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Lecture 10:
Undecidability, 

Unrecognizability, 
and Reductions

6.045
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Your Midterm: 2:35-3:55pm, 32-144 + 155

No pset this week! 

Just an optional (not graded) practice midterm

Solutions to practice midterm will come out with the 

practice midterm. Also all HW solutions.

When you see the practice midterm…

DON’T PANIC! 

Practice midterm will be harder than midterm

Next Thursday (3/19)
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Your Midterm: 2:35-3:55pm, 32-144 + 155

No pset this week! 

Just an optional (not graded) practice midterm

FAQ: What material is on the midterm?

Everything up to Thursday (Lectures 1-11)

FAQ: Can I bring notes?

Yes, one single-sided sheet of notes, US letter paper

Next Thursday (3/19)



A TM M recognizes a language L 
if M accepts exactly those strings in L

A TM M decides a language L if M accepts all 
strings in L and rejects all strings not in L

A language L is recognizable 
(a.k.a. recursively enumerable)

if some TM recognizes L

A language L is decidable (a.k.a. recursive)
if some TM decides L
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L(M) := set of strings M accepts
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Thm: There are unrecognizable languages

Assuming the Church-Turing Thesis, 
this means there are problems that 

NO computing device will ever solve!

The proof will be very NON-CONSTRUCTIVE:
We will prove there is no onto function
from the set of all Turing Machines to 

the set of all languages over {0,1}. 
(But the proof will work for any finite Σ)

Therefore, the function mapping every TM M to its 
language L(M), fails to cover all possible languages
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Languages 
over {0,1}

“There are more problems to solve 
than there are programs 

to solve them.”

Turing 
Machines M L(M)
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Let L be any set and 2L be the power set of L

Theorem: There is no onto function from L to 2L

Proof: Let f : L → 2L be arbitrary

Define S = { x  L | x  f(x) } ∈ 2L

Claim: For all x ∈ L, f(x) ≠ S
For all x ∈ L, observe that 

x ∈ S if and only if x ∉ f(x) [by definition of S]
Therefore f(x)  S:

the element x is in exactly one of those sets!
Therefore f is not onto!

f : A → B is not onto  (9 b 2 B)(8a 2 A)[f(a)  b]
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What does this mean?

No function from L to 2L  

can “cover” all the elements in 2L

No matter what the set L is, 
the power set 2L always has 

strictly larger cardinality than L
(and all subsets of L)
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{Turing Machines}

{0,1}* {All possible subsets 
of {0,1}*}

{Languages over {0,1}}

Set T Set of all subsets of T: 2T

But we showed there is no onto function from 
{Turing Machines} ⊆ T to its power set 2T. Contradiction!

Proof:  Suppose all languages are recognizable. 
Then for all L, there’s a TM M that recognizes L.

Thus the function R: {Turing Machines}→ {Languages} 
defined by M ↦ L(M) is an onto function.

⊆

Thm: There are unrecognizable languages
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Theorem: There is no onto function from the 
positive integers ℤ+ to the real numbers in (0, 1)

1
2
3
4
5
:

0.28347279…
0.88388384…
0.77635284…
0.11111111…
0.12345678…

:

Proof:
Suppose f is such a function. Then we can make a list:

Define: r 2 (0, 1)

[ n-th digit of r ] =

2
8

6

1

5

1 if [ n-th digit of f(n) ]  1

2 otherwise

f(n)  r for all n (Here, r = 0.11121... )

r is never 
output by f!

{0,1}* Languages over {0,1}

Diagonalization
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In the early 1900’s, logicians were trying to
define consistent foundations for mathematics.

Suppose  X = “Universe of all possible sets”

Frege’s Axiom: Let  f : X ! {0,1}

Then {S  X | f(S) = 1} is a set. 

Russell: Define F = { S  X | S  S }

Suppose F  F. Then by definition, F  F.
So F  F and by definition F  F.

This logical system is inconsistent!

Russell’s Paradox in Set Theory
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ATM = { ⟨M, w⟩ | M is a TM that accepts string w }

A Concrete Undecidable Problem:
The Acceptance Problem for TMs

Theorem [Turing]:
ATM is recognizable but NOT decidable

Given: code of a Turing machine M and
an input w for that Turing machine,

Decide: Does M accept w?

Thm: There are unrecognizable languages
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ATM = { ⟨M,w⟩ | M is a TM that accepts string w }

Thm. ATM is undecidable: (proof by contradiction)

Assume H is a machine that decides ATM

H(⟨M,w⟩) =
Accept if M accepts w

Reject if M does not accept w

Define a new TM D with the following spec:

D( ⟨M⟩ ) =
Reject if M accepts ⟨M⟩

Accept  if M does not accept ⟨M⟩

⟨D⟩
D ⟨D⟩

D ⟨D⟩
Set M=D?

