intensity model in the atlas is
used to bring the atlas and new image into the same space. The la-
bel probabilities and intensity model are then used to segment the
new image. Such a registration process can be done sequentially
(Desikan et al., 2006; Fischl et al., 2002, 2004) or jointly (Pohl
et al., 2006). Since this complex atlas contains more information
than the simpler atlas, it can conceivably be a more powerful tool
for segmentation. However, extra care is needed if the modalities
of the new image and training images are different.

In this work, we focus on probabilistic segmentation atlases that
model both labels and intensities. An initial step in probabilistic at-
las computation is the spatial normalization of the training images.
The features used for co-registering images are usually derived from
the images themselves (Allassonnière et al., 2007; Bhatia et al., 2004;
Fischl et al., 1999; Guimond et al., 2000; Joshi et al., 2004; Mazziotta
et al., 1995; Paus et al., 1996; Twining et al., 2005) or from the seg-
mentation labels (De Craene et al., 2004; Lorenzen et al., 2006;
Van Leemput, 2006; Weisenfeld and Warfield, 2007; Yeo et al.,
2007). After normalization to a common space, we can compute
the variability in intensity values (and/or labels) in the atlas space.
Our approach uses both labels and intensities to co-register the
training images. The need to utilize both labels and intensities arises
naturally from the proposed generative model.

Joint registration–segmentation algorithms are generally more
effective than sequential registration–segmentation as registration
and segmentation benefit from additional knowledge of each other
(Ashburner and Friston, 2005; Pohl et al., 2006; Wyatt and Noble,
2003; Xiaohua et al., 2004, 2005; Yezzi et al., 2003). In our case,
the requirement to jointly register and segment is also a natural
consequence of the generative model.

1.2. Warp regularization

Spatial normalization of the training images can be achieved
with different registration algorithms that vary in the flexibility
of warps they allow. Both low-dimensional warps, e.g., affine (Pohl
et al., 2006), and richer, more flexible warps can be employed, e.g.,
splines (Bhatia et al., 2004; Twining et al., 2005; Weisenfeld and
Warfield, 2007), dense displacement fields (De Craene et al., 2004;
Guimond et al., 2000; Fischl et al., 1999, 2004; Van Leemput,
2006) and velocity fields (Joshi et al., 2004; Lorenzen et al., 2006).
More restricted warps yield blurrier atlases that capture inter-sub-
ject variability of structures, enlarging the basin of attraction for the
registration of a new subject. However, label prediction accuracy is
limited by the sharpness of the atlas. Recently, it has been shown
that combining information on the warp flexibility and the residual
image of the registration process improve the classification accuracy
of schizophrenic and normal subjects (Makrogiannis et al., 2006).
Finding the optimal warp regularization tradeoff has received atten-
tion in recent years. Twining et al. (2005) and Van Leemput (2006)
propose frameworks to find the least complex models that explain
the image intensity and segmentation labels of the training images.

In contrast, we explicitly explore the relationship between the
warp flexibility and the atlas sharpness in the context of atlas-
based segmentation. Rather than finding one optimal warp regu-
larization when computing the atlas, we compute atlases with
varying degrees of warp regularization and thus obtain atlases of
varying degrees of sharpness. We use these to study the effect of
atlas sharpness and warp regularization on segmentation accuracy.
In particular, we compare three specific approaches: (1) progres-
sive (i.e., using increasingly flexible warps) registration–segmenta-
tion of a new brain with increasingly sharp atlases; (2) progressive
registration with an atlas of a particular sharpness; (3) registration
with an atlas of a particular sharpness using a pre-determined,
fixed constraint on the warp.
1.3. Cortical parcellation

We investigate the question of regularization in the context of
automatic parcellation of cortical surfaces. Automatic labeling of
surface models of the cerebral cortex is important for identifying
regions of interest for clinical, functional and structural studies
(Desikan et al., 2006; Rivière et al., 2002). In particular, it has been
shown that cortical surface registration can increase the power
of functional alignment or activation consistency (Fischl et al.,
1999), as well as the alignment of cytoarchitectonics (Fischl et al.,
2007). Recent efforts range from identification of sulcal or gyral
ridge lines (Tao et al., 2002; Tu et al., 2007) to segmentation of sul-
cal or gyral basins (Desikan et al., 2006; Fischl et al., 2004; Klein and
Hirsch, 2005; Lohmann and Von Cramon, 2000; Mangin et al., 1994;
Rettmann et al., 2002; Rivière et al., 2002). Similar to these prior
studies, we are interested in the parcellation of the entire cortical
surface, i.e., the automated labeling of each point of the surface of
a new subject.

Because the local geometries of different sulci and gyri might be
similar, learning the geometries of the different sulcal and gyral
labels using information from a new image only is difficult. Instead,
we will follow the approach of (Fischl et al., 2004; Desikan et al.,
2006) and utilize an atlas that encodes both the spatial distribu-
tions of the labels and their spatially varying geometries.

In the context of cortical parcellation, our experiments suggest
that the optimal parcellation in all three registration schemes for
exploring atlas sharpness and warp regularization corresponds to
a unique balance of atlas sharpness and warp regularization. Fur-
thermore, the optimal parameters yield statistically significant
improvements over the FreeSurfer parcellation algorithm (Fischl
et al., 2004). There is no difference in the optimal parcellation accu-
racy achieved by the three schemes.

While one might expect that outlier images require weaker reg-
ularization to warp closer to the population ‘‘average” to achieve
better segmentation accuracy, our experiments show that it is suf-
ficient to use a single atlas computed at an optimal sharpness for
the registration–segmentation of a new subject with a pre-deter-
mined, fixed, optimal warp constraint.

The optimal atlas sharpness and warp smoothness can be deter-
mined by probing the segmentation performance on available
training data. We find that the optimal warp smoothness for the
new subject should be the same as the warp smoothness used
for creating the atlas. While this might be an obvious consequence
of our explicit generative model, in practice, it is common to use or
develop a registration algorithm separate from atlas construction.
This is especially true with the increasing availability of atlases
in publicly available databases, such as MNI305 (Evans et al.,
1993). It is therefore important to determine whether using differ-
ent warp smoothness and atlas sharpness is necessarily detrimen-
tal to segmentation in practice. Our experiments suggest that
segmentation accuracy is tolerant up to a small mismatch between
atlas sharpness and warp smoothness.

