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Spherical Demons: Fast Diffeomorphic
Landmark-Free Surface Registration
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Abstract—We present the Spherical Demons algorithm for
registering two spherical images. By exploiting sphericalvector
spline interpolation theory, we show that a large class of regulari-
zors for the modified Demons objective function can be efficiently
approximated on the sphere using iterative smoothing. Based
on one parameter subgroups of diffeomorphisms, the resulting
registration is diffeomorphic and fast. The Spherical Demons
algorithm can also be modified to register a given spherical
image to a probabilistic atlas. We demonstrate two variantsof
the algorithm corresponding to warping the atlas or warping
the subject. Registration of a cortical surface mesh to an atlas
mesh, both with more than 160k nodes requires less than 5
minutes when warping the atlas and less than 3 minutes when
warping the subject on a Xeon 3.2GHz single processor machine.
This is comparable to the fastest non-diffeomorphic landmark-
free surface registration algorithms. Furthermore, the accuracy
of our method compares favorably to the popular FreeSurfer
registration algorithm. We validate the technique in two different
applications that use registration to transfer segmentation labels
onto a new image: (1) parcellation of in-vivo cortical surfaces
and (2) Brodmann area localization in ex-vivo cortical surfaces.

Index Terms—Surface Registration, Spherical Registration,
Cortical Registration, Vector Field Interpolation, Demons, Dif-
feomorphism

I. I NTRODUCTION

M OTIVATED by many successful applications of the
spherical representation of the cerebral cortex, this

paper addresses the problem of registering two spherical
images. Cortical folding patterns have been shown to cor-
relate with both cytoarchitectural [25], [68] and functional
regions [64], [27]. In group studies of cortical structure and
function, determining corresponding folds across subjects is
therefore important. There has been much effort focused on
registering cortical surfaces in 3D [22], [23], [30], [58].Since
cortical areas – both structure and function – are arranged in
a mosaic across the cortical surface, an alternative approach
is to model the surface as a 2D closed manifold in 3D
and to warp the underlying spherical coordinate system [27],
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[50], [59], [60], [64], [67]. Warping the spherical coordinate
system establishes correspondences across the surfaceswithout
actually deforming the surfaces in 3D.

Deformation Model. There is frequently a need for invert-
ible deformations that preserve the topology of structuralor
functional regions across subjects. Unfortunately, this causes
many spherical warping algorithms to be computationally
expensive. Previously demonstrated methods for cortical reg-
istration [27], [60], [67] rely on soft regularization constraints
to encourage invertibility. These require unfolding the mesh
triangles, or limit the size of optimization steps to achieve
invertibility [27], [67]. Elegant regularization penalties that
guarantee invertibility exist [5], [46] but they explicitly rely
on special properties of the Euclidean image space that do not
hold for the sphere.

An alternative approach to achieving invertibility is to work
in the group of diffeomorphisms [4], [7], [9], [22], [31], [43],
[66]. In this case, the underlying theory of flows of vector
fields can be extended to manifolds [11], [44], [47]. The Large
Deformation Diffeomorphic Metric Mapping (LDDMM) [7],
[9], [22], [31], [43] is a popular framework that seeks a
time-varying velocity field representation of a diffeomorphism.
Because LDDMM optimizes over the entire path of the
diffeomorphism, the resulting method is slow and memory
intensive. By contrast, Ashburner [4] and Hernandezet al. [33]
consider diffeomorphic transformations parameterized bya
single stationary velocity field. While restricting the space
of solutions reduces the memory needs relative to LDDMM,
these algorithms still have to consider the entire trajectory of
the deformation induced by the velocity field when computing
the gradients of the objective function, leading to a long
run time. We note that recent algorithmic advances [34],
[43] promise to improve the speed and relieve the memory
requirements of both LDDMM and the stationary velocity
approach.

In this work, we adopt the approach of the Diffeomorphic
Demons algorithm [66], demonstrated in the Euclidean image
space, which constructs the deformation space that contains
compositions of diffeomorphisms, each of which is parame-
terized by a stationary velocity field. Unlike the EuclideanDif-
feomorphic Demons, the Spherical Demons algorithm utilizes
velocity vectors tangent to the sphere and not arbitrary 3D
vectors. This constraint need not be taken care of explicitly
in our algorithm since we directly work with the tangent
spaces. In each iteration, the method greedily seeks the locally
optimal diffeomorphism to be composed with the current
transformation. As a result, the approach is much faster than
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LDDMM [7], [9], [22], [31] and its simplifications [4], [33].
A drawback is that the path of deformation is no longer a
geodesic in the group of diffeomorphisms.

Image Similarity vs. Regularization Tradeoffs. Another
challenge in registration is the tradeoff between the imagesim-
ilarity measure and the regularization in the objective function.
Since most types of regularization favor smooth deformations,
the gradient computation is complicated by the need to take
into account the deformation in neighboring regions. For
Euclidean images, the popular Demons algorithm [57] can
be interpreted as optimizing an objective function with two
regularization terms [14], [66]. The special form of the ob-
jective function facilitates a fast two-step optimizationwhere
the second step handles the warp regularization via a single
convolution with a smoothing filter.

Using spherical vector spline interpolation theory [31] and
other differential geometric tools, we show that the two-stage
optimization procedure of Demons can be efficiently approx-
imated on the sphere. We note that the problem is not trivial
since tangent vectors at different points on the sphere are not
directly comparable. We also emphasize that this decoupling
of the image similarity and the warp regularization could also
be accomplished with a different space of admissible warps,
e.g., spherical thin plate splines [72].

Interpolation. Yet another reason why spherical image
registration is slow is because of the difficulty in performing
interpolation on a spherical grid, unlike a regular Euclidean
grid. In this paper, we use existing methods for interpolation,
requiring about one second to interpolate data from a spherical
mesh of 160k vertices onto another spherical mesh of 160k
vertices. Recent work on using different coordinate chartsof
the sphere [63] promises to further speed up our implementa-
tion of the Spherical Demons algorithm.

While most discussion in this paper concentrates on pair-
wise registration of spherical images, the proposed Spher-
ical Demons algorithm can be modified to incorporate a
probabilistic atlas. We derive and implement two variants
of the algorithm for registration to an atlas corresponding
to whether we warp the atlas or the subject. On a Xeon
3.2GHz single processor machine, registration of a cortical
surface mesh to an atlas mesh, both with more than 160k
nodes, requires less than 5 minutes when warping the atlas and
less than 3 minutes when warping the subject. Note that the
registration runtime reported includes registration components
dealing with rotation, which takes up one quarter of the
total runtime. The total runtime is comparable to other non-
linear landmark-free cortical surface registration algorithms
whose runtime ranges from minutes [23], [60] to more than
an hour [27], [67]. However, the other fast algorithms suffer
from folding spherical triangles [60] and intersecting triangles
in 3D [23] since only soft constraints are used. No runtime
comparison can be made with spherical registration algorithm
of the LDDMM type because to the best of our knowledge, no
landmark-free LDDMM spherical registration algorithm that
handles cortical surfaces has been developed yet.

Unlike landmark-based methods for surface registration [8],
[22], [31], [50], [58], [64], we do not assume the existence
of corresponding landmarks. Landmark-free methods have

the advantage of allowing for a fully automatic processing
and analysis of medical images. Unfortunately, landmark-free
registration is also more challenging, because no information
about correspondences are provided. The difficulty is exac-
erbated for the cerebral cortex since different sulci and gyri
appear locally similar. Nevertheless, we demonstrate thatour
algorithm is accurate in both cortical parcellation and cyto-
architectonic localization applications.

The Spherical Demons algorithm for registering cortical
surfaces presented here does not take into account the metric
properties of the original cortical surface. FreeSurfer [27] uses
a regularization that penalizes deformation of the spherical
coordinate system based on the distortion computed on the
original cortical surface. Thompsonet al. [59] suggest the
use of Christoffel symbols [39] to correct for the metric
distortion of the initial spherical coordinate system during the
registration process. However, it is unclear whether correcting
for the metric properties of the cortex is important in practice,
since we demonstrate that the accuracy of the Spherical
Demons algorithm compares favorably to that of FreeSurfer.
A possible reason is that we initialize the registration with
a spherical parametrization that minimizes metric distortion
between the spherical representation and the original cortical
surface [27].

This paper is organized as follows. In the next section, we
discuss the classical Demons algorithm [57] and its diffeomor-
phic variant [66]. In Section III, we present the extension of the
Diffeomorphic Demons algorithm to the sphere. We conclude
with experiments in Section IV and further discussion in Sec-
tion V. The appendices provide technical and implementation
details of the Spherical Demons algorithm and the extensionto
probabilistic atlases. This paper extends a previously presented
conference article [69] and contains detailed derivationsand
discussions that were left out in the conference version. We
note that our Spherical Demons code is freely available1. To
summarize,

1) We demonstrate that the Demons algorithm can be
efficiently extended to the sphere.

2) We demonstrate that the use of a limited class of
diffeomorphisms combined with the Demons algorithm
yields a speed gain of more than an order of magnitude
compared with other landmark-free invertible spherical
registration methods, such as [27], [67].

3) We validate our algorithm by demonstrating an ac-
curacy comparable to that of the popular FreeSurfer
algorithm [27] in two different applications.

II. BACKGROUND - DEMONS ALGORITHM

We choose to work with the modified Demons objective
function [14], [66]. LetF be the fixed image,M be the moving
image andΓ be the desired transformation that deforms the
moving imageM to match the fixed imageF . Throughout
this paper, we assume thatF andM are scalar images, even

1There are two versions of the code (matlab and ITK) available
at http://sites.google.com/site/yeoyeo02/software/sphericaldemonsrelease. The
matlab code is used in the experiments of this paper. The preliminary ITK
code [35], [36], [37] can also be found at http://hdl.handle.net/10380/3117.
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Data: A fixed imageF and moving imageM .
Result: TransformationΓ so thatM ◦ Γ is “close” to F .
SetΥ0 = identity transformation (or some a-priori transformation, e.g., from a previous registration)
repeat

Step 1.Given Υ(t),
Minimize the first two terms of Eq. (3)

u(t) = argmin
u

∥

∥

∥Σ−1
(

F − M ◦ {Υ(t) ◦ u}
)∥

∥

∥

2

+
1

σ2
x

dist
(

Υ(t), {Υ(t) ◦ u}
)

, (1)

whereu is any admissible transformation. ComputeΓ(t) = Υ(t) ◦ u(t).

