

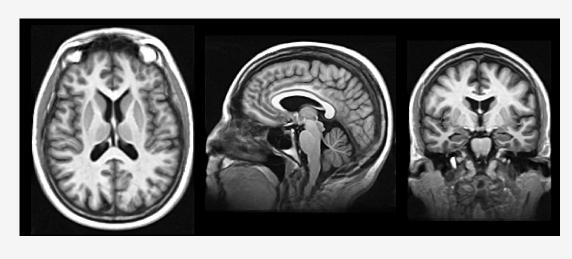
Quantification and Analysis of Large Multimodal Clinical Image Studies: Application to Stroke

Ramesh Sridharan, Adrian V. Dalca, Kaitlin M. Fitzpatrick, Lisa Cloonan, Allison Kanakis, Ona Wu, Karen L. Furie, Jonathan Rosand, Natalia S. Rost, and Polina Golland

Motivation

Clinical vs research quality imaging datasets

- Resolution, contrast, field of view
- Potential for analysis: many subjects, sites



Research scan (T1 MPRAGE)

Stroke dataset

- 1089 patients
 - 3000 more from international consortium
- Different sites, scanners, protocols
- T1, T2-FLAIR, DWI
- 5-7mm slice thickness, axial/sagittal acquisition
- Clinical indicator: vascular degeneration (WMH)

Stroke patient scan: T2-FLAIR, axial acquisition

Goal: Meaningful modeling and analysis of clinical image datasets

- Registration: align subjects for spatial analysis
- Segmentation: automatic WMH detection
- These enable population analysis of WMH growth in our cohort
- Tools for these steps exist, but must be tailored for clinical data

Registration

Want to align all modalities, all subjects into common space

- Rigid registration for within-subject multimodal registration
- *Nonrigid* registration for subject \longleftrightarrow atlas registration

Key insights that we apply

- Choice of metric is critical
 - If intensities match, correlation (CC) outperforms mutual information (MI) and SSD
 - If intensities differ, use MI, even within same modality
- Brain masking is critical, even if skull stripping fails

Initialize with rigid registration

• Use MI to compare images: variable acquisition \rightarrow intensities don't match

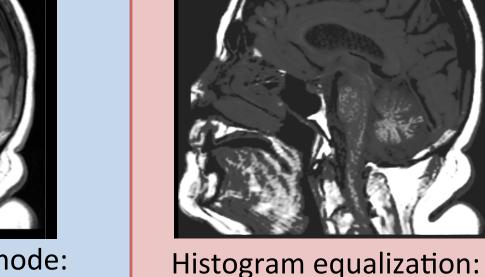
Brain masking

- Skull stripping algorithms remove too much/too little
- Use rigid registration to get rough brain mask from atlas

Skull strip from BET

Intensity correction

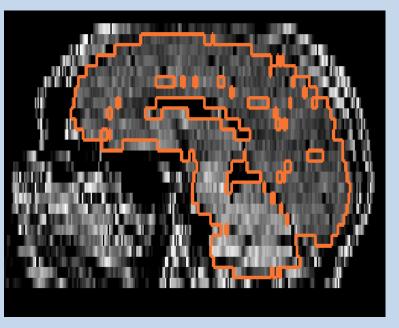
- Can't use histogram equalization: different histogram shapes
- Match mode of white matter intensity within mask: uniform global scaling



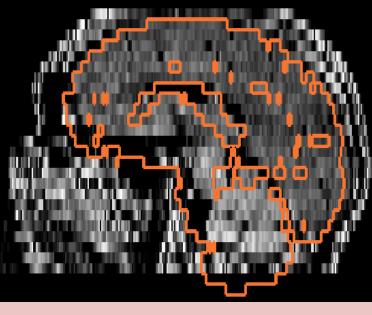
Matched intensity mode: maintains contrast

Final nonrigid registration Compute metric on brain mask voxels only

- Use intensity-corrected image
- Use CC as metric



Segmentation overlay: Our pipeline



low brain contrast

Segmentation overlay: Simple registration

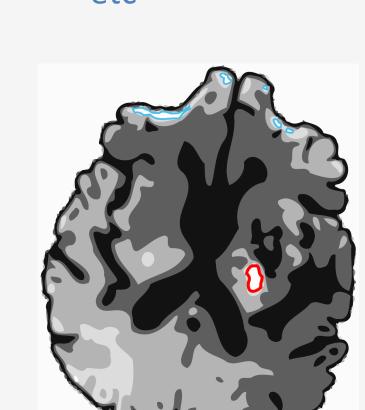
Registration quality

- Construct image of voxelwise median intensity in atlas space
- Remove outliers (distance to median)
 - Tukey fence threshold:
 3rd quartile + 1.5 x (interquartile range)