A preliminary version of this work was published at the Interna-
tional Conference on Medical Image Computing and Computer
Assisted Intervention (Yeo et al., 2007). This article expands the
conference paper with a more detailed theoretical development
and more extensive experimental work. In particular, the theory
for the atlas construction process was only briefly discussed in
(Yeo et al., 2007), but is covered in depth in this paper.

Our contributions are as follows:

(1) We propose a generative model for the joint registration and
segmentation of images. The atlas construction process is
formulated as a parameter estimation problem. This provides
a consistent framework for both estimating the atlas, as well
as for the registration and segmentation of a new image.
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(2) We explore the space of atlas sharpness and warp regulari-
zation for registering and parcellating cortical surfaces. We
find that the optimal parcellation corresponds to a unique
balance of atlas sharpness and warp regularization. The
robustness of the optimal atlas sharpness and warp regular-
ization across trials suggests that we can use the same
parameters for future cortical surface parcellation.

(3) We show improved parcellation results over the state-of-
the-art FreeSurfer parcellation algorithm (Fischl et al., 2004).

In the next section, we introduce the generative model, describe
the resulting atlas estimation process, and the registration and seg-
mentation of a novel image. Section 3 introduces the cortical sur-
face parcellation problem and describes further modeling
assumptions made in the context of this problem. We present
experimental results in Section 4.

2. Theory

Given a training set of N images I1:N ¼ fI1; . . . ; INg with label
maps L1:N ¼ fL1; . . . ; LNg, joint registration–segmentation aims to
infer the registration parameters R and segmentation labels L of a
new image I. To achieve this goal, we first learn the parameters
of the generative model (Fig. 1) from the training images. These
parameters correspond to the atlas A and smoothness parameter
S. Here, we assume the generative model for the warp R is param-
eterized by S. According to the generative model, the parameters R
and A are independent. However, conditioned on the observed im-
age, R and A become dependent. Estimating the parameters S and A
involves co-registration of the training images into a common
space. We emphasize that our co-registration process uses both
the labels and image intensities of the training images, as de-
scribed in the next section.

2.1. Generative model for registration and segmentation

We consider the generative model of Fig. 1. L0 is a label map in
the atlas space generated probabilistically by the atlas A. For
example, L0 could be the tissue type at each MRI pixel, generated
by a tissue probability map. Given the label map, the atlas then
generates image I0. For example, at each pixel, we can generate
an MR intensity conditioned on the tissue type and spatial loca-
tion. Finally, we generate a random warp field R controlled by
the smoothness parameter S. For example, we can generate a
random displacement field, with neighboring displacements
encouraged to be ‘‘close” by setting S to be the spacing of spline
control points or the penalty in a cost function that discourages
large or discontinuous deformation fields. The random warp R is
then applied to the label map L0 and image I0 to create the
observed label map L and observed image I, i.e., IðRðxÞÞ ¼ I0ðxÞ
S
L

I
R

I

L
A

Fig. 1. Generative model for registration and segmentation. A is an atlas used to
generate the label map L0 in some universal atlas space. The atlas A and label map L0

generate image I0 . S is the smoothness parameter that generates random warp field
R. This warp is then applied to the label map L0 and image I0 to create the label map L
and the image I. We assume the label map L is available for the training images, but
not for the test image. The image I is observed in both training and test cases.
and LðRðxÞÞ ¼ L0ðxÞ. Thus a location x in the atlas space is mapped
to a location RðxÞ in the native (or raw) image space. We defer a
detailed instantiation of the model to Section 3.

During co-registration, a small value of smoothness parameter S
leads to less constrained warps, resulting in better alignment of the
training images.3 This results in a sharper atlas. On the other hand, a
larger smoothness parameter yields more regularized warps and a
blurrier atlas.

2.2. Atlas building: estimating parameters of generative model

To estimate the parameters of the generative model, we maxi-
mize the likelihood of the observed images I1:N and L1:N over the
values of the non-random smoothness parameter S and atlas A.

ðS�;A�Þ ¼ argmax
S;A

log pðI1:N ; L1:N; S;AÞ: ð1Þ

¼ argmax
S;A

log
Z

pðI1:N ; L1:N;R1:N; S;AÞdR1:N: ð2Þ

Here, pða; bÞ indicates the probability of random variable a
parameterized by a non-random parameter b while pðajbÞ indicates
the probability of random variable a conditioned on a random
variable b.

In this case, we need to marginalize over the registration warps
R1:N , which is difficult. Previously demonstrated methods for atlas
construction use various approximations to evaluate the integral.
In this paper, we adopt the standard approximation that replaces
the integral with the value of the integrand estimated at the
maximum likelihood estimate of deformation. In contrast, (Richard
et al., 2007) uses a sampling method while (Van Leemput, 2006)
uses the Laplace approximation, which essentially models the dis-
tribution to be a Gaussian centered at the maximum likelihood
estimate. It is unclear that these more complex methods, while
theoretically more sound, lead to (practically) better approxima-
tion. Based on this approximation, we seek

ðS�;A�;R�1:NÞ ¼ argmax
S;A;R1:N

log pðI1:N ; L1:N;R1:N; S;AÞ: ð3Þ

¼ argmax
S;A;R1:N

XN

n¼1

log pðIn; Ln;Rn; S;AÞ: ð4Þ

¼ argmax
S;A;R1:N

XN

n¼1

½log pðRn; SÞ þ log pðIn; LnjRn; AÞ�: ð5Þ

The second equality comes from the fact that the training images
are independent of each other given the atlas A and smoothness
parameter S. The last equality is implied by the independence rela-
tions specified by the graphical model in Fig. 1.

Optimizing the above expression yields the atlas A� and
smoothness parameter S�. As mentioned before, a smaller value
of the smoothness parameter S results in a sharper atlas. Since
we are interested in how atlas sharpness affects segmentation
accuracy, instead of estimating one single optimal S�, we construct
a series of atlases corresponding to different values of the regular-
ization parameter S. In particular, we discretize S into a finite set
fSkg ¼ fS1 > S2 > � � � > SKg. For each value Sk, we seek the optimal
atlas and set of deformations:

ðA�;R�1:NÞ ¼ argmax
A;R1:N

XN

n¼1

½log pðRn; SkÞ þ log pðIn; LnjRn; AÞ�: ð6Þ
3 By a ‘‘better alignment of images”, we mean that the warped images look more
similar, i.e., the similarity measure is improved. However, an improved similarity
measure does not necessarily imply deformations with better label alignment. In fact,
we show in the paper that the best segmentation occurs when warps are not overly
flexible.
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We shall refer to the atlas computed using a particular Sk as Aa¼Sk
.