Step 2.Given Γ(t),
Minimize the last two terms of Eq. (3):

Υ(t+1) = argmin
Υ

1

σ2
x

dist(Υ, Γ(t)) +
1

σ2
T

Reg(Υ). (2)

until convergence;

Algorithm 1 . Demons Algorithm

though it is easy to extend the results to vector images [70].
We introduce a hidden transformationΥ and seek

(Υ∗, Γ∗) = argmin
Υ,Γ

‖Σ−1 (F − M ◦ Γ) ‖2 (3)

+
1

σ2
x

dist(Υ, Γ) +
1

σ2
T

Reg(Υ).

In this case, the fixed imageF and warped moving imageM ◦
Γ are treated asN × 1 vectors. Typically, dist(Υ, Γ) = ‖Υ −
Γ‖2, encouraging the resulting transformationΓ to be close
to the hidden transformationΥ and Reg(Υ) = ‖∇(Υ− Id)‖2,
i.e., the regularization penalizes the gradient magnitudeof the
displacement fieldΥ − Id of the hidden transformationΥ.
σx and σT provide a tradeoff among the different terms of
the objective function.Σ is typically a diagonal matrix that
models the variability of a feature at a particular voxel. Itcan
be set manually or estimated during the construction of an
atlas.

This formulation facilitates a two-step optimization proce-
dure that alternately optimizes the first two (first and second)
and last two (second and third) terms of Eq. (3). Starting
from an initial displacement fieldΥ0, the Demons algorithm
iteratively seeks an update transformation to be composed with
the current estimate, as summarized in Algorithm 1.

In the original Demons algorithm [57], the space of admissi-
ble warps includes all 3D displacement fields, and the compo-
sition operator◦ corresponds to the addition of displacement
fields. The resulting transformation might therefore be not
invertible. In the Diffeormorphic Demons algorithm [66], the
updateu is a diffeormorphism fromR

3 to R
3 parameterized

by a stationary velocity field~v. Note that~v is a function that
associates a tangent vector with each point inR

3. Under cer-
tain mild smoothness conditions, a stationary velocity field ~v is
related to a diffeomorphism through the exponential mapping
u = exp(~v). In this case, the stationary ODE∂x(t)/∂t =
~v(x(t)) with the initial conditionx(0) ∈ R

3 yields exp(~v) as

a solution at time 1, i.e.,x(1) = exp(~v)(x(0)) ∈ R
3. In this

case,exp(~v)(x(0)) maps pointx(0) to point x(1).
The Demons algorithm and its variants are fast because

for certain forms of dist(Υ, Γ) and Reg(Υ), Step 1 reduces
to a non-linear least-squares problem that can be efficiently
minimized via Gauss-Newton optimization and Step 2 can
be solved by a single convolution of the displacement field
Γ with a smoothing kernel. The proof of the reduction of
Step 2 to a smoothing operation is illuminating and holds for
dist(Υ, Γ) = ‖Υ − Γ‖2 and any Sobolev norm Reg(Υ) =
∑

i σi‖∇i(Υ − Id)‖2 [14], [45]. In practice, a Gaussian filter
is used without consideration of the actual induced norm [14],
[66]. The proof uses Fourier transforms and is therefore
specific to the Euclidean domain. Due to differences between
the geometry of the sphere and Euclidean spaces, we will see
in Section III-D that the reduction of Step 2 to a smoothing
operation is only an approximation on the sphere.

III. SPHERICAL DEMONS

In this section, we demonstrate suitable choices of
dist(Υ, Γ) and Reg(Υ) that lead to efficient optimization of
the modified Demons objective function in Eq. (3) on the unit
sphereS2. We construct updatesu as diffeomorphisms from
S2 to S2 parameterized by a stationary velocity field~v. We
emphasize that unlike Diffeomorphic Demons [66],~v is a
tangent vector field on the sphere and not an arbitrary 3D
vector field. A glossary of common terms used throughout the
paper is found in Table I.

A. Choice of dist(Υ, Γ)

Suppose the transformationsΓ and Υ map a pointxn ∈
S2 to two different pointsΓ(xn) ∈ S2 and Υ(xn) ∈
S2 respectively. An intuitive notion of distance between
Γ(xn) and Υ(xn) would be the geodesic distance between
Γ(xn) and Υ(xn). Therefore, we could define dist(Υ, Γ) =
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TABLE I
GLOSSARY OF TERMS USED THROUGHOUT THE PAPER.

F, M Fixed imageF , moving imageM .
Σ Typically a diagonal matrix that models variability of feature values at a particular vertex.
σx, σT Parameters of Demons cost function in Eq. (3).
Γ, Υ Transformations fromS2 to S2. Γ is the transformation we are seeking.Υ is the smooth hidden

transformation close toΓ.
~Γ , {~Γn}, ~Υ , {~Υn} Discrete tangent vector representation of the deformations (see Fig. 1 and Eq. (5)). For example,

given the tangent vector~Γn at xn ∈ S2, one can computeΓ(xn).
~v , {~vn} We parameterize diffeomorphic transformations fromS2 to S2 by a composition of diffeomor-

phisms, each parameterized by a stationary velocity field~v. ~vn is the velocity vector atxn.
u(·) , exp(~v)(·) The diffeomorphism parameterized by the stationary velocity field ~v is the solution of a stationary

ODE at time1.
En , [~en1 ~en2] ~en1 and~en2 are orthonormal vectors tangent to the sphere atxn

Ψn Coordinate chart defined in Eq. (10):Ψn(x′) = xn+Enx′

‖xn+Enx′‖
. Ψn is a diffeomorphism betweenR2

and a hemisphere centered atxn ∈ S2.
~zn ~zn is an arbitrary tangent vector at the origin ofR

2. At xn, the velocity vector~vn = En~zn via
the coordinate chartΨn (see Eq. (14)).

�Γn

Γ(xn) xn

O

sin
−1 ‖�Γn‖
−1

nn

Fig. 1. Tangent vector representation of transformationΓ. See text for more
details.

∑N
n=1 geodesic(Υ(xn), Γ(xn)). For reasons that will become

clear in Section III-D, we prefer to define dist(Υ, Γ) in terms
of a tangent vector representation of the transformationsΓ and
Υ, illustrated in Fig. 1, where the length of the tangent vector
encodes the amount of deformation.

Let Txn
S2 be the tangent space atxn. We define~Γn ∈

Txn
S2 to be the tangent vector atxn pointing along the great

circle connectingxn to Γ(xn). In this work, we set the length
of ~Γn to be equal to the sine of the angle betweenxn and
Γ(xn). With this particular choice of length, there is a one-
to-one correspondence betweenΓ(xn) and~Γn, assuming the
angle betweenxn and Γ(xn) is less thanπ/2, which is a
reasonable assumption even for relatively large deformations.
The choice of this length leads to a compact representation of
~Γn via vector products. We defineGn to be the3 × 3 skew-
symmetric matrix representing the cross-product ofxn with
any vector:

Gn =





0 −xn(3) xn(2)
xn(3) 0 −xn(1)
−xn(2) xn(1) 0



 , (4)

wherexn(i) is thei-th coordinate ofxn. Thus,xn ×Γ(xn) =

GnΓ(xn). Then on a unit sphere, we obtain

~Γn = −xn × (xn × Γ(xn)) = −G2
nΓ(xn). (5)

A more intuitive choice for the length of~Γn might be
the geodesic distance betweenxn and Γ(xn). If we restrict
~Γn to be at most lengthπ, there is a one-to-one mapping
between this choice of the tangent vector~Γn and the resulting
transformationΓ(xn). Indeed, such a choice of a tangent
vector corresponds to an exponential map ofS2 [39]. The
resulting expression for~Γn =

−2G2

nΓ(xn)
‖G2

nΓ(xn)‖ sin−1
(

Γ(xn)−xn

2

)

is feasible, but more complicated than Eq. (5). In this paper,
for simplicity, we follow the definition in Eq. (5).

Given N vertices{xn}N
n=1, the set of transformed points

{Γ(xn)}N
n=1 – or equivalently the tangent vectors{~Γn}N

n=1 –
together with a choice of an interpolation function define the
transformationΓ everywhere onS2. Similarly, we can define
the transformationΥ or the equivalent tangent vector field~Υ
through a set ofN tangent vectors{~Υn}N

n=1. We emphasize
that these tangent vector fields are simply a convenient repre-
sentation of the transformationsΥ and Γ and should not be
confused with the stationary velocity field~v that will be used
later on. We now set

dist(Υ, Γ) =

N
∑

n=1

‖~Υn − ~Γn‖2, (6)

which is well-defined since both~Γn and~Υn belong toTxn
S2

for eachn = 1, · · · , N .

B. Spherical Demons Step 1

In this section, we show that the update for Step 1 of the
Spherical Demons algorithm can be computed independently
for each vertex. With our choice of dist(Υ, Γ), step 1 of the
algorithm becomes a minimization with respect to the velocity
field ~v , {~vn ∈ Txn

S2}N
n=1. By substitutingu = exp(~v) and
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dist(Υ, Γ) =
∑N

n=1 ‖~Υn − ~Γn‖2 into Eq. (1), we obtain

~v(t) = argmin
~v

f(~v) (7)

= argmin
~v

∥

∥

∥Σ−1
(

F − M ◦ {Υ(t) ◦ exp(~v)}
)∥

∥

∥

2

(8)

+
1

σ2
x

dist
(

Υ(t), {Υ(t) ◦ exp(~v)}
)

= argmin
~v

N
∑

n=1

1

σ2
n

(

F (xn) − M ◦ {Υ(t) ◦ exp(~v)}(xn)
)2

+
1

σ2
x

N
∑

n=1

∥

∥

∥

~Υ(t)
n + G2

n{Υ(t) ◦ exp(~v)}(xn)
∥

∥

∥

2

,

(9)

whereσ2
n is then-th diagonal entry ofΣ and◦ denotes warp

composition.

