Differential Geometry: Review

Ramesh Sridharan and Matthew Johnson

Quick Reference

$f: U \rightarrow \mathbb{R}^{n+1}$, where U is an open set in \mathbb{R}^{n}, parametrizes an n-dimensional submanifold in $n+1$ dimensions.
The first fundamental form is

$$
\begin{aligned}
I(X, Y) & =\langle X, Y\rangle_{\mathbb{R}^{n+1}} \text { for } X, Y \in T_{u} f \\
(V, W) & \mapsto\left\langle\left. D f\right|_{u}(V),\left.D f\right|_{u}(W)\right\rangle_{\mathbb{R}^{n+1}} \text { for } V, W \in T_{u} U \\
& =\left\langle V,\left(g_{i j}\right) W\right\rangle_{U} \\
g_{i j} & =\left\langle\frac{\partial f}{\partial u_{i}}, \frac{\partial f}{\partial u_{j}}\right\rangle
\end{aligned}
$$

The Gauss map $\nu: U \rightarrow S^{n}$ gives the unit normal perpendicular to $T_{u} f$. The shape operator maps $T_{u} f$ to itself. It is given by

$$
L_{u} \triangleq\left(\left.D \nu\right|_{u}\right) \circ\left(\left.D f\right|_{u}\right)^{-1}
$$

The second fundamental form is

$$
\begin{aligned}
I I(X, Y) & =\left\langle L_{u} X, Y\right\rangle_{\mathbb{R}^{n+1}} \text { for } X, Y \in T_{u} f \\
(V, W) & \mapsto\left\langle V,\left(h_{i j}\right) W\right\rangle_{U} \text { for } V, W \in T_{u} U \\
h_{i j} & =\left\langle\nu, \frac{\partial^{2} f}{\partial u_{i} \partial u_{j}}\right\rangle \\
& =-\left\langle\frac{\partial \nu}{\partial u_{i}}, \frac{\partial f}{\partial u_{j}}\right\rangle
\end{aligned}
$$

The principal curvatures κ_{i} are the eigenvalues of L_{u}. They are also the extrema of $I I(X, X)$ subject to $I(X, X)=1$ for $X \in T_{u} f$. The Gaussian curvature K is their product, and the mean curvature H is their arithmetic mean.

$$
\begin{aligned}
\left\{\kappa_{i}\right\} & =\operatorname{eig}\left(L_{u}\right) \\
K & =\operatorname{det}\left(L_{u}\right) \\
H & =\frac{1}{n} \operatorname{tr}\left(L_{u}\right)
\end{aligned}
$$

By doing algebraic manipulations, we can also find

$$
K=\operatorname{det}\left(L_{u}\right)=\frac{\operatorname{det}\left(h_{i j}\right)}{\operatorname{det}\left(g_{i j}\right)}
$$

Intuition to Remember

First Fundamental Form

Our manifold is parametrized by a function $f: U \rightarrow \mathbb{R}^{n+1}$, where U is an open set in \mathbb{R}^{n} (it is often referred to as the parameter space). The first fundamental form is defined as $I(X, Y)=\langle X, Y\rangle_{\mathbb{R}^{n+1}}$ for $X, Y \in T_{u} f$; that is, at a particular point on the manifold, it restricts the standard inner product to that point's tangent hyperplane. We can also consider the corresponding inner product in the parameter space U. For $(v, w) \in T_{u} U \times T_{u} U$, we say that $(V, W) \mapsto\left\langle\left. D f\right|_{u}(V),\left.D f\right|_{u}(W)\right\rangle_{\mathbb{R}^{n+1}}=\left\langle V,\left(g_{i j}\right) W\right\rangle_{U}$, where ($\left.g_{i j}\right)$ is the first fundamental form matrix: $\left(g_{i j}\right)=\left(\left\langle\frac{\partial f}{\partial u_{i}}, \frac{\partial f}{\partial u_{j}}\right\rangle\right)$. Note that G is $\left(\left.D f\right|_{u}\right)^{T}\left(\left.D f\right|_{u}\right)$; in some sense it is the square of the Jacobian. For 2-dimensional submanifolds in 3 dimensions, surface integrals are given by $\iint_{Q} \alpha(\cdot) d A=\iint_{Q}(\alpha \circ f)(u, v) \sqrt{\operatorname{det}\left(g_{i j}\right)} d u d v$.

Gauss Map and Shape Operator

The Gauss map is defined as $\nu: U \rightarrow S^{n}$. It maps points u in our parameter space to the unit normal vector to the manifold at $f(u)$.

The shape operator is defined as $L_{u} \triangleq-\left(\left.D \nu\right|_{u}\right) \circ\left(\left.D f\right|_{u}\right)^{-1}$, where in order to take the inverse of $\left.D f\right|_{u}$, we restrict ourselves to the image of $\left.D f\right|_{u}$. It is a map from $T_{u} f$ to $T_{u} f$. In particular, given a vector in the tangent space, it maps that vector to the corresponding differential change in the normal vector while moving in that direction.

We can see this by considering $L_{u} X$ for some $X \in T_{u} f$. Applying $\left(\left.D f\right|_{u}\right)^{-1}$ maps X to its corresponding preimage in $T_{u} U$; call this vector V. We then act on V with $\left(\left.D \nu\right|_{u}\right)$, which maps V to the tangent space of ν. Since the tangent space of ν at u is parallel to the tangent space of f at u, these spaces can be thought of as the same.

Second Fundamental Form and Curvature

The second fundamental form is defined as $I I(X, Y)=I I\left(L_{u} X, Y\right)$ for $X, Y \in T_{u} f$. Again, we consider the corresponding vectors in our parameter space, and as with G for the first fundamental form above, we define H for the second: $(V, W) \mapsto\left\langle\left. L_{u} D f\right|_{u}(V),\left.D f\right|_{u}(W)\right\rangle_{\mathbb{R}^{n+1}}=\left\langle V,\left(h_{i j} W\right\rangle_{U}\right.$. Therefore, $\left(h_{i j}\right)=$ $\left(\left\langle\nu, \frac{\partial^{2} f}{\partial u_{i} \partial u_{j}}\right\rangle\right)=\left(-\left\langle\frac{\partial \nu}{\partial u_{i}}, \frac{\partial f}{\partial u_{j}}\right\rangle\right)$. Note that $I I(X, X)$ is the inner product of a tangent vector X with the corresponding change it induces in ν by moving in the direction of X.

The principal curvatures $\left\{\kappa_{i}\right\}$ at a point on a submanifold are the local extrema of $I I(X, X)$ subject to $I(X, X)=1$. They are also the eigenvalues of the shape operator L_{u}. The Gaussian curvature is their product, or alternately the determinant of L_{u}. The average or mean curvature is the trace of L_{u} scaled by $1 / n$ (n is the dimension of the submanifold), or equivalently the arithmetic mean of the principal curvatures.