We use alternating optimization to maximize Eq. (6). In each step,
we fix the set of registration warps R1:N and estimate the atlas Aa¼Sk

:

A�Sk
¼ argmax

ASk

XN

n¼1

log pðIn; LnjRn; ASk
Þ: ð7Þ

We then fix the atlas Aa¼Sk
, and optimize the registration warps R1:N

by optimizing each warp independently of others:

R�n ¼ argmax
Rn

log pðRn; SkÞ þ log pðIn; LnjRn; ASk
Þ;

8n ¼ 1; . . . ;N: ð8Þ

This process is repeated until convergence. Convergence is guaran-
teed since this is essentially a coordinate-ascent procedure operat-
ing on a bounded function.

We can think of Eq. (8) as the atlas co-registration objective
function by treating log pðIn; LnjRn; ASk

Þ as the data fidelity function
and log pðRn; SkÞ as the regularization term. We effectively register
each image independently to the atlas Aa¼Sk

. This iterated process
of updating the atlas is similar to (Joshi et al., 2004), except we in-
clude training labels in the co-registration. We will show a con-
crete instantiation of this formulation in Section 3.

In practice, we first create atlas A1 based on a simple rigid-body
registration and use it to initialize the atlas AS1 , where S1 is large
enough such that the resultant warp is almost rigid. We then use
atlas AS1 to initialize the atlas AS2 where S1 > S2, and so on. The re-
sult is a set of atlases fAag ¼ fAS1 . . . ASK g. With enough samples, the
finite set fSk;Aa¼Sk

g accurately represents the underlying continu-
ous space of atlases at different levels of sharpness.

2.3. Registration and segmentation of a new image

Given an atlas A and smoothness parameter S, the registration
and segmentation of a new image I can be computed using a max-
imum-a-posteriori (MAP) estimate. This involves finding the mode
of the posterior distribution of the new image labels L and registra-
tion R given the observed image I and atlas A and smoothness
parameter S:

ðL�;R�Þ ¼ argmax
L;R

log pðL;RjI; S;AÞ: ð9Þ

¼ argmax
L;R

log pðI; L;R; S;AÞ: ð10Þ

¼ argmax
L;R

log pðR; SÞ þ log pðI; LjR; AÞ: ð11Þ

The second equality follows from the definition of the conditional
probability. The last equality follows from the independence rela-
tions specified by the graphical model in Fig. 1. In prior work, this
MAP approach is favored by some (Wyatt and Noble, 2003; Xiaohua
et al.,2004, 2005), while others suggest estimating the MAP solution
for the registration warp alone (Ashburner and Friston, 2005; Pohl
et al., 2006):

R� ¼ argmax
R

pðI;R; S;AÞ: ð12Þ

¼ argmax
R

log
X

L

pðL; I;R; S;AÞ; ð13Þ

and recovering the segmentation labels as a final step after recover-
ing the optimal registration R�. Prior work in joint registration and
segmentation did not consider atlas construction in the same
framework (Ashburner and Friston, 2005; Pohl et al., 2006; Wyatt
and Noble, 2003; Xiaohua et al., 2004, 2005). Furthermore, S is usu-
ally set by an expert rather than estimated from the data.

We previously reported results based on the latter two-step ap-
proach (Yeo et al., 2007). In this version, we use the former MAP
framework since it requires fewer assumptions for practical opti-
mization. As we show in Section 3, optimizing Eq. (11) using a
soft-MAP coordinate-ascent approach using the Mean Field
approximation (Jaakkola, 2000; Kapur et al., 1998) results in the
same update rule used by our previously demonstrated method
(Yeo et al., 2007).

The differences between the new image registration specified
by Eq. (11) and the atlas co-registration objective function in Eq.
(8) comes from the unavoidable fact that for the new image, the la-
bel map is not observed. To optimize Eq. (11), we use a coordinate-
ascent scheme. In step t, we fix the registration parameters RðtÞ and
estimate the labels Lðtþ1Þ:

Lðtþ1Þ ¼ argmax
L

log pðRðtÞ; SÞ þ log pðI; LjRðtÞ; AÞ: ð14Þ

¼ argmax
L

log pðI; LjRðtÞ; AÞ: ð15Þ

¼ argmax
L

log pðLjI;RðtÞ; AÞ: ð16Þ

Eq. (16) optimizes the log posterior probability of the label map L
given the image I, atlas A and current estimate of the registration
parameters RðtÞ. Next, we fix the label estimate Lðtþ1Þ and re-estimate
the registration parameters Rðtþ1Þ:

Rðtþ1Þ ¼ argmax
R

log pðR; SÞ þ log pðI; Lðtþ1ÞjR; AÞ: ð17Þ

We can think of Eq. (17) as the new image registration objective
function by treating log pðI; Lðtþ1ÞjR; AÞ as the data fidelity term and
log pðR; SÞ as the regularization term.

To maintain generality, we allow the use of a smoothness
parameter Sk for the registration and segmentation of a new sub-
ject with an atlas Aa where Sk may not be equal to a. In other
words, we can, for instance, compute an atlas using affine transfor-
mations, while using a flexible deformation model for the registra-
tion of a new subject. Strictly speaking, Sk should theoretically be
equal to a in Eq. (11) from the perspective of probabilistic infer-
ence. Here, we examine whether using different warp smoothness
and atlas sharpness is necessarily detrimental to segmentation in
practice.

More specifically, we investigate three strategies for exploring
the space of atlas sharpness and warp smoothness to register
and segment a new image as illustrated in Fig. 2.

(1) Multiple atlas, multiple smoothness (MAMS): A multiscale
approach where we optimize Eq. (16) and (17) w.r.t. R and
L with the blurry atlas AS1 and warp regularization S1. The
resulting alignment is used to initialize the registration with
a sharper atlas AS2 and a correspondingly flexible warp reg-
ularization S2, and so on (Fig. 2a).