Defining Coordinate Charts on the Sphere. The cost
function in Eq. (9) is a mapping from the tangent bundle
TS2 to the real numbersR. We can think of each tangent
vector ~vn as a 3 × 1 vector in R

3 tangent to the sphere
at xn. Therefore~vn has 2 degrees of freedom and Eq. (9)
represents a constrained optimization problem. Instead of
dealing with the constraints, we employ coordinate charts
that are diffeomorphisms (smooth and invertible mappings)
between open sets inR2 and open sets onS2. The differential
of the coordinate chart establishes correspondences between
the tangent bundlesTR

2 and TS2 [39], [44], so we can
reparameterize the constrained optimization problem intoan
unconstrained one in terms ofTR

2 (see Fig. 2).
It is a well-known fact in differential geometry that covering

S2 requires at least two coordinate charts. Since the tools of
differential geometry are coordinate-free [39], [44], ourresults
are independent of the choice of the coordinate charts. Let~en1,
~en2 be any two orthonormal3×1 vectors tangent to the sphere
at xn, where orthonormality is defined via the usual Euclidean
inner product in3D. In this work, for each mesh vertexxn,
we define a local coordinate chartΨn : R

2 7→ S2,

Ψn(x′) =
xn + Enx′

‖xn + Enx′‖ , where En = [~en1 ~en2]. (10)

As illustrated in Fig. 2,Ψn(0) = xn. Let ~zn be a 2 × 1
tangent vector at the origin ofR2. With the choice of the
coordinate chart above, the corresponding tangent vector at xn

is given by the differential of the mappingDΨn(·) evaluated
at x′ = 0:

~vn = DΨn(0)~zn (11)

=
I3×3 − Ψn(0)ΨT

n (0)

‖Ψn(0)‖ En~zn (12)

=
I3×3 − xnxT

n

‖xn‖
En~zn (13)

= En~zn = [~en1 ~en2]~zn. (14)

The above equation defines the mapping of a tangent vector
~zn at the origin of R2 to the tangent vector~vn at xn via
the differential of the coordinate chartDΨn at x′ = 0. We

note that for a tangent vector at an arbitrary point inR
2,

the expression for the corresponding tangent vector on the
sphere is more complicated. This motivates our definition ofa
separate chart for each mesh vertex, to simplify the derivations.

Gauss-Newton Step of Spherical Demons.From Eq. (14),
we obtainexp(~v) = exp({~vn}) = exp({En~zn}) and rewrite
Eq. (9) as an unconstrained optimization problem:

{~z(t)
n }

= argmin
{~zn}

N
∑

n=1

1

σ2
n

(

F (xn) − M ◦ {Υ(t) ◦ exp({En~zn})}(xn)
)2

+
1

σ2
x

N
∑

n=1

∥

∥

∥

~Υ(t)
n + G2

n{Υ(t) ◦ exp({En~zn})}(xn)
∥

∥

∥

2

,

(15)

, argmin
{~zn}

N
∑

n=1

1

σ2
n

f2
n(~z) +

1

σ2
x

N
∑

n=1

‖gn‖2(~z) (16)

This non-linear least-squares form can be optimized efficiently
with the Gauss-Newton method, which requires finding the
gradient of both terms with respect to{~zn} at {~zn = 0} and
solving a linearized least-squares problem.

We let ~mT
n be the1 × 3 spatial gradient of the warped

moving imageM ◦Υ(t)(·) at xn and note that~mT
n is tangent

to the sphere atxn. The computation of~mT
n is discussed

in Appendix A-A. Defining un , exp({En~zn})(xn), we
differentiate the first term of the cost functionfn(~z) in Eq. (15)
using the chain rule, resulting in the1 × 2 vector:

∂

∂~zk

[

F (xn) − M ◦ {Υ(t) ◦ exp({En~zn})}(xn)
]

~z=0

= − ∂

∂~zk

M ◦ {Υ(t) ◦ exp({En~zn})}(xn)
∣

∣

∣

~z=0
(17)

= −∂M ◦ {Υ(t) ◦ exp({En~zn})}(xn)

∂ exp({En~zn})(xn)
× (18)

×
[

∂ exp({En~zn})(xn)

∂~zk

] ∣

∣

∣

∣

~z=0

= −∂M ◦ Υ(t)(un)

∂un

∣

∣

∣

∣

un=xn

[

∂ exp({En~zn})(xn)

∂Ek~zk

∂Ek~zk

∂~zk

] ∣

∣

∣

∣

~z=0

(19)

= −~mT
nEnδ(k, n), (20)

whereδ(k, n) = 1 if k = n and0 otherwise. Eq. (20) uses the
fact that the differential ofexp(~v) at~v = 0 is the identity [47],
i.e, [D exp(0)]~v = ~v. In other words, a change in velocity~vk

at vertexxk does not affectexp(~v)(xn) for n 6= k up to the
first order derivatives.

Similarly, we defineST
n to be the3× 3 Jacobian ofΥ(t)(·)

at xn. The computation ofST
n is discussed in Appendix A-B.

Differentiating the second term of the cost functiongn(~z) in
Eq. (15) using the chain rule, we get the3 × 2 matrix:

∂

∂~zk

[

~Υ(t)
n + G2

n{Υ(t) ◦ exp({En~zn})}(xn)
]

~z=0

= G2
nST

n Enδ(k, n), (21)

whereGn is the skew-symmetric matrix defined in Eq. (4).
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�zn

�vn = [�en1 �en2]�zn

Fig. 2. Coordinate chart of the sphereS2. The chart allows a reparameterization of the constrained optimization problemf in step 1 of the Spherical
Demons algorithm into an unconstrained one.

Once the derivatives are known, we can compute the corre-
sponding gradients based on our choice of the metric of vector
fields onS2. In this work, we assume anl2 inner product, so
that the inner product of vector fields is equal to the sum of the
inner products of the individual vectors. The inner productof
individual vectors is in turn specified by the choice of the
Riemannian metric onS2. Assuming the canonical metric,
so that the inner product of two tangent vectors is the usual
inner product in the Euclidean space [39], the gradients are
equal to the transpose of the derivatives Eqs. (20), (21) (see
Appendix A-C). We can then rewrite Eq. (15) as a linearized
least-squares objective function:

{~z(t)
n }

≈ argmin
{~zn}

N
∑

n=1

1

σ2
n

(

fn(~z = 0) + ∇l2fn~z
)2

(22)

+
1

σ2
x

N
∑

n=1

∥

∥

∥
gn(~z = 0) + ∇l2gn~z

∥

∥

∥

2

= argmin
{~zn}

N
∑

n=1

1

σ2
n

((

F (xn) − M ◦ Υ(t)(xn)
)

− ~mT
n En~zn

)2

+
1

σ2
x

N
∑

n=1

∥

∥G2
nST

n En~zn

∥

∥

2
(23)

= argmin
{~zn}

N
∑

n=1

∥

∥

∥

∥

∥

(

1
σn

(

F (xn) − M ◦ Υ(t)(xn)
)

0

)

(24)

+

( − 1
σn

~mT
n

1
σx

G2
nST

n

)

En~zn

∥

∥

∥

∥

∥

2

.

Because of the delta functionδ(k, n) in the derivatives in
Eqs. (20), (21),~zn only appears in then-th term of the cost
function Eq. (24). The solution of Eq. (24) can therefore be
computed independently for each~zn. Solving this linear least-

squares equation yields an update rule for~zn:

~z(t)
n =

F (xn) − M ◦ Υ(t)(xn)

σ2
n

(

ET
n

[

1

σ2
n

~mn ~mT
n+ (25)

+
1

σ2
x

Sn(G2
n)T G2

nST
n

]

En

)−1

ET
n ~mn .

For each vertex, we only need to perform matrix-vector
multiplication of up to3 × 3 matrices and matrix inversion
of 2 × 2 matrices. This implies the update rule for~vn:

~v(t)
n = En~z(t)

n (26)

=
F (xn) − M ◦ Υ(t)(xn)

σ2
n

En

(

ET
n

[

1

σ2
n

~mn ~mT
n+

+
1

σ2
x

Sn(G2
n)T G2

nST
n

]

En

)−1

ET
n ~mn .

(27)

In practice, we use the Levenberg-Marquardt modification of
Gauss-Newton optimization [49] to ensure matrix invertibility:

~v(t)
n =

F (xn) − M ◦ Υ(t)(xn)

σ2
n

En

(

ET
n

[

1

σ2
n

~mn ~mT
n+

+
1

σ2
x

Sn(G2
n)T G2

nST
n

]

En + ǫI2×2

)−1

ET
n ~mn .

(28)

where ǫ is a regularization constant. We note that in
the classical Euclidean Demons [57], [14], the term
ET

n Sn(G2
n)T G2

nST
n En turns out to be the identity, so it can

also be seen as utilizing Levenberg-Marquardt optimization.
Once again, we emphasize that a different choice of the
coordinate charts will lead to the same update.

Given {~v(t)
n }N

n=1, we use “scaling and squaring” to com-
pute exp(~v(t)) [3], which is then composed with the current
transformation estimateΥ(t) to form Γ(t) = Υ(t) ◦ exp(~v(t)).
Appendix D discusses implementation details of extending the
“scaling and squaring” procedure in Euclidean spaces toS2.
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C. Choice of Reg(Υ)

We now define the Reg(Υ) term using the corresponding
tangent vector field representation~Υ. Following the work
of [31], [61], we letH be the Hilbert space of square integrable
vector fields on the sphere defined by the inner product:

〈~u1, ~u2〉H =

∫

S2

〈~u1(x), ~u2(x)〉R dS2 , (29)

where~u1, ~u2 ∈ H and 〈·, ·〉R refers to the canonical metric.
Because vector fields fromH are not necessarily smooth,
we restrict the deformation~Υ to belong to the Hilbert space
V ⊂ H of vector fields obtained by the closure of the space
of smooth vector fields onS2 via a choice of the so-called
energetic inner product denoted by

〈~u,~v〉V = 〈L~u,~v〉H , (30)

where L could for example be the Laplacian operator on
smooth vector fields onS2 [31], [61].

We define Reg(Υ) , ‖~Υ‖V . With a proper choice of
the energetic inner product (e.g., Laplacian), a smaller value
of ‖~Υ‖V corresponds to a smoother vector field and thus
smoother transformationΥ. As we will see later in this section,
the exact choice of the inner product is unimportant in our
implementation.

D. Optimizing Step 2 of Spherical Demons

With our choice of dist(Υ, Γ) in Section III-A and Reg(Υ)
in Section III-C, the optimization in Step 2 of the Spherical
Demons algorithm

~Υ(t+1) = argmin
~Υ

1

σ2
x

N
∑

n=1

‖~Υn − ~Γ(t)
n ‖2 +

1

σ2
T

‖~Υ‖V (31)

seeks a smooth vector field~Υ ∈ V that approximates the
tangent vectors{~Γ(t)

n }N
n=1. This problem corresponds to the

inexact vector spline interpolation problem solved in [31],
motivating our use of tangent vectors in the definition of
dist(Υ, Γ) in Section III-A, instead of the more intuitive choice
of geodesic distance.

