6.045

Lecture 14: Time Complexity and P vs NP

Recognizability via Decidability

Def. A decidable predicate R(x,y) is a proposition about the input strings x and y, such that some TM M implements R. That is,

for all x, y, R(x,y) is TRUE \Rightarrow M(x,y) accepts R(x,y) is FALSE \Rightarrow M(x,y) rejects

Can think of R as a function R: $\Sigma^* \times \Sigma^* \rightarrow \{ \text{ True, False } \}$

EXAMPLES: R(x,y) = "xy has at most 100 zeroes" R(N,y) = "TM N halts on y in at most 99 steps" Theorem: A language A is *recognizable* if and only if there is a decidable predicate R(x, y) such that: $A = \{ x \mid (\exists y \in \Sigma^*)[R(x, y) \text{ is true}] \}$

Proof: (1) If $A = \{x \mid \exists y R(x,y)\}$ then A is recognizable

Define the TM M(x): For all strings $y \in \Sigma^*$, If R(x,y) is true, accept. Then, M accepts exactly those x s.t. $\exists y R(x,y)$ is true

(2) If A is recognizable, then $A = \{x \mid \exists y R(x,y)\}$

Suppose TM M recognizes A. Let R(x,y) be TRUE iff M accepts x in |y| steps Then, M accepts x ⇔ ∃y R(x,y) is true **Example:** $L = \{ \langle M \rangle \mid TM M \text{ accepts at least one string} \}$ is recognizable.

Want: decidable predicate R such that $L = \{ \langle M \rangle \mid \exists y \in \Sigma^* R(\langle M \rangle, y) \text{ is true } \}$

Define R((M),(x,y)) = "TM M accepts string x in |y| steps" Note that R is decidable! Just run a universal TM on (M, x) for |y| steps

Then: $L = \{ \langle M \rangle \mid \exists \langle x, y \rangle \in \Sigma^* R(\langle M \rangle, \langle x, y \rangle) \text{ is true} \}$ Therefore, L is recognizable! Can always recognize L by "guessing $\langle x, y \rangle$ and verifying in finite time"

Time-Bounded Complexity Classes

Definition: TIME(t(n)) = { L' | there is a Turing machine M with time complexity O(t(n)) so that L' = L(M) }

= { L' | L' is a language decided by a Turing
machine with running time ≤ c t(n) + c,
for some c ≥ 1 }

We showed: $A = \{ 0^k 1^k \mid k \ge 0 \} \in TIME(n \log n)$

Puzzle: Show A ∉ TIME((n log n)/loglog n)

An Efficient Universal TM

Theorem: There is a (one-tape) Turing machine U which takes as input:

- the code of an arbitrary TM M
- an input string w
- and a string of t 1s, t > |w|

such that U on $\langle M, w, 1^t \rangle$ halts in O($|M|^2 t^2$) steps and U accepts $\langle M, w, 1^t \rangle \Leftrightarrow M$ accepts w in t steps

The Universal TM with a Clock

Idea: Make a multi-tape TM U' that does the above, and runs in O(|M| t) steps. Each step of M on w is O(|M|) steps of U'

The Time Hierarchy Theorem

Intuition: If you get more time to compute, then you can solve strictly more problems.

Theorem: For all "reasonable" f, $g : \mathbb{N} \to \mathbb{N}$ where for all n, $g(n) > n^2 f(n)^2$, TIME(f(n)) \subsetneq TIME(g(n))

Proof Idea: Diagonalization with a clock Make TM N that on input (M), simulates the TM M on input (M) for f(|M|) steps, then flips the answer.
We showed L(N) cannot have time complexity f(n) And there is a TM running in O(g(n)) time for L(N)

$P = \bigcup_{k \in \mathbb{N}} \text{TIME}(n^k)$

Polynomial Time

The analogue of "decidability" in the world of complexity theory

The EXTENDED Church-Turing Thesis

Everyone's Intuitive Notion = Polynomial-Time of Efficient Turing Machines Algorithms

A controversial (dead?) thesis!

Counterexamples include n¹⁰⁰ time algorithms, randomized algorithms, quantum algorithms, ...