(2) Singleatlas, multiple smoothness (SAMS): We use a fixed atlas
of a fixed sharpness scale ASk

to compute R and L according
to Eq. (16) and (17) using a progressively decreasing warp
smoothness S (Fig. 2b).

(3) Single atlas, single smoothness (SASS): We optimize Eq. (16)
and (17) w.r.t. R and L with a fixed atlas ASk

and warp regu-
larization Sm, where Sk might not be equal to Sm (Fig. 2c).

So far, the derivations have been general without any assump-
tion about the atlases Aa, the prior pðR; SkÞ or the image-segmenta-
tion fidelity pðI; LjR; AaÞ. In the next section, we instantiate this
approach for a concrete example of cortical surface registration
and parcellation.
3. Cortical surface parcellation

We now demonstrate the framework developed in the previous
section for the joint registration and parcellation of surface models



Fig. 2. Strategies for exploring space of atlas sharpness and warp smoothness of a new image: (a) multiple atlases, multiple smoothness (MAMS); (b) single atlas, multiple
smoothness (SAMS); and (c) single atlas, single smoothness (SASS).
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of the cerebral cortex. These surfaces are represented by triangular
meshes with a spherical coordinate system that minimizes metric
distortion (Dale et al., 1999; Fischl et al., 1999). The aim is to reg-
ister an unlabeled cortical surface to a set of manually labeled sur-
faces and to classify each vertex of the triangular mesh in terms of
the anatomical units. To construct the generative model for this
problem, we need to define the prior on the registration parame-
ters pðR; SÞ and the model for label and image generation
pðI; LjR; AaÞ. In general, our model decisions were inspired by previ-
ous work on cortical surface parcellation (Fischl et al., 2004).

3.1. Generative model for registration and segmentation

We model the warp regularization with an MRF parameterized
by S:

pðR; SÞ , FðRÞ
Z1ðSÞ

exp �S
X

i

X
j2Ni

dR
ij � d0

ij

d0
ij

 !2
24 358<:

9=;; ð18Þ

where dR
ij is the distance between vertices i and j under registration

R, d0
ij is the original distance, Ni is a neighborhood of vertex i and

Z1ðSÞ is the partition function. Our regularization penalizes percent-
age metric distortion weighted by a scalar S that reflects the amount
of smoothness (rigidity) of the final warp. We choose a percentage
metric distortion instead of an absolute metric distortion (Fischl et
al., 1999) to ensure that the tradeoff between the regularization and
the data fidelity term is invariant to scale in our multi-resolution
framework. This is especially important in our work since we
explore a large range of warp smoothness parameter S.

Fð�Þ ensures invertibility. It is zero if any triangle is folded by
warp R and one otherwise. We represent the warp R as a displace-
ment field on the sphere. Therefore, a term like FðRÞ is necessary.
One could replace FðRÞwith a more sophisticated invertibility prior
(e.g., Ashburner et al., 1999; Nielsen et al., 2002) or restrict the
space of feasible warps to be the space of diffeomorphisms (Joshi
et al., 2004; Glaunès et al., 2004).

We first decompose the label and image prior:

pðI; LjR; AaÞ ¼ pðLjR; AaÞpðIjL;R; AaÞ; ð19Þ

and impose an MRF prior on the parcellation labels

pðLjR; AaÞ,
1

Z2ðAaÞ
exp

X
i

UiðAaÞLðRðxiÞÞ
(

þ
X

i

X
j2Ni

LTðRðxiÞÞVijðAaÞLðRðxjÞÞ
)
: ð20Þ

Here, we use the vectorized MRF notation of (Kapur et al., 1998).
Assuming the total number of labels is M, LðRðxiÞÞ is a column vector
of size M � 1 that sums to 1. Each component of LðRðxiÞÞ is an indi-
cator variable. In particular, suppose the image has label m at loca-
tion RðxiÞ, then LðRðxiÞÞ is zero for all entries, except for the m-th
entry, which is equal to 1. It is a common practice to relax the con-
straint, so that L still sums to 1 but the entries might take on frac-
tional values to indicate uncertainty in the segmentation results.
UiðAaÞ is a 1�M local potential vector that captures the frequency
of label LðRðxiÞÞ at vertex i of the atlas mesh. The M �M compatibil-
ity matrix VijðAaÞ reflects the likelihood of two labels at vertices i
and j being neighbors. Z2ðAaÞ is the partition function dependent
on the atlas Aa, ensuring the given MRF is a valid probability
distribution.

We further assume that the noise added to the mean image
intensity at each vertex location is independent, given the label
at that location.

pðIjL;R; AaÞ ,
Y

i

WiðIðRðxiÞÞ; AaÞLðRðxiÞÞ; ð21Þ

where WiðIðRðxiÞÞ; AaÞ is a 1�M observation potential vector
defined at each atlas vertex i. The m-th entry corresponds to the
likelihood of observing a particular image intensity or vectors of
intensity (in this case, the local surface geometries) at location
RðxiÞ given a particular label m. We assume Wi follows a Gaussian
distribution, e.g., given that the post-central gyrus is at location
RðxiÞ of the image, we expect the local curvature and/or sulcal depth
IðRðxiÞÞ to follow a Gaussian distribution whose parameters are
estimated from the training images.

The collection of model components fUi;Vij;Wig define the atlas
Aa. Eq. (20) defines an isotropic prior on the labels, which is a sim-
pler model than that used by modern approaches. The FreeSurfer
parcellation algorithm uses a spatially varying and anisotropic
MRF model (Fischl et al., 2004), whose parameters change dynam-
ically with the geometries of the subject being segmented. An
anisotropic MRF improves the parcellation accuracy, because the
boundaries of certain gyral regions are predicted robustly by
the variation in curvature. For example, the boundary between
the pre-central and post-central gyrus is the central sulcus.
Along the boundary, there is high curvature, while across the
boundary, the curvature drops off sharply.

We made the explicit choice of warping an image (interpolat-
ing an image) to the atlas space. The alternative of warping the
atlas (interpolating the atlas) to image space would require us to
interpolate the MRF, which is non-trivial. Interpolating U would
result in a change in the partition function, which is exponentially
hard to compute. In addition, if we were to use the dynamic model
of FreeSurfer, since we have made the choice of warping the sub-
ject, this would mean that the model parameters and hence the
partition function of the MRF would change during the registra-
tion step. FreeSurfer does not have this problem, because it does
not perform joint registration and segmentation. Therefore, we
assume V to be spatially stationary and isotropic and drop the
subscripts i; j.