We can express the tangent vectors~Γn and~Υn asEnΓn and
EnΥn respectively. Essentially, this represents~Γn and ~Υn in
terms of the tangent space basisEn at xn, whereΓn andΥn

are the components of the tangent vectors with respect to this
basis.̂Γ andΥ̂ be2N×1 vectors corresponding to stackingΓn

andΥn respectively. The particular optimization formulated in
Eq. (31) has a unique optimum [31], given by

Υ̂ = K

(

σT
x

σ2
T

I2N×2N + K

)−1

Γ̂, (32)

where K is a 2N × 2N matrix consisting ofN × N
blocks of 2 × 2 matrices: the(i, j) block corresponds to
k(xi, xj)Txi,xj

. The 2 × 2 linear transformationTxi,xj
(·)

parallel transports a tangent vector along the great circlefrom
Txi

S2 to Txj
S2. k(xi, xj) is a non-negative scalar function

uniquely determined by the choice of the energetic norm.
Typically, k(xi, xj) monotonically decreases as a function of
the distance betweenxi andxj . The proof of the uniqueness

of the global optimum and the form of solution in Eq. (32)
follow from the fact that the Hilbert spaceV is a reproducing
kernel hilbert space (RKHS), allowing the exploitation of the
Riesz representation theorem [31]. This offers a wide range
of choices of regularization depending on the choice of the
energetic norm and the corresponding RKHS.

In [31], the spherical vector spline interpolation problem
was applied to landmark matching onS2, resulting in a
reasonable sized linear system of equations. Solving the matrix
inversion shown in Eq. (32) is unfortunately prohibitive for
cortical surfaces with more than100, 000 vertices. If one
chooses a relatively wide kernelk(xi, xj), the system is not
even sparse.

Inspired by the convolution method of optimizing Step 2
in the Demons algorithm [14], [57], [66] and the convolution-
based fast fluid registration in the Euclidean space [12], we
propose an iterative smoothing approximation to the solution
of the spherical vector spline interpolation problem.

In each smoothing iteration, for each vertexxi, tangent
vectors of neighboring verticesxj are parallel transported to
xi and linearly combined with the tangent vector atxi. The
weights for the linear combination are set toλ(xi, xi) =

1
1+|Ni| exp(− 1

2γ
)

and λ(xi, xj) =
exp(− 1

2γ
)

1+|Ni| exp(− 1

2γ
)

for i 6= j,

where |Ni| is the number of neighboring vertices ofxi.
Therefore, larger number of iterationsm and values ofγ
results in greater amount of smoothing.

We note that the iterative smoothing approximation to spline
interpolation is not exact because parallel transport is not
transitive onS2 due to the non-flat curvature ofS2 (unlike
in Euclidean space), i.e., parallel transporting a tangentvector
from point a to b to c results in a vector different from
the result of parallel transporting a tangent vector froma to
c. Furthermore, the approximation accuracy degrades as the
distribution of points becomes less uniform. In Appendix B,
we provide a theoretical bound on the approximation error
and demonstrate empirically that iterative smoothing provides
a good approximation of spherical vector spline interpolation
for a relatively uniform distribution of points corresponding to
those of the subdivided icosahedron meshes used in this work.

E. Remarks

The Spherical Demons algorithm is summarized in Algo-
rithm 2.

We run the Spherical Demons algorithm in a multi-scale
fashion on a subdivided icosahedral mesh. We begin from a
subdivided icosahedral mesh (ic4) that contains 2,562 vertices
and work up to a subdivided icosahedral mesh (ic7) that
contains 163,842 vertices, which is roughly equal to the
number of vertices in the cortical meshes we work with. We
perform 15 iterations of Step 1 and Step 2 at each level.
Because of the fast convergence rate of the Gauss-Newton
method, we find that 15 iterations are more than sufficient for
our purposes. We also perform a rotational registration at the
beginning of each multi-scale level via a sectioned search of
the three Euler angles.

Empirically, we find the computation time of the Spher-
ical Demons algorithm is roughly divided equally among
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Data: A fixed spherical imageF and moving spherical imageM .
Result: DiffeomorphismΓ so thatM ◦ Γ is “close” to F .
SetΥ0 = identity transformation (or some a-priori transformation, e.g., from a previous registration)
repeat

Step 1.Given Υ(t),
foreach vertexn do

Compute~v(t)
n using Eq. (28).

end
ComputeΓ(t) = exp(~v) using “scaling and squaring”.

Step 2.Given Γ(t),
foreach vertexn do

Compute~Υ
(t)
n using Eq. (48) implemented via iterative smoothing.

end

until convergence;

Algorithm 2 . Spherical Demons Algorithm

the four components: registration by rotation, computing the
Gauss-Newton update, performing “scaling and squaring” and
smoothing the vector field.

In practice, we work with spheres that are normalized to
be of radius 100, because we find that at ic7, the average
edge length of1mm corresponds to that of the original cortical
surface meshes. This allows for meaningful interpretationof
distances on the sphere. This requires slight modification of
the equations presented previously to keep track of the radius
of the sphere.

The Spherical Demons algorithm presented here registers
pairs of spherical images. To incorporate a probabilistic atlas
defined by a mean image and a standard deviation image, we
modify the Demons objective function in Eq. (3), as explained
in Appendix C. This requires a choice of warping the subject
or warping the atlas. We find that interpolating the atlas gives
slightly better results, compared with interpolating the subject.
However, interpolating the subject results in a runtime of under
3 minutes, while the runtime for interpolating the atlas is
less than 5 minutes. In the next section, we report results for
interpolating the atlas.

IV. EXPERIMENTS

We use two sets of experiments to evaluate the performance
of the Spherical Demons algorithm by comparing it to the
widely used and freely available FreeSurfer [27] software.
The FreeSurfer registration algorithm uses the same similarity
measure as Demons, but explicitly penalizes for metric and
areal distortion. As we will show, even though the Spherical
Demons algorithm does not specifically take into account
the original metric properties of the cortical surface, we still
achieve comparable if not better registration accuracy than
FreeSurfer. Furthermore, FreeSurfer runtime is more than an
hour while Spherical Demons runtime is less than 5 minutes.

There are four parameters in the algorithm.1/σ2
x and ǫ

appear in Eq. (28). Larger values of1/σ2
x and ǫ decrease the

size of the update taken in Step 1 of the Spherical Demons

algorithm. In the experiments that follow, we set1/σ2
x = ǫ

and set their values such that the largest vector of the update
velocity field is roughly two times the edge lengths of the
mesh. The number of iterationsm and the weightexp(− 1

2γ
)

determine the degree of smoothing. We setγ = 1 and explore a
range of smoothing iterationsm in the following experiments.

A. Parcellation of In-Vivo Cortical Surfaces

We validate Spherical Demons in the context of automatic
cortical parcellation. Automatic labeling of cortical brain
surfaces is important for identifying regions of interestsfor
clinical, functional and structural studies [20], [52]. Recent
efforts have ranged from the identification of sulcal/gyralridge
lines [56], [62] to the segmentation of sulcal/gyral basins[20],
[28], [38], [41], [42], [51], [52], [67]. Similar to these prior
studies, we are interested in parcellation of the entire cortical
surface meshes, where each vertex is assigned a label.

We consider a set of39 left and right cortical surface
models extracted from in-vivo MRI [19]. Each surface is
spherically parameterized and represented as a spherical image
with geometric features at each vertex: mean curvature of
the cortical surfaces, mean curvature of the inflated cortical
surfaces and average convexity of the cortical surfaces, which
roughly corresponds to sulcal depth [26]. These features
are intrinsic and thus independent of the parameterization
of the surface. The tools used for segmentation [19] and
spherical parameterization [26] are freely available [29]. Both
hemispheres of each subject were manually parcellated by a
neuroanatomist into 35 labels, corresponding to the main sulci
and gyri, enumerated in Table II.

We co-register all 39 spherical images of cortical geometry
with Spherical Demons by iteratively building an atlas and
registering the surfaces to the atlas. The atlas consists of
the mean and variance of cortical geometry represented by
the surface features described above. We then perform 4-fold
cross-validation of the parcellation of the co-registeredcortical
surfaces. In each iteration of cross-validation, we leave out
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TABLE II
L IST OF PARCELLATION STRUCTURES

1. Sylvian Fissure / Unknown 2. Bank of the Superior TemporalSulcus 3. Caudal Anterior Cingulate
4. Caudal Middle Frontal Gyrus 5. Corpus Callosum 6. Cuneus
7. Entorhinal 8. Fusiform Gyrus 9. Inferior Parietal Complex
10. Inferior Temporal Gyrus 11. Isthmus Cingulate 12. Lateral Occipital
13. Lateral Orbito Frontal 14. Lingual 15. Medial Orbito Frontal
16. Middle Temporal Gyrus 17. Parahippocampal 18. Paracentral
19. Parsopercularis 20. Parsorbitalis 21. Parstriangularis
22. Peri-calcarine 23. Post-central Gyrus 24. Posterior Cingulate
25. Pre-central Gyrus 26. Pre-cuneus 27. Rostral Anterior Cingulate
28. Rostral Middle Frontal 29. Superior Frontal Gyrus 30. Superior Parietal Complex
31. Superior Temporal Gyrus 32. Supramarginal 33. Frontal Pole
34. Temporal Pole 35. Transverse Temporal

ten subjects and use the remainder of the subjects to train a
classifier [20], [28] that predicts the labels based on location
and geometric features. We then apply the classifier to the
hold-out set of ten subjects. We perform each iteration with
a different hold-out set, i.e., subjects 1-10, 11-20, 21-30and
31-39.

As mentioned previously, increasing the number of itera-
tions of smoothing results in smoother warps. As discussed
in [67], the choice of the tradeoff between the similarity mea-
sure and regularization is important for segmentation accuracy.
Estimating the optimal registration regularization tradeoff is
an active area of research [1], [18], [48], [65], [67], [68] that
we do not deal with in this paper. Here, we simply repeat
the above experiments using{6, 8, 10, 12, 14} iterations of
smoothing. For brevity, we will focus the discussion on using
10 iterations of smoothing and comment on results obtained
with the other levels of smoothing.

We repeat the above procedure of performing co-registration
and cross-validation with the FreeSurfer registration algo-
rithm [27] using the default FreeSurfer settings. Once again,
we use the same features and parcellation algorithm [20], [28].
As before, the atlas consists of the mean and variance of
cortical geometry.

To compare the cortical parcellation results, we compute the
average Dice measure, defined as the ratio of cortical surface
area with correct labels to the total surface area averaged
over the test set. Because the average Dice can be misleading
by suppressing small structures, we also compute the Dice
measure for each structure.

