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Image Studies: Application to Stroke
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Clinical vs research quality
imaging datasets °

e Resolution, contrast, field
of view °

e Potential for analysis:
many subjects, sites

Motivation

Stroke dataset

~

1089 patients

e 3000 more from international consortium
Different sites, scanners, protocols
T1, T2-FLAIR, DWI
5-7mm slice thickness, axial/sagittal acquisition
Clinical indicator: vascular degeneration (WMH)

Quantification and Analysis of Large Multimodal Clinical
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mask to constrain to
relevant white matter

e Blue: irrelevant
regions, artifacts,
etc

Segmentation
e White matter e DWI e T2-FLAIR
hyperintensity * All bright regions e All bright regions outlined
e Bright on FLAIR outlined e Green: WMH
: e Red: Stroke
e Use expert-defined e Red: Stroke

Blue: irrelevant regions,
artifacts, etc
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Stroke patient scan: T2-FLAIR, axial acquisition

Research scan (T1 MPRAGE)

Goal: Meaningful modeling and analysis of clinical image datasets
e Registration: align subjects for spatial analysis

e Segmentation: automatic WMH detection
e These enable population analysis of WMH growth in our cohort

e Tools for these steps exist, but must be tailored for clinical data

Want to align all modalities, all subjects into common space
e Rigid registration for within-subject multimodal registration
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Registration

e Nonrigid registration for subject <> atlas registration

Key insights that we apply
e Choice of metric is critical

e |f intensities match, correlation (CC) outperforms mutual information (MI) and SSD
e |[f intensities differ, use MI, even within same modality
e Brain masking is critical, even if skull stripping fails

Initialize with rigid registration
e Use MI to compare images: variable acquisition = intensities don’t match

Brain masking

e Skull stripping algorithms
remove too much/too little

e Use rigid registration to get
rough brain mask from atlas
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Intensity correction

e Can’t use histogram equalization:
different histogram shapes

e Match mode of white matter
intensity within mask: uniform
global scaling

Matched intensity mode:
maintains contrast

Histogram equalization:
low brain contrast

Final nonrigid registration

e Compute metric on brain
mask voxels only
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Image 4 , '

e Use intensity-corrected

e Use CC as metric

Segmentation overlay:
Simple registration

Segmentation overlay:
Our pipeline

Registration quality

e Construct image of voxelwise median |, | 3
intensity in atlas space [

T2-FLAIR DWI
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e Remove outliers (distance to median)
e Tukey fence threshold:

SSD to median
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regions e Use expert-defined mask

(dotted green outline)

o Stroke tissue

e Bright on FLAIR and
DWI

e Automatic segmentation
e Propagate expert-defined mask using registrations
e Remove acute stroke from analysis using DWI

e Predict label L (normal or pathology) from intensity | using MAP classification:

L)p(/)

o Learn p(/|L) from 10 manually segmented patient images

L = argmax p(L|/) = arg max p(/
L L

Segmentation agreement Outlier image

Chronic stroke:
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Analysis

e Goal: understand WMH change with age
e Overall volume change
e Change in spatial distribution

e Technique: regression mixture modeling
e Assume two clusters of patients
e Each has a different growth pattern of WMH volume as a function of time

e Use hard-assignment EM to jointly estimate cluster labels and regression
coefficients

e Nadaraya-Watson kernel regression within each cluster

e®e Patients in the low WMH growth cluster L
Kernel regression for the low WMH growth cluster
Patients in the high WMH growth cluster

Kernel regression for the high WMH growth cluster
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