3.2. Atlas building: estimating parameters of generative model

Substituting Eq. (18), (20) and (21) into the atlas co-registration
objective function in Eq. (8), we obtain:
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R�n ¼ argmax
Rn

log pðRn; SkÞ þ log pðIn; LnjRn; ASk
Þ

¼ argmax
Rn

log FðRnÞ � Sk

X
i

X
j2Ni

dRn
ij � d0

ij

d0
ij

 !2

þ
X

i

UiðAaÞLðRnðxiÞÞ þ
X

i

X
j2Ni

LTðRnðxiÞÞVðAaÞLðRnðxjÞÞ

þ
X

i

WiðIðRnðxiÞÞ; AaÞLðRnðxiÞÞ þ const: ð22Þ

where the first term prevents folding triangles, the second term
penalizes metric distortion, the third and fourth terms are the Mar-
kov prior on the labels and the last term is the likelihood of the sur-
face geometries given the segmentation labels of the n-th training
image.

We can then fix R�n and estimate the atlas parameters
Aa ¼ fUi;V ;Wig using Eq. (7). In practice, we use the naive ap-
proach of frequency counts (Fischl et al., 2004) to estimate the cli-
que potentials U;V and the maximum likelihood estimation of the
Gaussian likelihood terms W. Appendix B provides the implemen-
tation details.

3.3. Registration and segmentation of a new image

Similarly, we substitute Eq. (18), (20) and (21) into the update
rules for the new subject segmentation in Eq. (16) and registration
in Eq. (17).

Warping the subject to the atlas, optimization in Eq. (16) with a
fixed RðtÞ involves estimating the segmentation labels at positions
RðtÞðfxigÞ of the subject, where fxig are vertices of the atlas mesh.
We will denote this segmentation estimate by bLðtþ1Þ. Eq. (16)
becomesbLðtþ1Þ ¼ argmaxbL log pðbLjIðRðtÞðfxigÞÞ; AaÞ: ð23Þ

Even with fixed RðtÞ, solving the MAP segmentation Eq. (23) is
NP-hard. We adopt the mean field approximation (Jaakkola, 2000;
Kapur et al., 1998). We then use the complete approximate distribu-
tion provided by the mean field solver in optimizing Eq. (17). This
approximation effectively creates a soft segmentation estimatebLðtþ1Þ

i at each location RðtÞðxiÞ of the new subject. bLðtþ1Þ
i is a column

vector of size Mx1. The m-th component of bLðtþ1Þ
i is the probability

of finding label m at location RðtÞðxiÞ of the new subject. To estimate
the label bLðxÞ at an arbitrary location x in the subject space, we
interpolate from bLðtþ1Þ defined at RðtÞðfxigÞ onto location x.

This optimization procedure leads to fewer local minima since
it avoids commitment to the initial estimates obtained through
hard thresholding that might be very far from a good solution if
the new image is originally poorly aligned to the atlas. Appendix
A provides an outline for computing bLðtþ1Þ via the mean field
approximation. Warping the subject to the atlas, Eq. (17) becomes:

Rðtþ1Þ ¼ argmax
R

log FðRÞ � Sk

X
i

X
j2Ni

dR
ij � d0

ij

d0
ij

 !2

þ
X

i

UiðAaÞbLðRðxiÞÞ þ
X

i

X
j2Ni

bLTðRðxiÞÞVðAaÞbLðRðxjÞÞ

þ
X

i

WiðIðRðxiÞÞ; AaÞbLðRðxiÞÞ þ const: ð24Þ

Further implementation details can be found in Appendix B.
4 The optimal value of S ¼ 1 is coincidental in the sense that it depends on the unit
chosen for metric distortion.
4. Experiments and discussion

We consider 39 surfaces that represent the gray-white matter
interface of the left and right hemispheres automatically seg-
mented from 3D MRI using FreeSurfer (Dale et al., 1999). This data
set exhibits significant anatomic variability since it contains young,
middle-aged, elderly subjects and Alzheimer’s patients. The sur-
faces are topologically corrected (Fischl et al., 2001; Ségonne et al.,
2007) and a spherical coordinate system is established by minimiz-
ing metric distortion (Fischl et al., 1999). For each hemisphere, the
39 cortical surfaces are first rigidly aligned on the sphere, which cor-
responds to rotation only. The surfaces are manually parcellated by
a neuroanatomical expert into 35 labels (Desikan et al., 2006). Fig. 3
illustrates the manual parcellation for one subject. A complete list of
the parcellation units is included in Table 1.

We perform cross-validation by leaving out subjects 1 through
10 in the atlas construction, followed by the joint registration–seg-
mentation of the left-out subjects. We repeat with subjects 11
through 20, 21 through 30 and finally 31 through 39. We select S
to be the set f100;50;25;12:5;8;5;2:5;1;0:5;0:25;0:1;0:05;
0:01g. We find that in practice, S ¼ 100 corresponds to allowing
minimal metric distortion and S ¼ 0:01 corresponds to allowing
almost any distortion. The intervals in the set S are chosen so that
each decrease in the value of S roughly corresponds to an average
of 1mm increased displacement in registration.

Since we treat the subject mesh as the moving image, both reg-
istration and parcellation are performed on the fixed atlas mesh.
The segmentation is interpolated from the atlas mesh onto the
subject mesh to obtain the final segmentation. We compute
segmentation quality by comparing this final segmentation with
the ‘‘ground truth” manual parcellation.

To speed up the algorithm, we construct the atlas on a sub-di-
vided icosahedron mesh with about 40k vertices. Typically, each
subject mesh has more than 100k vertices. The segmentation labels
inferred on the low resolution atlas mesh are therefore computed
on a coarser grid than that of the manual parcellation. Yet, as we
discuss in the remainder of this section, the proposed implementa-
tion on average outperforms the FreeSurfer parcellation algorithm
(Fischl et al., 2004).

Despite working with a lower resolution icosahedron mesh,
registration at each smoothness scale still takes between 20 min
to 1.5 hrs per subject per atlas. Registration with weakly con-
strained warps ðS 6 0:1Þ requires more time because of the need
to preserve the invertibility of the warps. The entire set of experi-
ments took approximately 3 weeks to complete on a computing
cluster, using up to 80 nodes in parallel.