On the left hemisphere, FreeSurfer achieves an average Dice
of 88.9, while Spherical Demons achieves an average Dice of
89.6 with 10 iterations of smoothing. While the improvement
is not big, the difference is statistically significant for aone-
sided t-test with the Dice measure of each subject treated asan
independent sample (p = 2 × 10−6). Furthermore, the overall
Dice is statistically significantly better than FreeSurferfor all
levels of smoothing we considered, with the best overal dice
achieved with 12 iterations of smoothing.

On the right hemisphere, FreeSurfer obtains a Dice of
88.8 and Spherical Demons achieves89.1 with 10 iterations
of smoothing. Here, the improvement is smaller, but still
statistically significant (p = 0.01). Furthermore, the overall
dice is statistically significantly better than FreeSurferfor all
levels of smoothing we considered, except when 6 iterations

(a) Lateral View

(b) Medial View

Fig. 3. Percentage Improvement over FreeSurfer. Yellow regions indicate
structures scoring better than FreeSurfer. Blue regions correspond to decrease
in accuracy. Note that none of these blue regions are statistically significant.
The boundaries between parcellation regions are set to reddish-brown to
improve visualization of the regions.

of smoothing is used (p = 0.06). All results we report in the
remainder of this section use 10 iterations of smoothing.

We analyze the segmentation accuracy separately for each
structure. To compare Spherical Demons with FreeSurfer, we
perform a one-sided paired-sampled t-test treating each subject
as an independent sample and correct for multiple comparisons
using a False Discovery Rate (FDR) of0.05 [10]. On the left
(right) hemisphere, the segmentations of 16 (8) structuresare
statistically significantly improved by Spherical Demons with
respect to FreeSurfer, while no structure is significantly worse.

Fig. 3 shows the percentage improvement of individual
structures over FreeSurfer. Fig. 4 displays the average Dice per
structure for FreeSurfer and Spherical Demons (10 iterations
of smoothing) for the left and right hemispheres. Standard
errors of the mean are displayed as red bars. The numbering
of the structures correspond to Table II. Parcellation improve-
ments suggest that our registration is at least as accurate as
FreeSurfer.

The structures with the worst Dice are the frontal pole and
entorhinal cortex. These structures are small and relatively
poorly defined by the underlying cortical geometry. For ex-
ample, the entorhinal cortex is partially defined by the rhinal
sulcus, a tiny sulcus that is only visible on the pial surface.
The frontal pole is defined by the surrounding structures, rather
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(a) Left hemisphere parcellation

1* 2 3* 4 5* 6 7* 8* 9 10 11 12* 13* 14 15 16 17 18
0.6

0.7

0.8

0.9

1

D
ic

e

19 20 21 22* 23 24 25 26 27 28 29 30 31 32 33 34 35
0.6

0.7

0.8

0.9

1

D
ic

e

(a) Right hemisphere parcellation

Fig. 4. (a) Dice measure for each structure in the left hemisphere. (b) Dice measure for each structure in the right hemisphere. Black columns correspond to
FreeSurfer. White columns correspond to Spherical Demons.* indicates structures where Spherical Demons shows statistically significant improvement over
FreeSurfer (FDR = 0.05). No structure exhibit significant decrease in accuracy.

than by the underlying cortical geometry.

B. Brodmann Area Localization on Ex-vivo Cortical Surfaces

Brodmann areas are cyto-architectonically defined parcella-
tions of the cerebral cortex [13]. They can be observed through
histology and more recently, through ex-vivo high resolution
MRI [6]. Unfortunately, much of the cytoarchitectonics cannot
be observed with current in-vivo imaging. Nevertheless, most
studies today report their functional findings with respect
to Brodmann areas, usually estimated by visual comparison
of cortical folds with Brodmann’s original drawings without
quantitative analysis of local accuracy. By combining histology
and MRI, recent methods for creating probabilistic Brodmann
area maps in the Talairach and Colin27 normalized space
promise a more principled approach [2], [24], [54], [55], [71].

In this experiment, we consider a data set that contains

Brodmann labels mapped to the corresponding MRI volume.
Specifically, we work with postmortem histological images
of ten brains created using the techniques described in [54],
[71]. The histological sections were aligned to postmortem
MR with nonlinear warps to build a 3D histological volume.
These volumes were segmented to separate white matter from
other tissue classes, and the segmentation was used to gen-
erate topologically correct and geometrically accurate surface
representations of the cerebral cortex using FreeSurfer [19].
The eight manually labeled Brodmann area maps (areas 2,
4a, 4p, 6, 44, 45, 17 and 18) were sampled onto the surface
representations of each hemisphere, and errors in this sampling
were manually corrected (e.g., when a label was erroneously
assigned to both banks of a sulcus). A morphological close
was then performed on each label to remove small holes. We
note that Brodmann areas 4a, 4p and 6 were mapped in only
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Fig. 5. Brodmann areas 17 (V1), 18 (V2), 2, 4a, 4p, 6, 44 and 45 shown on inflated cortical surfaces of two subjects. Notice the variability of BA44 and
BA45 with respect to the underlying folding pattern.

In-vivo Surface Ex-vivo Surface

Fig. 6. Left: example in-vivo surface used in the parcellation study. Right:
example ex-vivo surface used in the Brodmann area study.

eight of the ten subjects. Fig. 5 shows these eight Brodmann
areas on the resulting cortical representations for two subjects.
Finally, we map the folding patterns and the Brodmann area
labels onto a spherical coordinate system [27].

It has been shown that nonlinear surface registration of
cortical folds can significantly improve Brodmann area overlap
across different subjects [25], [68] compared with volumetric
registration. Registering the ex-vivo surfaces is more difficult
than in-vivo surfaces because the reconstructed volumes are
extremely noisy due to the distortions introduced by the
histology, resulting in noisy geometric features, as shownin
Fig. 6.

We consider two strategies for aligning Brodmann areas.
For both strategies, we will use 10 iterations of smoothing
for Spherical Demons as it proved reasonable in the previous
set of experiments. The first strategy involves co-registering
the 10 ex-vivo surfaces using cortical geometry by repeatedly
building an atlas and registering the surfaces to the atlas,
similar to the previous experiment on cortical parcellation. We

use either Spherical Demons or FreeSurfer for registration.
We refer to the co-registration using Spherical Demons and
FreeSurfer as SD10 and FS10 respectively (10 refers to the
number of subjects in the study, not the number of smoothing
iterations).

The second strategy involves registering the 10 ex-vivo
surfaces to the in-vivo “Buckner40” atlas, constructed from
40 in-vivo subjects, that is distributed with the FreeSurfer
software. Once again, we use either Spherical Demons or
FreeSurfer for the registration. We refer to the co-registration
using Spherical Demons and FreeSurfer as SD40 and FS40
respectively.

To measure the quality of alignment of the Brodmann areas
after cortical registration, we use an adaptation of the modified
Hausdorff distance [21]. For each pair of registered subjects,
we project each Brodmann area from the first subject onto the
second subject and compute the mean distance between the
boundaries, measured on the original cortical surface of the
second subject. We obtain a second measurement by projecting
each Brodmann area from the second subject onto the first
subject. Since we have 10 surfaces, we get 90 ordered pairs
and 90 alignment errors for each Brodmann area.

Table III reports the mean alignment errors for each Brod-
mann area and for each method. The lowest errors for each
Brodmann area are shown inbold. We see that for almost
all Brodmann areas, the best alignment come from SD10 or
SD40. Similarly, Fig. 7 shows the median alignment error for
each Brodmann area. The error bars indicate the lower and
upper quartile alignment errors.

We use permutation testing to evaluate statistical signifi-
cance of the results. We cannot use the t-test because the 90
alignment errors are correlated - since the subjects are co-
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TABLE III
MEAN ALIGNMENT ERRORS OFBRODMANN AREAS IN mm FOR THE FOUR REGISTRATION METHODS. LOWEST ERRORS ARE SHOWN INBOLD . SD

REFERS TOSPHERICAL DEMONS; FSREFERS TOFREESURFER.

Right Hemisphere Left Hemisphere
V1 BA4a BA4p BA2 V2 BA6 BA44 BA45 V1 BA4a BA4p BA2 V2 BA6 BA44 BA45

FS10 3.8 4.4 3.8 6.3 4.6 7.0 7.4 6.8 3.8 3.8 3.1 5.9 4.0 6.5 11.5 9.9
FS40 2.9 3.8 3.6 5.6 4.2 7.1 7.6 6.9 2.7 3.6 2.9 5.7 3.6 6.3 10.5 9.2
SD10 3.1 3.3 3.3 5.4 3.7 6.4 7.7 6.4 3.2 3.4 2.8 5.5 3.5 6.4 10.4 8.6
SD40 3.0 3.4 3.2 5.5 3.8 6.4 6.8 6.3 2.8 3.8 3.7 5.6 3.4 6.6 10.7 9.0
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(a) Right Hemisphere (b) Left Hemisphere

Fig. 7. Median alignment errors of Brodmann areas inmm for the four registration methods. The error bars indicate the upper and lower quartile alignment
errors. “#” indicates that the median errors of SD10 are statistically lower than those of FS10 (FDR = 0.05). “*” indicates SD40 outperforms FS40. For no
Brodmann area does FreeSurfer outperform Spherical Demons.

registered together, good alignment between subjects 1 and
2 and between subjects 2 and 3 necessarily implies a higher
likelihood of good alignment between subjects 1 and 3.

The tests show that SD10 is better than FS10 and SD40
is slightly better than FS40. SD10 and SD40 are comparable.
Compared with FS10, SD10 improves the median alignment
errors of 5 (4) Brodmann areas on the right (left) hemisphere
(FDR = 0.05) and no structure gets worse. Compared with
FS40, SD40 statistically improves the alignment of 2 (1)
Brodmann areas on the right (left) hemisphere (FDR =0.05)
with no structure getting worse. Permutation tests on the
mean alignment errors show similar results, except that FS40
performs better than SD40 for BA4p on the left hemisphere
when using the mean statistic. These results suggest that
the Spherical Demons algorithm is at least as accurate as
FreeSurfer in aligning cortical folds and Brodmann areas.

V. D ISCUSSION

The Demons algorithms [57], [66] discussed in Section II
and the Spherical Demons algorithm proposed in this paper
use a regularization term that modulates the final deforma-
tion. Motivated by [12], [14], the Diffeomorphic Demons
algorithm [66] admits a fluid prior on the velocity fields.
This involves smoothing the velocity field updatesbefore
computing the exponential map to obtain the displacement
field updates to be composed with the current transformation.

