Basic Probability Notes

Ramesh Sridharan*

These notes give a review of basic probability, focusing on a few important concepts. For a
more thorough treatment, see any introductory probability book; I recommend Introduction
to Probability by Bertsekas & Tsitsiklis.

Probability review

Here’s our setup: we have experiments which generate outcomes. The sample space is the
set of all outcomes of an experiment. Events are subsets of the sample space (which can
possibly be empty). A probability distribution assigns probabilities to events, and must
satisfy the three axioms of nonnegativity, additivity, and normalization.

Conditioning on an event means we have observed that event occuring. This gives a new
probability distribution; it can be thought of as restricting the universe of possibilities to
those outcomes which satisfy the condition.

Two events A and B are defined to be independent if P(A|B) = P(A), or equivalently
if P(AN B) = P(A)P(B). Intuitively, two events are independent if knowing one does not
change the probability of the other one occurring.

Bayes’ rule states that

“likelihood” “prior”
——
P(B|A) P(A)

P(B)
Typically, B is an observed event and A is an event representing the hidden state of the world
(so P(A|B) is our belief about the hidden state of the world given our observations). Our
problem-specific model will provide likelihood and prior distributions P(B|A) and P(A)
respectively. Computing the denominator often requires the use of total probability (or,
in the case of random variables, marginalization), and can sometimes be computationally
intractable.

The law of total probability states that given events Aj, ..., A, that are disjoint (i.e.,
they don’t overlap) and exhaustive (i.e., they cover the entire sample space when combined),
we can write

P(A|B) =

P(B) = Y _P(B|A)P(4)

This is useful when P(B) is difficult to compute, but P(B|A4;) is easier.
Also recall that the notation A€ refers to the complement of an event.
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Basic combinatorics

Suppose we wish to form a 4-letter string using the letters of the alphabet. Suppose we
require that the letters must be different (i.e. we sample them without replacement). Then,
there are 26 possibilities for the first letter, and for each of those, there are 25 possibilities
for the second letter, and so on. So, the number of possible strings is given by 26 -25-24 - 23.

In general, a length-k permutation of n elements is an ordered collection of k of the n
elements. There are (n%'k), different ways to construct such a permutation. In this example,
n = 26 letters of the alphabet and k& = 4 letters, so the formula gives us 26!/22! = 26-25-24-23.

When we are not concerned with order, we can simply take the number of permutations
and divide by the number of ways to reorder the k elements, k!. This gives #lk),

In our earlier example, if we didn’t care about order, we would divide by the number

of ways to rearrange the 4 letters (which is 4! =4 -3 -2). Our final answer would then be
26! __ 2625-24.23
22141 432 -




Problems

Example 1
A family has two children. For each piece of information below, determine the probability
that both children are boys given that piece of information. For this problem, assume that
every child is equally likely to be a boy or a girl, and the genders of the two children are
independent.

(a) No information (i.e. compute the unconditional probability that both children are boys).
(b) The younger child is a boy.

(c) At least one child is a boy.
)

(d) At least one child is a boy born on a Tuesday. Assume each child is equally likely to be
born on any day of the week.

Solution: This problem was posed by Gary Foshee at a gathering of puzzle enthusiasts.
You can find lots of discussion about it online [1]

(a) This is simply the probability of two independent events, each of which occurs with
probability 1/2. Therefore, the probability is }L.

(b) Carefully examining the sample space, we see that there are 4 possible outcomes:

First child | Second child
Boy Boy
Boy Girl
Girl Boy
Girl Girl

Using computations similar to those in (a), we can see that all 4 possibilities are equally
likely. If we observe that the younger child is a boy, we can eliminate the third and
fourth possibilities. One out of the two remaining possibilities satisfies the event we are
looking for (“both children are boys”). So, the probability is 3.