4.1. Exploration of smoothness S and atlas Aa

In this section, we discuss experimental results for the explora-
tion of the smoothness parameter S and atlases Aa. We measure the
segmentation accuracy using the Dice coefficient, defined as the ra-
tio of cortical surface area with correct labels to the total surface
area, averaged over the test set.

Fig. 4 shows the segmentation accuracy for SAMS (Aa ¼ A1) and
MAMS as we vary S. The average Dice peaks at approximately S ¼ 1
for all cross-validation trials, although individual variation exists,
as shown in Fig. 5.4 For a particular value of S, outliers warp more
because the tradeoff between the data fidelity and regularization is
skewed towards the former. However, it is surprising to find that
the optimal S is mostly constant across subjects. It also appears that
peaks of the segmentation accuracy plots are relatively broad, imply-
ing that good parcellation results can be obtained for a range of S be-
tween 1 and 2.5.

For large S (highly constrained warps), MAMS consistently out-
performs SAMS. Because the surfaces are initially misaligned, using



Fig. 3. Example of manual parcellation shown on a partially inflated cortical surface. In our data set, the neuroanatomist preferred gyral labels to sulcal labels. There are also
regions where sulci and gyri are grouped together as one label, such as the superior and inferior parietal complexes.

Table 1
List of parcellation structures

1. Sylvian fissure/unknown 2. Bank of the superior temporal sulcus
3. Caudal anterior cingulate 4. Caudal middle frontal gyrus
5. Corpus callosum 6. Cuneus
7. Entorhinal 8. Fusiform gyrus
9. Inferior parietal complex 10. Inferior temporal gyrus
11. Isthmus cingulate 12. Lateral occipital
13. Lateral orbito frontal 14. Lingual
15. Medial orbito frontal 16. Middle temporal gyrus
17. Parahippocampal 18. Paracentral
19. Parsopercularis 20. Parsorbitalis
21. Parstriangularis 22. Peri-calcarine
23. Post-central gyrus 24. Posterior cingulate
25. Pre-central gyrus 26. Pre-cuneus
27. Rostral anterior cingulate 28. Rostral middle frontal
29. Superior frontal gyrus 30. Superior parietal complex
31. Superior temporal gyrus 32. Supramarginal
33. Frontal pole 34. Temporal pole
35. Transverse temporal
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a sharp atlas (in the case of SAMS, atlas A1) results in poor segmen-
tation accuracy due to a mismatch between the image features and
the atlas statistics. As we decrease the smoothness S, SAMS allows
for more flexible warps towards the population average than
MAMS since it uses a sharper atlas. The similarity measure is there-
fore given higher weight to overcome the regularization. This re-
sults in better segmentation accuracy than MAMS. Eventually,
SAMS and MAMS reach similar maximal values at the same opti-
mal smoothness S. Beyond the optimal S, however, both MAMS
and SAMS exhibit degraded performance. This is probably due to
overfitting and local optima created by more flexible warps.

We also examine the Dice measure of each parcellation struc-
ture as a function of the warp smoothness S. In general, the curves
are noisier, but follow those of Fig. 4. Fig. 6a shows a typical curve
that peaks at S ¼ 1, while Fig. 6b shows a curve that peaks at S ¼ 5.
However, in general, for most structures, the optimal smoothness S
occurs at approximately S ¼ 1 (Fig. 7), which is not surprising since
for most subjects, the optimal overall Dice (computed over the en-
tire surface) also occurs at S ¼ 1 (Fig. 5).

We now explore the effects of both warp smoothness S and at-
las sharpness a on parcellation accuracy. Fig. 8 shows a plot of Dice
averaged over all 39 subjects. The performances of MAMS, SAMS
and SASS at (S ¼ 1;a ¼ 1) are indistinguishable. As an example,
we see that for both hemispheres, SAMS with a ¼ 0:01 (green line)
starts off well, but eventually overfits with a worse peak at S ¼ 1
(p < 10�5 for one-sided paired-sampled t-test, statistically signifi-
cant even when corrected for multiple comparisons). Similarly
for SASS, the best values of a and S are both equal to 1. We also
show SASS with a ¼ 0:01 and S ¼ 1 in Fig. 8. In general, there is
no statistical difference between MAMS, SAMS or SASS at their op-
tima: a ¼ 1, S ¼ 1.

Originally, MAMS and SAMS were introduced to reduce local
optima in methods, such as SASS. It is therefore surprising that
the performance of all three methods is comparable. While using
the correct smoothness and atlas sharpness is important, our
‘‘annealing” process of gradual reduction of smoothness (MAMS
and SAMS) does not seem to increase the extent of the basins of
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Fig. 4. Parcellation accuracy as a function of warp smoothness. S is plotted on a log scale: (a) left hemisphere; and (b) right hemisphere.
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Fig. 5. Histogram of optimal warp smoothness S across subjects (MAMS): (a) left hemisphere (b) right hemisphere.
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Fig. 6. (a) Typical plot of Dice against smoothness S. (b) A noisy plot of Dice against smoothness S. (a) Right inferior temporal gyrus. (b) Right temporal pole.
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attraction in the context of cortical parcellation. One possible rea-
son is that on the cortical surfaces, two adjacent sulci might appear
quite similar locally. Smoothing these features might not necessar-
ily remove the local minima induced by such similarity. Incorpo-
rating multiscale features (Nain et al., 2007; Yu et al., 2007a,b)
with multiple smoothness offers a promising approach for avoid-
ing such local optimal issues on the cortex.

The fact that the optimal smoothness parameter S� corresponds
to the optimal atlas sharpness parameter a� is not surprising.
According to the graphical model in Fig. 1 and as mentioned in
the derivations in Section 2.2 and Section 2.3, theoretically, we
do expect S� ¼ a�. Learning this optimal S� in the atlas construction
process is a future avenue of investigation.