The resulting algorithm is very similar to the fast imple-
mentation [12] of Christensen’s well-known fluid registration
algorithm [16], except that Christensen’s algorithm does not
employ a higher-order update method like Gauss-Newon. The
Spherical Demons algorithm can similarly incorporate a fluid
prior by smoothing the velocity field~v(t) in Eq. (28) before
computing the exponential map to obtain the displacement
updatesexp(~v(t)).

An alternative interpretation of the smoothing implementa-
tion of Christensen’s algorithm comes from choosing a differ-
ent metric for computing the gradient from the derivatives [9].
The choice of the metric also arises in our problem when
computing the gradient as discussed in Appendix A-C. This
suggests that the Spherical Demons algorithm can incorpo-
rate a fluid prior by modifying the Gauss-Newton update
step Eq. (28). Unfortunately, this process introduces coupling
among the vertices resulting in the loss of the speed-up ad-
vantage of Spherical Demons (see for example the derivations
of [34]). The exploration of the performance of the different
fluid prior implementations is outside the scope of this paper.

Because the tools of differential geometry are general, the
Spherical Demons algorithm can be in principle extended to
arbitrary manifolds, besides the sphere. One challenge is that
the definition of coordinate charts for an arbitrary manifold
is more difficult than that for the sphere. Approaches of
utilizing the embedding space [15] or the intrinsic properties
of manifolds [40] are promising avenues of future work.
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VI. CONCLUSION

In this paper, we presented the fast Spherical Demons
algorithm for registering spherical images. We showed that
the two-step optimization of the Demons algorithm can also
be applied on the sphere. By utilizing the one parameter
subgroups of diffeomorphims, the resulting deformation is
invertible. We tested the algorithm extensively in two different
applications and showed that the accuracy of the algorithm
compares favorably with the widely used FreeSurfer regis-
tration algorithm [27] while offering more than one order
of magnitude speedup. Both matlab and ITK versions of the
Spherical Demons algorithm are publicly available2.

A clear future challenge is to take into account the original
metric properties of the cortical surface in the registration
process, as demonstrated in previously proposed registration
methods [27], [59].

We note that while fast algorithms are useful for deploying
the developed tool on large datasets, they can further allow
for complex applications that were previously computationally
intractable. For example, we have incorporated the ideas
behind Spherical Demons into a meta-registration framework
that learns registration cost functions which are optimal for
specific applications [68].

ACKNOWLEDGMENTS

We thank Hartmut Mohlberg, Katrin Amunts and Karl Zilles
for providing the histological dataset. We also like to thank
Xavier Pennec, Wanmei Ou and Serdar Balci for helpful
discussions and Tamar Riklin Raviv for reading the conference
draft of this paper. We also thank Luis Ibanez and Michel
Audette for reading the journal draft of this paper and for
their help in implementing the ITK version of the Spherical
Demons algorithm. Finally, we thank the reviewers for their
many helpful suggestions on improving and clarifying the
paper.

Support for this research is provided in part by the NAMIC
(NIH NIBIB NAMIC U54-EB005149), the NAC (NIH NCRR
NAC P41-RR13218), the mBIRN (NIH NCRR mBIRN U24-
RR021382), the NIH NINDS R01-NS051826 grant, the NSF
CAREER 0642971 grant, the National Institute on Aging
(AG02238), NCRR (P41-RR14075, R01 RR16594-01A1), the
NIBIB (R01 EB001550, R01EB006758), the NINDS (R01
NS052585-01) and the MIND Institute. Additional support
was provided by The Autism & Dyslexia Project funded by
the Ellison Medical Foundation. B.T. Thomas Yeo is funded
by the A*STAR, Singapore. Short visits of B.T. Thomas Yeo
and Nicholas Ayache between MIT and INRIA were partially
funded by the CompuTumor associated teams funding.

APPENDIX A
STEP 1 GRADIENT DERIVATION

In this appendix, we provide details on the computation of
the spatial gradient of the warped moving imageM ◦Υ(t) and

2The matlab code was used for this paper. The
ITK code is still preliminary. Please check website
http://sites.google.com/site/yeoyeo02/software/sphericaldemonsrelease for
updates.

the Jacobian of the deformationΥ(t). We also compute the
gradients of the demons cost function using the derivatives
computed in Eq. (20) and Eq. (21), assuming thel2 inner
product space for vector fields and the canonical metric.

A. Computing Spatial Gradient ofM ◦ Υ(t)

In this appendix, we discuss the computation ofmT
n , the

spatial gradient of the warped moving imageM ◦ Υ(t) at the
point xn. We can think ofM ◦ Υ(·) as an imageMs , M ◦
Υ defined on the mesh vertices{xn}. This image is made
continuous by the choice of an interpolation method. In this
work, we assume that we are working with a triangular mesh.
To evaluateMs at a pointx ∈ S2, we first find the triangle
that contains the intersection between the vector representing
the pointx (i.e., the vector between the center and the point
x of the sphere) and the mesh. The image value atx is then
given by the barycentric interpolation of the image values at
the intersection point. Mathematically, we can write

Ms(x) = I(p(x)), (33)

wherep(x) is the intersection point andI(·) is the barycentric
interpolation. Letp1, p2, p3 denote the vertices of the triangle
containingp(x) and~n denote the3 × 1 normal vector to the
triangle. Sincep(x) = αx for someα and〈p(x)−p1, ~n〉 = 0,
we can write

p(x) =
〈p1, ~n〉
〈x, ~n〉 x (34)

and

I(p) =
A1(p)Ms(p1) + A2(p)Ms(p2) + A3(p)Ms(p3)

A
,

(35)

whereA1(p), A2(p) andA3(p) are the areas of the triangles
△pp2p3, △pp1p3 and △pp1p2 respectively. Note thatA =
A1(p)+ A2(p)+ A3(p). Ms(p1), Ms(p2) andMs(p3) are the
image values at the mesh verticesp1, p2 andp3 respectively.

Computing the derivative of the image value atx follows
easily from the chain rule:

∂p(x)

∂x
=

〈p1, ~n〉
〈x, ~n〉 I3×3 −

〈p1, ~n〉
〈x, ~n〉2 x~nT (36)

∂I(p)

∂p

=
∇pA1(p)Ms(p1) + ∇pA2(p)Ms(p2) + ∇pA3(p)Ms(p3)

A
,

(37)

where∇pAi(p) is the derivative of the triangle areaAi. For
example,∇pA1(p) is a 1 × 3 vector in the plane of the
trianglepp2p3, perpendicular and pointing to the edgep2p3,
with magnitude half the length ofp2p3. Combining Eq. (36)
and Eq. (37) gives the spatial gradient of the warped moving
image.

A complication arises whenx corresponds to one of the
mesh vertices, since the spatial gradient is not defined in
this case. The same problem arises in Euclidean space with
linear interpolation and the spatial gradient is typicallydefined
via finite central difference. It is unclear what the equivalent
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definition on a mesh is. Here, for a mesh vertexx, we
compute the spatial gradient for each of the surrounding
triangles and linearly combine the spatial gradients using
weights corresponding to the areas of the triangles.

B. Computing the Jacobian of DeformationΥ(t)

In this appendix, we discuss the computation ofST
n , the

Jacobian of the deformationΥ(t) at xn. We can think ofΥ(t)

as a vector function onS2 that maps each mesh vertex{xn}
to a new point on the sphere. This vector image is made
continuous by the choice of an interpolation method. We use
the same interpolation as in Appendix A-A, except we need to
normalize the barycentric interpolation so that the interpolated
point is constrained to be on the sphere:

Υ(t)(x) = I(p(x)) (38)

wherep(x) is the same as in the previous section and

I(p) =
A1(p)Υ(t)(p1) + A2(p)Υ(t)(p2) + A3(p)Υ(t)(p3)

‖A1(p)Υ(t)(p1) + A2(p)Υ(t)(p2) + A3(p)Υ(t)(p3)‖
(39)

The Jacobian is computed via chain rule, just like in the
previous section.

C. Computing the Gradients from the Derivatives

In this appendix, we seek to compute the gradients of
fn(~z) , F (xn) − M ◦ {Υ(t) ◦ exp({En~zn})}(xn) and
gn(~z) , ~Υ

(t)
n + G2

n{Υ(t) ◦ exp({En~zn})}(xn), assuming a
l2 inner product for vector fields and the canonical metricR
for S2. These assumptions imply that the inner product of two
vector fields~z1 = {~z1

k} and~z2 = {~z2
k} are given by

〈~z1, ~z2〉l2 = 〈{Ek~z1
k}, {Ek~z

2
k}〉l2 (40)

=

N
∑

k=1

〈Ek~z1
k, Ek~z2

k〉R (41)

=

N
∑

k=1

〈~z1
k, ~z2

k〉R, (42)

where

• Eq. (40) follows from the equivalence of the tangent
bundlesTR

2 andTS2 induced by the coordinate charts
{Ψn}.

• Eq. (41) is the result of thel2 assumption that the inner
product of vector fields is given by the sum of the inner
products of individual vectors.

• Because we assume the canonical metric, each term in
the inner product in Eq. (41) is simply the usual inner
product between3×1 vectorsEk~z1

k andEk~z2
k. Since the

columns ofEk are orthonormal with respect to the usual
inner product and using linearity of the inner product,
Eq. (41) implies Eq. (42), i.e., the inner product〈~z1, ~z2〉l2
can be computed by the sum of the usual inner product
between2 × 1 tangent vectors~z1

k and~z2
k.

Let dfn(~z) be the directional derivative offn for any ~z =
{~zk}. The directional derivative isindependentof the choice

of metric. Since the derivative offn(~z) with respect to~zk is
a 1 × 2 vector−~mT

nEnδ(k, n) (Eq. (20)), we get

dfn(~z) = −~mT
nEn~zn. (43)

Recall that the gradient∇l2fn of fn(~z) is defined to be a
tangent vector field such thatdfn(~z) = 〈∇l2fn, ~z〉l2 for any
~z = {~zk}. The gradient is thereforedependenton the choice
of the inner product. From Eq. (42) and Eq. (43), we can write

−~mT
nEn~zn = dfn(~z) (44)

= 〈∇l2fn, ~z〉l2 (45)

=
N
∑

k=1

〈∇l2fn(xk), ~zk〉R . (46)

Therefore, the gradient∇l2fn can be written as a2N × 1
vector consisting ofN blocks of2 × 1 vectors, where all the
blocks are zeros, except then-th block is equal to−ET

n ~mn.
Similarly, we denote the gradient ofgn(~z) as∇l2gn(j) for

j = 1, 2, 3 corresponding to the 3 output components ofgn(~z).
The derivative of∇gn with respect to~zk is a 3 × 2 matrix
G2

nST
n Enδ(k, n) , [~a1n ~a2n ~a3n]T δ(k, n) (Eq. (21)), where

~aT
jnδ(k, n) is a 1 × 2 vector corresponding to the derivative

of the j-th component ofgn with respect to~zk. Using the
same derivation as before, we can show that∇l2gn(j) can be
written as a2N × 1 vector consisting ofN blocks of 2 × 1
vectors, where all the blocks are zeros, except then-th block
is equal to~ajn.

