The Ising model and Markov chain Monte Carlo

Ramesh Sridharan*

These notes give a short description of the Ising model for images and an introduction to
Metropolis-Hastings and Gibbs Markov Chain Monte Carlo (MCMC). These notes assume
you're familiar with basic probability and graphical models.

The notation here is borrowed from Introduction to Probability by Bertsekas & Tsitsiklis:
random variables are represented with capital letters, values they take are represented with
lowercase letters, px represents a probability distribution for random variable X, and px(z)
represents the probability of value x (according to px).

1 The Ising model

In many cases where we'’re interested in doing inference, we can’t do it exactly. With such
cases, we can approximate the true distribution using samples from it. Let’s look at a model
where we need to use techniques like this: the Ising model [1

The Ising model isn’t the only one where sampling techniques like the ones we’ll discuss
are useful, and these techniques aren’t the only way to do approximate inference here, but
they provide a convenient story for illustrating both ideas.

1.1 Ising model for images

Suppose we have a binary image: that is, each pixel can either be 0 or 1. Let X; be a random
variable with the value of pixel i, and let’s say we have n pixels. To save ourselves some
writing, we'll use X to represent the set {X;, X,..., X,}. The Ising model says that the
distribution for X is:

1
px(@) = I vz (1)
(i,9)EE

where

e (+,-) is an edge potential that’s usually chosen to encourage neighboring pixels to have
the same values,
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!Technically, the Ising model refers to a model like the one described, but where each X; takes on values
in {—1,+1} instead of {0,1}. The model here is also frequently referred to as a Markov Random Field,
or MRF, even though the term MRF is in fact more general. The standard Ising model (as described in
physics) also doesn’t have associated observations, but this usage is common enough in machine learning,.
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Figure 1: Graphical model for the Ising model described in Equation [I Since this isn’t a
tree, we can’t use the sum-pushing tricks of the belief propagation algorithm.

e 7 is a normalization constant,

e and the notation “(7,j) € E” refers to all pairs of pixels ¢ and j such that ¢ and j are
adjacent.

The graphical model for this problem is shown in Figure [II Now suppose we also have a
set of observations Y = {Y1,Y5,...,Y,}, which we model as being conditionally independent
given X:

pyix(ylz) = HPY|X (yilz:) H¢(yi7xi)a (2)

where the conditional distribution ¢ is the same at every pixel. So, the full joint distribution
over X and Y is:

pXX Z, _y H ¢ xuxj H¢ ylaxl (3>

(i,9)EF

This is similar to a 2-D version of the HMM: we have random variables X which are hidden
and locally dependent, and observations Y which are conditionally independent given X.
Unlike the HMM, however, since the graphical model corresponding to this distribution is
not a tree, we can’t use techniques like the sum-product algorithm or the forward-backward
algorithm like we can for trees or HMMs, respectively.



1.2 Exact inference is hard

Suppose we observe Y and wish to compute the posterior distribution over X:

PX,X(QU,_?J)
Y. Pxy(T,Y)

pxy (X[Y) = (4)

Unfortunately, the sum in the denominator is over all 2" possible configurations for z (and
because the graph isn’t a tree, we can’t use any of the sum-pushing tricks that are useful for
the sum-product algorithm). So, computing the denominator is intractable. Computing the
marginal distribution at any one pixel involves a similar summation in the numerator, and
is also intractable. For example, a typical smartphone camera has 8 megapixels, or 8 x 10°
pixels, forcing us to sum over 28x10° esibilities. As a comparison, the number of atoms in
the universe is estimated to be about 226!

What about MAP estimation?

argmax py|y (z]Y) = argmax px y (2, y) (5)

= argmax H P(x;, xj) - H¢(yz, ;) (6)

¥ (i.j)eE i
Even though we eliminated the need to compute any intractable sums, we’re still stuck: this
is a maximization over 2" discrete values, which we can’t use any shortcuts for. So, doing
exact inference requires us to search over every one of them, and so is intractable. In the next
section, we’ll look at a few ways for approximating this and other complex distributions.
As mentioned before, it’s important to note that this is not the only distribution for
which inference is intractable, and the approximate methods discussed here are not the only
approximations that we can use.

2 Approximate Inference: Sampling

In Monte Carlo methods, we use randomly generated samples x to approximate a quantity
or distribution of interest, which we’ll call px. In Markov Chain Monte Carlo (MCMC)
methods, these samples are generated “Markov-chain style”: we start with a sample, which
we use to generate the next sample, and so on. Each sample only depends on the one before
it, and the transitions between samples are constructed so that in steady-state (i.e., after
repeating many times), the samples we obtain come from px.