Alternatively, we can also determine the best S and Aa for a new
image registration by optimizing the objective function in Eq. (11).
Unfortunately, there are technical difficulties in doing this. First,
we notice that the objective function in Eq. (11) increases with
decreasing S. This model contains no Occam’s razor regularization
terms that penalize overfitting due to flexible warps. This is mainly
because Eq. (11) omits certain difficult-to-compute normalization
terms, such as the partition function that depends on U, V and W
and thus dependent on S and a. These terms are ignored for fixed
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Fig. 7. Histogram of optimal S across structures (MAMS): (a) left hemisphere; and (b) right hemisphere.
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Fig. 8. Overall Dice versus smoothness. S is plotted on a log scale: (a) left hemisphere; and (b) right hemisphere.
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values of S and a. We can use various approximation strategies to
compute the normalization terms. But it is not clear whether these
approximations yield sufficient accuracy to determine the optimal
values for S and a. On the other hand, empirically we find that
S ¼ a ¼ 1 consistently yields the optimal (or very close to the opti-
mal) segmentation performance. This suggests that one can probe
the training data using a MAMS-type strategy to determine the
optimal values of warp smoothness and atlas sharpness, and then
use the SASS strategy for future registration and segmentation of
new subjects. Furthermore, our experiments suggest that segmen-
tation accuracy is tolerant up to a small mismatch between atlas
sharpness and warp smoothness.

Further work will involve the application of our framework to
other data sets (including volumetric data) and experiments with
other models of data fidelity and regularization. We expect the
optimal smoothness and atlas sharpness to be different but it
would be interesting to verify if these values are consistent across
subjects. It is possible that in the volumetric case where the inten-
sity features are more predictive of labels, a MAMS-type strategy
may outperform SASS, particularly in cases where the anatomy is
dramatically different (e.g., ventricles in Alzheimer patients).

In this work, the optimal smoothness parameter found is global
to the entire surface. Previous work demonstrated the advantage of
using spatially varying smoothness parameters (Commowick et al.,
2005). Unfortunately, the approach of exhaustive search presented
here cannot be directly applied, since it would involve searching
over a much larger space of parameters.
4.2. Comparison with FreeSurfer

We now compare the performance of our algorithm with the
FreeSurfer parcellation algorithm, described in (Fischl et al.,
2004) and extensively validated in (Desikan et al., 2006).

It is unclear which algorithm has a theoretical advantage. The
FreeSurfer algorithm is essentially a ‘‘single atlas, single smooth-
ness” (SASS) method that uses a sequential registration–segmenta-
tion approach and a more complicated anisotropic MRF model that
has been specifically designed and fine-tuned for the surface par-
cellation application. Our model lacks the anisotropic MRF and
introducing it would further improve its performance. On the other
hand, FreeSurfer uses iterated conditional modes (Besag, 1986) to
solve the MRF, while we use the more powerful mean field approx-
imation (Jaakkola, 2000; Kapur et al., 1998). FreeSurfer also treats
the subject mesh as a fixed image and the parcellation is performed
directly on the subject mesh. Therefore, unlike our approach, no
interpolation is necessary to obtain the final segmentation.

As shown in Fig. 8, the optimal performances of MAMS, SAMS
and SASS are statistically significantly better (even when corrected
for multiple comparisons) than the FreeSurfer, with p-value
1� 10�8 (SASS) for the left hemisphere and 8� 10�4 (SASS) for
the right hemisphere.

Because Dice computed over the entire surface can be deceiving
by suppressing small structures, we show in Fig. 9 the percentage
improvement of SASS over FreeSurfer on inflated cortical surfaces.
Qualitatively, we see that SASS performs better than FreeSurfer



Fig. 9. Percentage improvement of SASS over FreeSurfer. The boundaries between parcellation regions are set to reddish-brown so that the different regions are more visible:
(a) left lateral; (b) right lateral; (c) left medial; and (d) right medial. Note that none of the blue-colored structures achieves statistically better segmentation accuracy using
Free Surfer than SASS (see text).
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since there appears more orange-red regions than blue regions.
The fact that the colorbar has significantly higher positive values
than negative values indicates that there are parcellation regions
with significantly greater improvements compared with regions
that suffer significant penalties.
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Fig. 10. Structure-specific parcellation accuracy for the left hemisphere. First column (d
(brown) columns correspond to MAMS, SAMS and SASS respectively. (S ¼ 1;a ¼ 1). *
FreeSurfer. There is no structure that becomes worse. (a) Left hemi structures: 1–9; (
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More quantitatively, Figs. 10 and 11 display the average Dice
per structure for FreeSurfer, MAMS, SAMS and SASS at ðS ¼ 1;
a ¼ 1Þ for the left and right hemispheres, respectively. Standard er-
rors of the mean are displayed as red bars. The numbering of the
structures correspond to Table 1. The structures with the worst
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Fig. 11. Structure-specific parcellation accuracy for the right hemisphere. First column (dark blue) corresponds to FreeSurfer. Second (light blue), third (yellow) and fourth
(brown) columns correspond to MAMS, SAMS and SASS respectively. (S ¼ 1;a ¼ 1). * indicates structures where SASS shows statistically significant improvement over
FreeSurfer. There is no structure that becomes worse. (a) Right hemi structures: 1–9; (b) right hemi structures: 10–18; (c) right hemi structures: 19–27; and (d) right hemi
structures: 28–35.
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Dice are the frontal pole, corpus callosum and entorhinal cortex.
These structures are small and relatively poorly defined by the
underlying cortical geometry. For example, the entorhinal cortex
is partially defined by the rhinal sulcus, a tiny sulcus that is only
visible on the pial surface. On the other hand, the corpus callosum
is mapped from the white matter volume onto the cortical surface.
Its boundary is thus defined by the surrounding structures, rather
than by the cortical geometry.

For each structure, we perform a one-sided paired-sampled t-
test between SASS and FreeSurfer, where each subject is consid-
ered a sample. We use the false discovery rate (FDR) (Benjamini
and Hochberg, 1995) to correct for multiple comparisons. In the
left hemisphere, SASS achieves statistically significant improve-
ment over FreeSurfer for 17 structures (FDR < 0.05), while the
remaining structures yield no statistical difference. In the right
hemisphere, SASS achieves improvement for 11 structures
(FDR < 0.05), while the remaining structures yield no statistical dif-
ference. The p-values for the left and right hemispheres are pooled
together for the false discovery rate analysis.

A major factor influencing the accuracy of the automatic parcel-
lation is the manual segmentation. In well-defined regions such as
pre- and post-central gyri, accuracy is more than 90% and within
the range of inter-rater variability. In the ambiguous regions, such
as the frontal pole, inconsistent manual segmentation leads to less
consistent training and worse segmentation performance.