APPENDIX B
APPROXIMATING SPLINE INTERPOLATION WITH ITERATIVE

SMOOTHING

In this appendix, we demonstrate empirically that iterative
smoothing provides a good approximation of spherical vector
spline interpolation for a relatively uniform distribution of
points corresponding to those of the subdivided icosahedron
meshes used in this work. Once again, we work with spheres
that are normalized to be of radius 100.

Recall that we seek{~Υn} = {EnΥn}, which is a smooth
approximation of the input vector field{~Γn} = {EnΓn}. The
solution of the spherical vector spline interpolation problem is
given in Eq. (32) as

Υ̂ = K

(

σT
x

σ2
T

I2N×2N + K

)−1

Γ̂, (47)

whereK is a2N ×2N matrix consisting ofN ×N blocks of
2×2 matrices: the(i, j) block corresponds tok(xi, xj)Txi,xj

.
Txi,xj

is the parallel transport operator fromxi to xj . k(xi, xj)
is a non-negative scalar function uniquely determined by the
choice of the energetic norm that monotonically decreases as
a function of the distance betweenxi andxj .

In constrast, the iterative smoothing approximation we pro-
pose can be formalized as follows:

Υ̂ = (K ′)mΓ̂ (48)

wherem is a positive integer andK ′ is a2N×2N matrix con-
sisting ofN×N blocks of2×2 matrices: the(i, j) block corre-
sponds toλ(xi, xj)Txi,xj

if xi andxj are neighboring vertices
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and is a zero matrix otherwise.λ(xi, xi) = 1
1+|Ni| exp(− 1

2γ
)

andλ(xi, xj) =
exp(− 1

2γ
)

1+|Ni| exp(− 1

2γ
)

for i 6= j, where|Ni| is the

number of neighboring vertices ofxi.

A. Reverse Engineering the Kernel

We now demonstrate empirically that for a range of values
of γ, iterationsm and the relatively uniform distribution of
points corresponding to those of the subdivided icosahedron
mesh, there exist kernelsk(xi, xj) that are well approximated
by iterative smoothing. Technically, the resultingk(xi, xj)
might not correspond to a true choice of the energetic norm.
However, in practice, this does not appear to be a problem.

More specifically, given a configuration of mesh points,
iterations m and value ofγ, we seekk̃(xi, xj), such that

K
(

σT
x

σ2

T

I2N×2N + K
)−1

is “close” to (K ′)m. We propose a

two-stage estimation of̃k(xi, xj):
1) In the first stage, we seekk∗(xi, xj) that is not con-

strained to be a function of the distance betweenxi and
xj , such that

K

(

σT
x

σ2
T

I2N×2N + K

)−1

− (K ′)m ≈ 0 (49)

Rearranging the terms, we get

(I2N×2N − (K ′)m)
−1

(K ′)m σ2
x

σ2
T

≈ K (50)

To make the “≈” concrete, we optimize for

k∗ = argmin
k

∥

∥

∥

∥

K − (I2N×2N − (K ′)m)
−1

(K ′)m σ2
x

σ2
T

∥

∥

∥

∥

2

F

(51)

where‖ · ‖F is the Frobenius norm.
The cost function Eq. (51) can be optimized componen-
twise, i.e., we can solve fork∗(xi, xj) for each pair
xi, xj . Forγ = 1, m = 10 and a subdivided icosahedron
mesh with 642 vertices, we plot the resultingk∗(xi, xj)
as a function of the geodesic distance betweenxi and
xj in Fig. 8.

2) In the second stage, we perform a least-squares fit
of a b-spline function to the estimatedk∗(xi, xj) to
obtain the final estimate of̃k(xi, xj). Fig. 8 illustrates
an example kernel̃k(xi, xj) we obtain (c.f., the kernel
illustrated in [31]). We note that an alternative to b-
spline interpolation is to fit the coefficients of the general
kernel function suggested in Appendix A of [31]. This
will guarantee that the estimated kernel corresponds to
an energetic norm. We leave exploring this direction to
future work.

B. Evaluating Approximation

We now investigate the quality of the estimatek̃(xi, xj) by
computing:

∥

∥

∥

∥

∥

K

(

σT
x

σ2
T

I2N×2N + K

)−1

− (K ′)m

∥

∥

∥

∥

∥

2

2

(52)

where‖ · ‖2 is the l2 matrix operator norm. The difference
metric Eq. (52) measures themaximuml2 difference between
smoothed vector fields obtained from iterative smoothing and
spherical vector spline interpolation forany possible input
vector field{~Γn} of unit l2 norm, i.e.,

∑

n ‖~Γn‖2 = 1. We
note that̃k(xi, xj) can be in principle estimated by minimizing
Eq. (52) instead of the proposed 2-stage process. However, the
optimization is difficult since evaluating the cost function itself
requires finding the largest singular value of a large, non-sparse
matrix.

Fig. 9 displays the difference metric we obtained with
different values ofγ and iterationsm for meshes ic2, ic3, ic4
and ic5. Each of the meshes is obtained from recursively sub-
dividing a lower resolution mesh: ic2 indicates that the mesh
was obtained from subdividing an icosahedron mesh twice.
The number of vertices quadruples with each subdivision, so
that ic5 corresponds to 10,242 vertices.

We conclude from the figure that the differences between
the two smoothing methods are relatively small and increase
with mesh resolution. As discussed in the next section, we run
Spherical Demons on different mesh resolutions, includingic7.
Unfortunately, because of the large non-sparse matrices weare
dealing with, we were only able to compute the differences up
to ic5. Computing the difference metric for ic5 took an entire
week on a machine with 128GB of RAM. However, the plots
in Fig. 9 indicate that the differences appear to have converged
by ic5.

To better understand the incurred differences, Fig. 10 il-
lustrates the outputs and differences of the two smoothing
methods for different inputs on ic4. The first row illustrates
an input vector field which is zero everywhere except for
a single tangent vector of unit norm. The results of spline
interpolation and iterative smoothing correspond to our intu-
ition that smoothing a single tangent vector propagates tangent
vectors of smaller magnitudes to the surronding areas. The two
methods also produce almost identical results as shown by the
clean difference image in the fourth column.

The second row of Fig. 10 demonstrates the worst unit
norm input vector field as measured by the difference metric
Eq. (52). This worst unit norm input vector field corresponds
to the largest eigenvector in Eq. (52). The pattern of large
differences correspond to the original 12 vertices of the
uniform icosahedron mesh. These original 12 vertices are the
only vertices in the subdivided icosahedron meshes with five,
instead of six neighbors, as shown by the pentagon pattern.
The fact that these 12 vertices are local maxima of differences
suggest that these vertices are treated differently by the two
smoothing techniques.

The last row of Fig. 10 demonstrates an input vector field
that represents the deformation of an actual registration per-
formed in Section IV. The norm of the input vector field is
700 times that in the first two rows, but the discrepancies
between spline interpolation and iterative smoothing are less
than expected. The differences of90% of the vectors are
less than0.2mm, with larger differences in the neighborhoods
of the 12 vertices identified previously. Since we conclude
previously that the difference metric appears to have converged
after ic4, the discrepancies are likely to be acceptable at ic7,
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to fitting the scattered points so thatk̃(xi, xj) is strictly a function of the geodesic distance betweenxi andxj .
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Fig. 9. Difference metric as a function of the number of iterations m and value ofγ.

whose mesh resultion is1mm.
We should emphasize that the discrepancies between spline

interpolation and iterative smoothing do not necessarily imply
registration errors. The differences only indicate the deviations
of the deformations from true local optima of the Demons reg-
istration cost function Eq. (3) assuming the estimated kernel.
Approximating smoothing kernels by iterative smoothing isan
active area of research in medical imaging [17], [32]. Future
work would involve understanding the interaction between
the number of smoothing iterationsm and the choice of the
weightsexp(− 1

2γ
) on the quality of the spherical registration.

APPENDIX C
ATLAS-BASED SPHERICAL DEMONS

In this section, we demonstrate how an atlas consisting of
a mean image and a standard deviation image can be incor-
porated into the Spherical Demons algorithm. The standard
deviation image replacesΣ in Eq. (3). We first discuss a
probabilistic interpretation of the Demons objective function
and its relationship to atlases. We then discuss the optimization
of the resulting probabilistic objective function.

A. Probabilistic Demons Objective Function

The Demons objective function reviewed in Section II is
defined for the pairwise registration of images. To incorporate

a probabilistic atlas, we now reformulate the objective func-
tion. Consider the following Maximum-A-Posteriori objective
function:

(Υ∗, Γ∗)

= argmax
Υ,Γ

log p(Γ, Υ|F, M) (53)

= argmax
Υ,Γ

log p(F, M |Γ, Υ)p(Γ|Υ)p(Υ) (54)

= argmax
Υ,Γ

log p(F, M ◦ Γ|Γ) + log p(Γ|Υ) + log p(Υ).