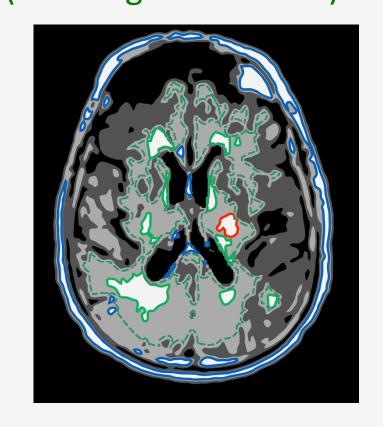
Segmentation

- White matter hyperintensity
 - Bright on FLAIR
 - Use expert-defined mask to constrain to relevant white matter regions
- Stroke tissue
- Bright on FLAIR and DWI

- DWI
- All bright regions outlined
- Red: Stroke
- Blue: irrelevant regions, artifacts, etc



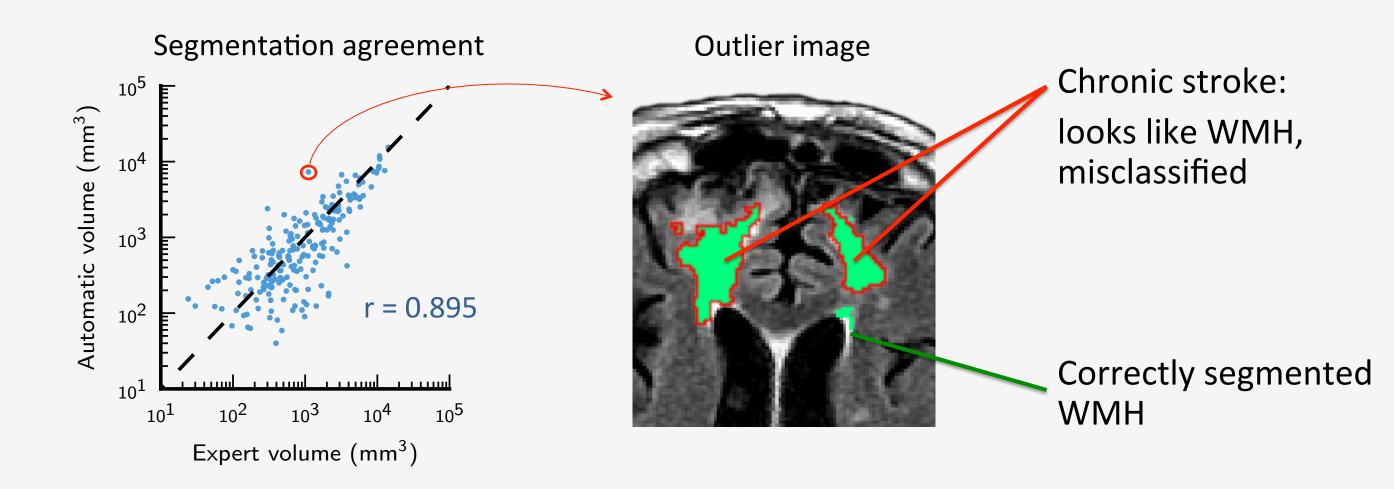
- T2-FLAIR
 - All bright regions outlined
 - Green: WMH
 - Red: Stroke
 - Blue: irrelevant regions, artifacts, etc
- Use expert-defined mask (dotted green outline)



- Automatic segmentation
 - Propagate expert-defined mask using registrations
 - Remove acute stroke from analysis using DWI
 - Predict label L (normal or pathology) from intensity I using MAP classification:

$$L = \arg\max_{L} p(L|I) = \arg\max_{L} p(I|L)p(I)$$

• Learn p(I|L) from 10 manually segmented patient images



Analysis

- Goal: understand WMH change with age
 - Overall volume change
- Change in spatial distribution
- Technique: regression mixture modeling
- Assume two clusters of patients
- Each has a different growth pattern of WMH volume as a function of time
- Use hard-assignment EM to jointly estimate cluster labels and regression coefficients
- Nadaraya-Watson kernel regression within each cluster