(c) Once again, we can write out the entire sample space:

First child | Second child
Boy Boy
Boy Girl
Girl Boy
Girl Girl

Here, our conditioning event, “at least one child is a boy,” only eliminates one possibility,
leaving 3 equally likely candidates. Once again, only the first out of the three satisfies
the event we're looking for. So, the probability is %

'See [the New Scientist article| or |a useful blog post
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http://www.newscientist.com/article/dn18950-magic-numbers-a-meeting-of-mathemagical-tricksters.html
http://wmbriggs.com/blog/?p=2553

(d) In order to write out the full sample space for this problem, we’d need 196 entries: there
are 14 possibilities for the first child, and for each of those, 14 possibilities for the second.
So, we’ll solve a simpler problem: suppose babies can only be born on Tuesdays and
Wednesdays. Using B, G, T, and W to abbreviate boy, girl, Tuesday and Wednesday
respectively, the sample space is:

First child | Second child
B, T B.,T
B, T B,.W
B, T G,T
B, T G,W
B,W B,T
B,W B,W
B,W G, T
B,W G,W
G, T B.T
G, T B,W
G, T G, T
G, T G,W
G,W B.,T
G,W B,W
G,W G, T
G,W G,W

The 7 bolded entries satisfy the event we're conditioning on: that one of the children is
a boy born on a Tuesday. Out of these, only 3 (the first two and the fifth) correspond
to two-boy families. Therefore, the probability is %

While the sample space for the full problem is too large to write out easily, we can
extend this reasoning to obtain the final answer 13. T encourage you to try arriving at

27"
this answer for yourself!

In case you don’t believe the answer (as I didn’t the first time I heard this puzzle), one thing
you can always do is to simulate it. The following python code (also available from the same
place you found these notes) simulates this problem:

from __future__ import division

import sys
import random

def generate_families(N_families, N_children_per_family):

nnn

Generates a list of two-child families, where each family is a two—element
list of (birth day of week, gender) pairs.
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nmnn

all_families = []
days = [’Sunday’, ’Monday’, ’Tuesday’, ’Wednesday’,
>Thursday’, ’Friday’, ’Saturday’]
genders = [’boy’, ’girl’]
for ii in xrange(N_families):
family = []
for child in xrange(N_children_per_family):
day = random.choice(days)
gender = random.choice(genders)
family.append((day,gender))
all_families.append(family)
return all_families

def test_condition(family):

nmmnn

""" Tests whether a family has a boy born on Tuesday.
for child in family:
(day, gender) = child
if day == ’Tuesday’ and gender == ’boy’:
return True
return False

def test_two_boys(family):

""" Tests whether a family has two boys. """

((dayl, genderl), (day2, gender2)) = family
return (genderl == gender2 == ’boy’)

def example_problem(families):

if

nimnn

Given a list of families, returns the conditional probability
of having two boys given that one is a boy born on a Tuesday.

nmnn

conditioned = [fam for fam in families if test_condition(fam)]
fully_satisfied = [fam for fam in conditioned if test_two_boys(fam)]

conditional_probability = len(fully_satisfied) / len(conditioned)

print ("Conditional probability was %f."/conditional_probability)

__name__ == ’__main__"’:

N_families = int(sys.argv[i])
families = generate_families(N_families, 2)
example_problem(families)

One way to view these problems is on an “information spectrum:” In each situation, we are



given some information about the family, and asked for the probability of having two boys.
This probability was smallest in (a), where we were given no information. As we are given
more and more information, the probability of this event increases: part (c) provides a small
amount of information, part (d) provides a little more, and part (b) provides even more still.
Our smaller problem in part (d) doesn’t provide as much information as the full problem:
we only eliminate half the possible days the child could have been born on. However, the
full problem eliminates 6/7 of the days by telling us that the boy was born on a Tuesday.

Example 2
You have an urgent assignment due in only a few minutes. You know it’s in one of your
drawers, but you're not sure which one. The probability that the assignment is in drawer
k is Dy. If drawer k has the assignment and you search there, you have probability py of
finding it.