D(⟨M⟩):  Run H on ⟨M,M⟩ and output the opposite of H
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The table of outputs of H on ⟨x,y⟩

M1

M2

M3

M4

:

w1 w2 w3 w4
…

accept accept

accept

accept

accept

accept

accept

reject

reject

reject

reject

reject

reject

reject

reject

reject

D

D

reject

accept

accept

accept

acceptreject

reject

accept ?

x

y

M1, M2, …  and w1, w2, … are both 
ordered lists of all binary strings
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M1

M2

M3

M4

:

w1 w2 w3 w4
…

accept accept

accept

accept

accept

accept

accept

reject

reject

reject

reject

reject

reject

reject

reject

reject

D

D

reject

accept

accept

accept

acceptreject

reject

accept ?

x

y

D on ⟨x⟩ outputs the opposite of H on ⟨x,x⟩

The table of outputs of H on ⟨x,y⟩
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M1

M2

M3

M4

:

w1 w2 w3 w4
…

accept accept

accept

accept

accept

accept

accept

reject

reject

reject

reject

reject

reject

reject

reject

reject

reject

reject

accept

accept

D

D

reject

accept

accept

accept

acceptreject

reject

accept ?

The behavior of D(x) is a diagonal on this table

D on ⟨D⟩ outputs the opposite of D on ⟨D⟩

D on ⟨x⟩ outputs the opposite of H on ⟨x,x⟩
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(a constructive proof)

Let U be a machine that recognizes ATM

ATM = { ⟨M,w⟩ | M is a TM that accepts string w }

U( ⟨M,w⟩ ) =
Accept if M accepts w

Rejects or loops otherwise

Define a new TM DU as follows:

DU(⟨M⟩):   Run U on ⟨M,M⟩ until it halts. 
Output the opposite answer

Thm. ATM is undecidable.
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DU ( ⟨M⟩ ) =

Reject if  M  accepts  ⟨M⟩
(i.e. if H(  M  ,  M  ) = Accept)

Accept if  M  rejects ⟨M⟩
(i.e. if H(  M  ,  M  ) = Reject)

Loops if  M  loops on ⟨M⟩
(i.e. if H(  M  ,  M  ) loops)

⟨DU⟩

DU ⟨DU⟩
DU DU

DU ⟨DU⟩
DUDU

DU ⟨DU⟩

DU DU

Note: There is no contradiction here! 

DU must run forever on ⟨DU⟩

We have an input ⟨DU, DU⟩which is not in ATM 

but U infinitely loops on ⟨DU, DU⟩!  
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In summary:

Given the code of any machine U that recognizes ATM

(i.e. a Universal Turing Machine) we can effectively
construct an input ⟨DU, DU⟩, where:

1. ⟨DU, DU⟩ ∉ ATM  (DU does not accept DU)

2. U runs forever on the input ⟨DU, DU⟩

Given any universal Turing machine, we can efficiently 
construct an input on which the program hangs!

Note how generic this argument is:
it does not depend on Turing machines!

Therefore U cannot decide ATM
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A Concrete Unrecognizable Problem:
The “Non-Acceptance Problem” for TMs

ATM = { ⟨M, w⟩ |  M encodes a TM over some Σ,
w encodes a string over Σ 
and M accepts w}

Then, ATM = { z | z decodes to M and w
such that M does not accept w }

We choose a decoding of pairs, TMs, and strings so that  
every binary string decodes to some TM M and string w

If z ∈ {0,1}* doesn’t decode to ⟨M, w⟩ in the usual way, 
then we define that z decodes to a TM D and 𝜺

where D is a “dummy” TM that accepts nothing. 
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A TM M recognizes a language L 
if M accepts exactly those strings in L

(but could run forever on other strings)

A TM M decides a language L if M accepts all 
strings in L and rejects all strings not in L

Theorem: L is decidable
⇔ L and L are recognizable

A Concrete Unrecognizable Problem:
The “Non-Acceptance Problem” for TMs
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Recall: Given L µ Σ*, define L := Σ* \ L

How? Any ideas?
Hint: M1 always accepts x, when x is in L

M2 always accepts x, when x isn’t in L

Theorem: L is decidable
⇔ L and L are recognizable

(⇐)  Given: a TM M1 that recognizes L and
a TM M2 that recognizes L, 

we want to build a new machine M that decides L
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Theorem: L is decidable
⇔ L and L are recognizable

M(x):      Run M1 (x) and M2 (x) on separate tapes. 
Alternate between simulating one step 

of M1 , and one step of M2 . 
If M1 ever accepts, then accept 
If M2 ever accepts, then reject

Recall: Given L µ Σ*, define L := Σ* \ L

(⇐)  Given: a TM M1 that recognizes L and
a TM M2 that recognizes L, 

we want to build a new machine M that decides L
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Theorem: ATM is recognizable but NOT decidable

Corollary: ATM is not recognizable!