(55)

Assuming a Gaussian noise model, we define

p(F, M ◦ Γ)

=

N
∏

n=1

1√
2π(σ(Γ, xn))

exp

(

− (F (xn) − M ◦ Γ(xn))2

(
√

2σ(Γ, xn))2

)

,

(56)

log p(Γ|Υ) =
1

Z(σ2
x)

exp

(

− 1

σ2
x

N
∑

n=1

‖~Υn − ~Γn‖2

)

, (57)

p(Υ) =
1

Z(σ2
T )

exp

(

− 1

σ2
T

Reg(Υ)

)

, (58)

where Reg(Υ) is defined via the energetic norm as discussed
in Section III-C and for reasons that will soon be clear, we
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Fig. 10. Comparison of spline interpolation and iterative smoothing (m = 10, γ = 1). (a) Input vector field (b) Spline Interpolation Output (c)Iterative
Smoothing Output (d) Difference between the second and third columns (e)l2 norm of the difference. The first row uses an input vector fieldwhich is zero
everywhere except for a single tangent vector of unit norm. Second row illustrates the worst unit norm input as measured by the difference metric Eq. (52).
This worst unit norm input vector field corresponds to the largest eigenvector in Eq. (52). The third row uses a vector fieldfrom an actual warped image from
the experimental section. Note that the input vector field inthe first two rows are scaled down for the purpose of display. The vector fields in the entire third
row are of the same scale, but are scaled down relative to the first two rows, since the vector field from the warped image is substantially larger in magnitude
than the unit norm inputs of the first two rows. This explains the substantially larger difference metric on the third row.

are being purposefully agnostic about the form ofσ(Γ, xn).
The objective function in Eq. (55) becomes

(Υ∗, Γ∗) = argmin
Υ,Γ

N
∑

n=1

(F (xn) − M ◦ Γ(xn))2

(
√

2σ(Γ, xn))2
+

+
1

σ2
x

N
∑

n=1

‖~Υn − ~Γn‖2 +
1

σ2
T

Reg(Υ) +

N
∑

n=1

log σ(Γ, xn) ,

(59)

which is the instantiation of the Demons objective function
Eq. (3), except for the extra term

∑N
n=1 log σ(Γ, xn). Note that

we have omitted the partition functionsZ(σ2
x) andZ(σ2

T ) be-
causeσx andσT are constant with respect to the deformations
Γ andΥ. In this probabilistic interpretation, the two regular-
ization termsp(Γ|Υ) andp(Υ) act as a hierarchical prior on
Γ, with the hidden transformationΥ as a hyperparameter.

As before,σ(Γ, xn) is the standard deviation of the intensity
at vertexn. Given a set of co-registered images, we can create
an atlas by computing the mean intensity and standard devia-
tion at each vertex. To incorporate the atlas, we need to make
the choice of treating the atlas as the fixed or moving image.
If we treat the atlas as the fixed image, then we setF to be the
mean image andσ to be the standard deviation. In this case,
we do not need to interpolate the mean or standard deviation
image. Consequently,σ(Γ, xn) = σ(xn) andlog σ(Γ, xn) can
be omitted from the optimization. The registration becomes
identical to the Spherical Demons algorithm for two images.

However, recent work [1], [53] suggests that treating the
atlas as a moving image might be more correct theoretically.
This involves setting the moving imageM to be the mean
image. In this case,σ(Γ, xn) = σ(Γ(xn)) is a function of
Γ and we must includelog(σ(Γ(xn))) in the optimization.
We performed experiments for both choices and found the
results from interpolating the atlas, i.e., treating it as amoving
image, to be only slightly better than interpolating the subject.
However, interpolating the subject results in a faster algorithm,
whose computational time is less than 3 minutes. We report the
results of interpolating the atlas in the experimental section.

B. Optimization of Atlas-Based Spherical Demons

We now discuss the optimization in Eq. (59). Note that the
introduction of the new term

∑N
n=1 log σ(Γ, xn) only affects

Step 1 of the Spherical Demons algorithm. By parameterizing
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Γ(t) = Υ(t) ◦ exp({En~zn}), we get

{~z(t)
n }

= argmin
~zn

N
∑

n=1

(F (xn) − M ◦ {Υ(t) ◦ exp({En~zn})}(xn))2
(√

2σ ◦ {Υ(t) ◦ exp({En~zn})}(xn)
)2

+
1

σ2
x

N
∑

n=1

∥

∥

∥

~Υ(t)
n + G2

n{Υ(t) ◦ exp({En~zn})}(xn)
∥

∥

∥

2

+

N
∑

n=1

log σ ◦ {Υ(t) ◦ exp({En~zn})}(xn) (60)

, argmin
~zn

N
∑

n=1

f2
n1(~z) + f2

n2(~z) + log fn3(~z). (61)

The second term is the same as before, while the first term
has become more complicated. Using the product rule and
the techniques described in Appendix A, we can find the
first derivatives of the first and second terms and estimate
their second derivatives using the Gauss-Newton method.
The difficulty lies in the third term, which is not quadratic
and is even strictly concave, so we have to make further
approximations.

Consider the problem of optimizing a one-dimensional
function f(x). Let the current estimate ofx be x0. Newton’s
optimization [49] involves the following update:

△x = −(f ′′)−1(x0)f
′(x0), (62)

wheref ′(x0) andf ′′(x0) are the gradient and the Hessian off
evaluated atx0 respectively. Whenf ′′ is negative (positive),
the update△x increases (decreases) the objective function,
regardless of whether one is attempting to increase or decrease
the objective function! The Gauss-Newton approximation of
the Hessian for minimizing non-linear quadratic functions
actually stabilizes the Newton’s method by ensuring the es-
timated Hessian is positive.

To optimize Eq. (61) with Newton’s method, we need
to compute the gradient and the Hessian. Because we are
using the l2 inner product and the canonical metric (see
Appendix A-C), the gradient and the Hessian correspond to
the first and second derivatives. The first derivative or gradient
corresponds to

∂f

∂~zk

= 2fn1(~z)
∂fn1

∂~zk

+ 2fn2(~z)
∂fn2

∂~zk

+
1

fn3

∂fn3

∂~zk

(63)

and the second derivative corresponds to

∂2f

∂~v
′2
k

= 2

(

∂fn1

∂~zk

)2

+ 2fn1(~z)
∂2fn1

∂~v
′2
k

+ 2

(

∂fn2

∂~zk

)2

+

+ 2fn2(~z)
∂2fn2

∂~v
′2
k

−
(

∂fn3

∂~zk

)2

+
1

fn3

∂2fn3

∂~v
′2
k

(64)

≈ 2

(

∂fn1

∂~zk

)2

+ 2

(

∂fn2

∂~zk

)2

−
(

∂fn3

∂~zk

)2

. (65)

where the last approximation was made using the Gauss-
Newton method. Not surprisingly, the third term corresponding

to log is negative, which can introduce instability in the Gauss-
Newton update. Consequently, we drop the last term, resulting
in:

∂2f

∂~v
′2
k

≈ 2

(

∂fn1

∂~zk

)2

+ 2

(

∂fn2

∂~zk

)2

. (66)

Note that the resulting update Eq. (62) is always in the direc-
tion of descent since the estimated second derivative is always
positive. Theoretically, it is necessary to do a line searchalong
the Gauss-Newton update direction to ensure convergence. In
practice, we find that the objective function decreases reliably
for each full Newton’s step.

APPENDIX D
NUMERICS OFDIFFEOMORPHISM

While v and Φv(x) = exp(v)(x) are technically defined
on the entire continuous image domain, in practice,v and u
are represented by vector fields defined on a discrete set of
points in the image, such as at each pixel [57], [66] or control
points [4], [9] or in our case, vertices of a spherical mesh.
From the theories of ODEs [11], we know that the integral
curves or trajectoriesu(t) = Φtv(·) of a velocity fieldv(x, t)
exist and are unique ifv(x, t) is Lipschitz continuous inx and
continuous int. This is true in both Euclidean spaces and on
manifolds. Uniqueness means that the trajectories do not cross,
implying that the deformation is invertible. Furthermore,we
know from the theories of ODEs that aCr continuous velocity
field v produces aCr continuous deformation field. Therefore,
a sufficiently smooth velocity field results in a diffeomorphic
transformation.

Since the velocity fieldv is stationary in the case of the
one parameter subgroup of diffeomorphisms,v is clearly
continuous (and in factC∞) in t. A smooth interpolation ofv
is continuous in the spatial domain and is Lipschitz continuous
if we consider a compact domain, which holds since we only
consider images that are closed and bounded.

To compute the final deformation of an image, we have to
estimateexp(v) at least at the set of image grid points. We
can computeexp(v) by numerically integrating the smoothly
interpolated velocity fieldv with Euler integration. In this case,
the estimate becomes arbitrarily close to the trueexp(v) as the
number of integration time steps increases. With a sufficiently
large number of integration steps, we expect the estimate tobe
invertible and the resulting transformation to be diffeomorphic.

The parameterization of diffeomorphisms by a stationary
velocity field is popular due to the “scaling and squaring”
approach [3] for computingexp(v). Instead of Euler integra-
tion, the “scaling and squaring” approach iteratively composes
displacement fields. Because we are working on the sphereS2,
the “scaling and squaring” procedure discussed in [3] has to
be slightly modified:

Φ 1

2K v(x) =

{

Ψn

(

En

1

2K
v (xn)

)}

n=1,··· ,N

(67)

Φ 1

2K−1
v(x) = Φ 1

2K v

(

Φ 1

2K v (x)
)

...

Φv(x) = Φ 1

2
v

(

Φ 1

2
v (x)

)

, (68)
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whereΨn is the local coordinate chart defined in Eq. (10), such
thatΨn(0) = xn. Eq. (67) differs from “scaling and squaring”
in Euclidean space.En

1
2K v (xn) is the velocity vector at the

origin of R
2 corresponding to the velocity vector1

2K v (xn)
at xn. For large enoughK, we can approximate a particle
at the origin to move to positionEn

1
2K v (xn) via the flow

of En
1

2K v (xn). Finally, the coordinate chartΨn maps the
point En

1
2K v (xn) back to the sphere. The correctness of this

process follows from the fact that the solution trajectories of
the ODEs of a vector field can be consistently transformed via
the coordinate charts.

While “scaling and squaring” converges to the true answer
as K approaches∞ in the continuous case, in the discrete
case, composition of the displacement fields requires interpo-
lation of displacement fields, introducing errors in the process.
In particular, supposeΦt0v(x) andΦ2t0v(x) are the true trajec-
tories found by performing an accurate Euler integration upto
time t0 and2t0 respectively. Then, there does not exist a trivial
interpolation scheme, so thatΦ2t0v(x) = Φt0v(Φt0v(x)). In
practice however, it is widely reported that inR2 and R

3,
“scaling and squaring” tends to preserve invertibility even with
rather large deformations [4], [66].

As discussed in Appendix A-B, we employ barycentric
interpolation, followed by normalization to ensure the warp
stays on the unit sphere. In practice, we find that the resulting
transformation is indeed diffeomorphic. Technically speaking,
since we use linear interpolation for the displacement field,
the transformation is only homeomorphic rather than diffeo-
morphic. This is because the transformation is continuous,
but not differentiable across mesh edges. However, we follow
the convention of [3], [4], [66] who call their transformation
diffeomorphic even though they are homeomorphic.
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