Suppose you search drawer 7 and do not find the assignment. Like any good student, you
decide to spend your little remaining time computing probabilities:

(a) Find the probability that the paper is in drawer j, where j # 1.
(b) Find the probability that the paper is in drawer 7.

Solution: Let A; be the event that the assignment is in drawer k, and By, be the event that
you find the assignment in drawer k.

(a) We'll express the desired probability as P(A;|Bf). Since this quantity is difficult to
reason about directly, we’ll use Bayes’ rule:

P(B{|A;)P(A;)

The first probability in the fraction, P(Bf|A;), expresses the probability of not finding
the assignment in drawer ¢ given that it’s in a different drawer j. Since it’s impossible
to find the paper in a drawer it isn’t in, this is just 1.

The second probability, P(A;), is given to us in the problem statement as Dj.

The third probability, P(Bf) = 1 —P(B;), is difficult to reason about directly. But, if we
knew whether or not the paper was in the drawer, it would become easier. So, we’ll use
total probability:

prob. of finding in ¢ if in 4 prob. of finding in ¢ if not in ¢
c c
P(B;) = P(Bi|Ai) P(4;)  + P(B;| A7) P(A7)
—— ——
prob. of being in ¢ prob. of not being in ¢

=piD; + 0(1 — D)

Putting these terms together, we find that

C D
P(A;|Bf) = 1_—;D



(b) Similarly, we’ll use Bayes’ rule:

o _ P(BFIA)P(A;) (1 —pi)D;
P(Ai| BY) = BB 1-pD

Example 3
Suppose you have n ball-filled urns, numbered 1 through n. Urn ¢ has exactly ¢ — 1 green
balls and n — ¢ red balls.

(a) You choose an urn uniformly at random, and draw a ball without looking at it. What
is the probability that the ball you drew is green?

(b) You then look at the ball and see that it is green. You draw another ball from the same
urn. What is the probability that the second ball is green?

Solution:

(a) Let Nyeq be the total number of red balls, and Ngeen be the total number of green balls.

n

1
Nred:Z(i—l) = 5n(n+1)—n:n2—n,
i=1

1
Nreen: —i)=n%— = 1:2_7
o ;(n i)=n 2n(n+ )=n"—n
where the summations come from the formula Y"1 ;i = In(n + 1).
Since the urns all have an equal number of balls, randomly choosing an urn and then
randomly choosing a ball is equivalent to randomly choosing a ball from all the balls
(convince yourself that this is true!). So, the probability is 1/2. This answer should also
make intuitive sense: since red and green are completely symmetric here, the answer
should be the same for red as it is for green: the only way for that to be true is for both
to be 1/2.

(b) This question would be much easier if we knew which urn the balls came from. So, we’ll
use total probability to condition on that information. Let GG} be the event that the kth
ball drawn is green, and U; be the event that they were drawn from the ¢th urn. Then



the U;s are disjoint, exhaustive events:

_ P(GanGh)
IP)(G2|G1) - ]P)(Gl)
n 1/n
1 ~ =
(total probability) = ) > (G N Gh|Uy) P(U;)
i=1
, 1 < 1
(Chaln rule) = m ;P(Gl‘Uz)P(GﬂGl N UZ) . ﬁ

1 —i—-1 i—2 1
*(1/2),Zn—1'n—2'ﬁ
=1

1 1 2

(1/2) 3 3

where the summations can be computed using a computer algebra system such as Wol-
fram Alpha.

The key to the solution was to see that we didn’t have any way of directing computing
probabilities of events involving G and G, but once we conditioned on Uj (i.e., once we
knew which urn the balls came from), we could fully use the information we were given.

Note that our answer is quite a bit higher than 1/2 even though we’ve already taken
away a green ball from our chosen urn. Intuitively, this is because drawing a green ball
first tells us that we are more likely to have chosen an urn with a higher concentration
of green balls.