5. Conclusions

In this paper, we proposed a generative model for the joint reg-
istration and segmentation of images. The atlas construction pro-
cess is formulated as estimation of the graphical model
parameters. The framework incorporates consistent atlas construc-
tion, multiple atlases of varying sharpness and MRF priors on both
registration warps and segmentation labels. We show that atlas
sharpness and warp regularization are important factors in seg-
mentation and that the optimal smoothness parameters are stable
across subjects in the context of cortical parcellation. The experi-
ments imply that the optimal atlas sharpness and warp smooth-
ness can be determined by cross-validation. Furthermore,
segmentation accuracy is tolerant up to a small mismatch between
atlas sharpness and warp smoothness. With the proper choice of
atlas sharpness and warp regularization, even with a less complex
MRF model, the joint registration–segmentation framework
achieves better segmentation accuracy than the state-of-the-art
FreeSurfer algorithm (Desikan et al., 2006; Fischl et al., 2004).

There are various promising directions for future work. We be-
lieve that incorporating multiscale features (Nain et al., 2007; Yu
et al., 2007a,b) can further improve the registration and parcella-
tion of the cortical surfaces. Learning the optimal spatially varying
smoothness parameters in the training set is also a problem we are
currently working on. Finally, we plan to apply this framework to
other problems, including volumetric segmentation.
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Appendix A. Mean field derivation outline

The mean field approximation uses a variational formulation
(Jaakkola, 2000), where we seek to minimize the KL-divergence
(denoted by Dð�jj�Þ) between qðbLÞ ¼ QibiðbLiÞ and pðbLjIðRðtÞðfxigÞÞ;
AaÞ:

fb�i g ¼ argmin
fbig

DðqðbLÞjjpðbLjIðRðtÞðfxigÞÞ; AaÞÞ: ðA:1Þ

This results in a fixed-point iterative solution. Since this is a fairly
standard derivation (Jaakkola, 2000), we only provide the final
update:

biðmÞ / exp fUiðmÞ þ log pðIðRðtÞðxiÞÞjbLi

¼ m; AaÞ þ
X
j2Ni

X
bLj

bjðbLjÞ½Vðm; bLjÞ þ VðbLj;mÞ�g; ðA:2Þ

where bi is normalized to be a valid probability mass function.

Appendix B. Implementation

We now present some implementation details for comple-
teness. We first discuss the estimation of the atlas Aa defined by
fUi;V ;Wig in Eq. (20) and (21) from the maximum likelihood func-
tion Eq. (7). In our model, estimating Ui and V is hard in practice,
since evaluating Eq. (7) requires computing the NP-hard partition
function. Instead, we use frequency counts to estimate the clique
potentials, similar to FreeSurfer Fischl et al. (2004).

� In our implementation, the singleton potential Ui is a row vector
of length M and Ln is a column indicator vector. We set

Ui ¼ log
1
N

X
n

LT
nðRnðxiÞÞ; ðA:3Þ

where ð�ÞT indicates transpose.
� The pairwise potential V is a M �M matrix. Following (Fischl

et al., 2004), we set

V ¼ log
1

2NE

X
n

X
i

X
j2Ni

LnðRnðxiÞÞLT
nðRnðxiÞÞ; ðA:4Þ

where E is the number of edges in the atlas mesh. More rigorous
methods of optimizing the clique potentials through iterative
proportional fitting (Jirousek and Preucil, 1995) would further
improve the clique potential estimates.

� The likelihood potential Wi is a row vector of length M defined
at each vertex. The m-th entry of Wi corresponds to the likeli-
hood of observing a particular image intensity or vectors of
intensity (in our case, the local surface geometries) at location
RðxiÞ given a particular label m. While we might be observing
multiple geometric features at any vertex, the likelihood of
these features is combined into the row vector Wi. We use
maximum likelihood estimates of the mean and variance of
the Gaussian distribution of cortical geometries conditioned
on the segmentation labels to parameterize this distribution.
In this work, we use the mean curvature of the original cortical
surface and average convexity, which is a measure of sulcal
depth (Fischl et al., 1999), as intensity features. At spatial loca-
tions where there is no training data for a particular label, it is
unclear what the value of the entry in W should be since it is
spatially varying. We simply assume a mean of zero and a large
variance, essentially being agnostic to the value of intensity we
observe. A more sophisticated method would involve the use of
priors on the atlas parameters, so that the atlas parameters
become random. In that case, when there is no observations,
the maximum likelihood estimates of the atlas parameters
become the priors.

Secondly, we discuss the registration of a training image to an
atlas (Eq. (22)) and the new image registration (Eq. (24)).

� The registration warp R is a map from a 2-Sphere to a 2-Sphere.
We represent R as a dense displacement field. In particular, each
point xi has an associated displacement vector ui tangent to the
point xi on the sphere. RðxiÞmaps xi to xi þ ui normalized to be a
point on the sphere.

� To interpolate (for example the mean curvature of a cortical sur-
face onto RðxiÞ), we first find the intersection between the vector
RðxiÞ and each planar triangle of the spherically mapped cortical
surface. We then use barycentric interpolation to interpolate the
values at the vertices of the mesh onto RðxiÞ.

� The above two bullets completely specify the computation of the
atlas co-registration objective function Eq. (22) and the new
subject registration function Eq. (24). This allows us to compute
the gradients of the objective function via the chain rule.

� We use conjugate gradient ascent with parabolic line search
(Press, 1992) on a coarse-to-fine grid. The coarse-to-fine grid
comes from the representation of the atlas as a subdivided ico-
sahedron mesh.

� The final segmentation is obtained by selecting for each vertex
the label with the highest posterior probability.

� To satisfy FðRÞ, the regularization that induces invertibility, we
ensure that no step in the line search results in folded triangles.
Unfortunately, in practice, this results in many small steps. It is
much more efficient to perform the line search without consid-
ering FðRÞ, and then unfold the triangles using FðRÞ after the line
search. In general, we find that after unfolding, the objective
function is still better than the previous iteration. This unfolding
process can be expensive for small smoothness parameter S
ðS 6 0:1Þ, resulting in long run times of about 1.5 hrs per subject
per atlas for S 6 0:1.
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