2.1 Metropolis-Hastings

The Metropolis-Hastings algorithm requires only two things:

1. The ability to compute unnormalized probabilities of samples px (z): here, unnormal-
ized is okay because we’ll only be interested in ratios



2. A proposal distribution V' (z'|z), which tells us how to generate the next sample 2’
given the current sample x

The algorithm itself is simple:

Inputs: Unnormalized probability distribution px(-), proposal distribution V(-|)

1:
2
3
4.
5
6
7

function METROPOLISHASTINGS(px, V)
x <—any valid value
loop
z’ <—Sample from V (-|x)

. px (@)  V(z|z")
G 4= min {L @ V(w’\w)}
With probability a, z < 2’

Save x

Often, we’ll choose proposal distributions that are symmetric (i.e., V(2'|z) = V(z|2")),

and the ratio in line |5/ reduces to px(2’)/px(x). That is, if the new sample is more probable,

we

definitely accept it (the min is there just to avoid probabilities that are greater than 1),

and if it is less probable, we randomly accept it depending on how much less probable it is.

In

general, we need to weight that ratio to make sure our proposal distribution isn’t unfairly

pushing us one way or the other: that’s what the V(z|z")/V (2/|z) term is for.

(a)

Some important points to note:

Choosing a good proposal distribution can be tricky, and is usually problem-dependent.
Suppose X takes on values in between 0 and 1000. Let’s look at three different proposal
distributions:

e Vi(:|z) is uniform over the interval x 4+ 50000.
e V5(-|x) is uniform over the interval x 4 1.

e V3(+|z) is uniform over the interval x £ 300.

Most of the time, proposals generated from V; will be outside the range [0, 1000], and our
acceptance probability will be 0. Proposals from V5, will almost always be accepted, but
it will take tens of thousands of iterations just to cover the entire space of possibilities.
V3 attempts to strike a balance in between these, with not too many rejections but a
decent coverage of the sample space.

Notice that we initialized completely arbitrarily: in many cases, this initialization could
be in a particularly low-probability location. A common practice is to wait K iterations
before collecting any samples, to avoid any artifacts from initialization. In this case, K
is known as the burn-in time.

Another somewhat common practice is to not save every single sample, but rather to
wait a fixed number of iterations between each save. This prevents samples from being
dependent on each other, but is not necessarily a problem for a well-chosen proposal
distribution with enough samples.
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Figure 2: Example proposal distribution for a 4-pixel grid (left). The proposal distribution
is uniform over the 4 candidates shown (right).

2.1.1 Metropolis-Hastings MCMC for the Ising model

Let’s return to the Ising model. Suppose for our proposal distribution V(-|z), we flip one
randomly chosen value from z (call it xy), and use a distribution that is uniform over all
such configurations. An example for a four-pixel image is shown in Figure [2|

Exercise: Compute the acceptance probability for flipping X} from zy, to z.

Solution: We simply compute the ratio from line [5| of the algorithm. We begin by noting
that V(2'|z) = V(z|2'), since V flips x; with probability 1/n from either 2’ or z. So, we
need only compute the ratio

X (z') Y(x Oy, )
o) 11 ¢( Tj, k) Oy, r)’

)

j:(3,k)eE

since all terms not involving xj stay the same and therefore cancel between the numerator
and the denominator. Therefore, for any proposed sample, we need only evaluate about 10
numbers and perform a few divisions and multiplications.

Exercise: Why might this not be a good proposal distribution? Can you come up with a
better one?

2.2 Gibbs Sampling

Like Metropolis-Hastings, Gibbs sampling is a flavor of MCMC, but it’s conceptually simpler!

If we want to sample from a distribution over several random variables, Gibbs sampling fixes

all but one random variable, samples that one conditioned on the others, and then repeats

the process for each random variable. So, all we need are the conditional distributions.
We'll use the notation X _; to represent all of X except X;: for example,

Xﬁ?, = {X17X27X47X57X67 S 7Xn}

Then our algorithm is as follows:




Inputs: Conditional distributions px,x_ (zi|z_;)

1: function GIBBSSAMPLE(px,x  (7:2_;))
2 x <—any valid value

3 loop

4: for i in {1,...,n} do

5: x; <Sample from px,x (-|z_;)
6 Save x

As with Metropolis-Hastings MCMC, we often only start saving after a burn-in period,
and sometimes will wait for several iterations of the outer loop between saves.

2.2.1 Gibbs sampling for the Ising Model

Let’s return once again to the Ising model and look at how to apply Gibbs sampling there.
Exercise: Compute the conditional distribution px,x .y (zi|r_;,y) up to a constant of
proportionality. Explain why we don’t need to compute normalizing constants.

Solution: As always, we compute the conditional distribution as the joint distribution over
all X (conditioned on Y') divided by the marginal distribution of what we're conditioning
on, X_, (conditioned on Y):

pXi\Li7X(17z‘|20my) = % (7)
X H d’(%@j)‘?(yi,%) ) f(Xﬁi)a (8)
J:(i.5)EE

where the second equality follows from the fact that most terms in the first expression do not
depend on z;, and are therefore strictly a normalizing constant. We can in fact show that
most of these terms cancel, but that isn’t even necessary here, since we can just compute
the normalization constant by plugging in 0 and 1 and adding up the results. For example,
if plugging in gives 10 and 20 respectively, then we know that the probabilities are 1/3 and
2/3, since they must add up to 1.
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