Proof: Suppose ATM is recognizable. 
Then ATM and ATM are both recognizable…

But that would mean they’re both decidable!
Contradiction!
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HALTTM = {⟨M, w⟩ | M is a TM that halts on string w }

Theorem: HALTTM is undecidable

The Halting Problem [Turing]

Proof: Assume (for a contradiction) 
there is a TM H that decides HALTTM

Idea:  Use H to construct a TM M’ that decides ATM

M’(⟨M, w⟩): Run H(⟨M, w⟩)

If H rejects then reject

If H accepts, run M on w until it halts:
If M accepts, then accept
If M rejects, then reject

Claim:  If H exists, then M’ decides ATM ⇒H does not exist!
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H

⟨M, w⟩

⟨M, w⟩

M

w

NO

YESDoes M 
halt on w?

M’ decides ATM 

Output reject Output answer



27http://smbc-comics.com/comic/halting
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Public Health Announcement
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Can often prove a language L is undecidable 
by proving:  “If L is decidable, then so is ATM”

We reduce ATM to the language L:

ATM  ≤   L

The previous proof is one example of a 
MUCH more general phenomenon. 

Intuition: L is “at least as hard as” ATM

Given the ability to solve problem L, 
we can solve ATM
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Theorem [Turing]: HALTTM is undecidable

Motivating Example

Proof: Assume some TM H decides HALTTM

We’ll make an M’ that decides ATM

M’(⟨M, w⟩): Run H on ⟨M, w⟩

If H rejects then reject

If H accepts, run M on w until it halts:
If M accepts, then accept
If M rejects, then reject

This is called a TURING REDUCTION: 
Using a TM for deciding HALTTM we could decide ATM
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Reducing One Problem to Another

f : Σ* → Σ* is a computable function if 
there is a Turing machine M that halts with
just f(w) written on its tape, for every input w

A language A is mapping reducible to language B, 

written as A ≤m B, if there is a computable 

f : Σ* → Σ* such that for every w ∈ Σ*,

w  A   f(w)  B

f is called a mapping reduction 
(or many-one reduction) from A to B



32

A Bf

f

Let f : Σ* → Σ* be a computable function

such that for all w∈ Σ*, w  A  f(w)  B

Say: “A is mapping reducible to B” 

Write: A m B 

Σ* Σ*
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Theorem: If A m B and B m C, then A m  C

A Bf

f

g

g

C

w ∈ A ⇔ f(w) ∈ B ⇔ g(f(w)) ∈ C
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ADFA = { ⟨D, w⟩ | D encodes a DFA over some Σ,
and D accepts w 2 Σ* }

ANFA = { ⟨N, w⟩ | N encodes an NFA, N accepts w }

Some (Simple) Examples

Then, w ∈ L’⇔ D accepts w ⇔ f(w) = ⟨D, w⟩ ∈ ADFA

Theorem:  For every regular language L’, L’  ≤m ADFA 

For every regular L’, there’s a DFA D for L’. 
So here’s a mapping reduction f from L’ to ADFA:

f(w) :=  Output ⟨D,w⟩

So f is a mapping reduction from L’ to ADFA
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ADFA = { ⟨D, w⟩ | D encodes a DFA over some Σ,
and D accepts w 2 Σ* }

ANFA = { ⟨N, w⟩ | N encodes an NFA, N accepts w }

Theorem:  ANFA ≤m ADFA  

Theorem:  ADFA ≤m ANFA

Every DFA can be trivially written as an NFA.
So here’s a reduction f from ADFA to ANFA :
f(⟨D, w⟩) := Write down NFA N equivalent to D 

Output ⟨N, w⟩

f(⟨N, w⟩) := Use subset construction to convert 
NFA N into an equivalent DFA D.  Output ⟨D, w⟩

Some (Simple) Examples
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Theorem: If A m B and B is decidable, 
then  A is decidable

Proof: Let M decide B.
Let f be a mapping reduction from A to B

We build a machine M’ deciding A as follows:

M’(w):

1. Compute f(w)

2. Run M on f(w), output its answer

Then: w  A  f(w)  B   [since f reduces A to B]
M accepts f(w)  [since M decides B]
M’ accepts w    [by def of M’]

“If A is as hard as B, and B is decidable, then A is decidable”
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Theorem: If A m B and B is recognizable, 
then  A is recognizable

Proof: Let M recognize B.
Let f be a mapping reduction from A to B 

To recognize A, we build a machine M’

M’(w):

1. Compute f(w)

2. Run M on f(w), output its answer
if you ever receive one
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Corollary: If A m B and A is undecidable,
then B is undecidable

Corollary: If A m B and A is unrecognizable,
then B is unrecognizable

Theorem: If A m B and B is decidable, 
then  A is decidable

Theorem: If A m B and B is recognizable, 
then  A is recognizable