Nondeterminism and NP

Nondeterministic Turing Machines

...are just like standard TMs, except:

1. The machine may proceed according to several possible transitions (like an NFA)

2. The machine *accepts* an input string if there *exists* an accepting computation history for the machine on the string

Definition: A nondeterministic TM is a 7-tuple T = (Q, Σ, Γ, δ, q₀, q_{accept}, q_{reject}), where:

- Q is a finite set of states
- **Σ** is the input alphabet, where $\square \notin Σ$
- Γ is the tape alphabet, where $\Box \in \Gamma$ and $\Sigma \subseteq \Gamma$
- $\delta: \mathbf{Q} \times \mathbf{\Gamma} \xrightarrow{} \mathbf{2}^{(\mathbf{Q} \times \mathbf{\Gamma} \times \{\mathbf{L}, \mathbf{R}\})}$
- $q_0 \in Q$ is the start state
- $q_{accept} \in Q$ is the accept state
- $q_{reject} \in Q$ is the reject state, and $q_{reject} \neq q_{accept}$

Defining Acceptance for NTMs

Let N be a nondeterministic Turing machine

An accepting computation history for N on w is a sequence of configurations C₀,C₁,...,C_t where

1. C_0 is the start configuration $q_0 w$,

2. C_t is an accepting configuration,

3. Each configuration C_i yields C_{i+1}

Def. N(w) accepts in t time ⇔ Such a history exists
N has time complexity T(n) if for all n, for all inputs of length n and for all histories, N halts in T(n) time

Definition: NTIME(t(n)) =
 { L | L is decided by a O(t(n)) time
 nondeterministic Turing machine }

Note: $TIME(t(n)) \subseteq NTIME(t(n))$

Is TIME(t(n)) = NTIME(t(n)) for all t(n)?

THIS IS AN OPEN QUESTION!

What can be done in "short" NTIME that cannot be done in "short" TIME?

Boolean Formulas

logical parentheses **Operations** A satisfying assignment is a setting of the variables that makes the formula true $\phi = (\neg x \land y) \lor z$ x = 1, y = 1, z = 1 is a satisfying assignment for ϕ **Boolean variables (0 or 1)** $\neg (x \lor y) \land (z \land \neg x)$ 0 0 1 0

A Boolean formula is satisfiable if there exists a true/false setting to the variables that makes the formula true

 $\begin{array}{ll} \text{YES} & a \land b \land c \land \neg d \\ \\ \text{NO} & \neg (x \lor y) \land x \end{array}$

SAT = { ϕ | ϕ is a satisfiable Boolean formula }

(Q: How are we encoding formulas? A: In a "reasonable" way!) Encoding: takes formula ϕ of n symbols, and outputs $O(n^c)$ bits Decoding: takes $O(n^c)$ bits and i, and outputs i-th symbol of ϕ

 $3SAT = \{ \phi \mid \phi \text{ is a satisfiable 3cnf-formula } \}$ Theorem: $3SAT \in NTIME(n^{c}) \text{ for some constant } c > 1$ Proof Idea: On input ϕ :

- **1.** Check if the formula is in 3cnf
- 2. For each variable v in ϕ , nondeterministically substitute either 0 or 1 in place of v

accept iff ϕ is true

$NP = \bigcup_{k \in N} NTIME(n^k)$

Nondeterministic Polynomial Time The analogue of "recognizability" in complexity theory Theorem: $L \in NP \iff$ There is a constant k and polynomial-time TM V such that

 $L = \{ x \mid \exists y \in \Sigma^* [|y| \le k |x|^k \text{ and } V(x,y) \text{ accepts }] \}$

- Proof: (1) If L = { x $| \exists y | y | \le k | x |^k$ and V(x,y) accepts } then L \in NP
 - Given the poly-time TM V, our NP machine for L is: N(x): Nondeterministically guess y. Run V(x,y) and output its answer.
 - (2) If $L \in NP$ then
 - $L = \{ x \mid \exists y \mid y \mid \leq k \mid x \mid^k \text{ and } V(x,y) \text{ accepts } \}$

Let N be a nondet. poly-time TM that decides L. Define a TM V(x,y) which accepts ⇔ y encodes an accepting computation history of N on x

Moral: A language L is in NP if and only if there are polynomial-length proofs for membership in L

 $3SAT = \{ \phi \mid \exists y \text{ such that } \phi \text{ is in 3cnf and} \\ y \text{ is a satisfying assignment to } \phi \}$

SAT = $\{\phi \mid \exists y \text{ such that } \phi \text{ is a Boolean formula and} y \text{ is a satisfying assignment to } \phi \}$

NP = "Nifty Proofs"

NP ≈ Problems with the property that, once you have a solution, it is "easy" to verify the solution

SAT is in NP because a satisfying assignment is a polynomial-length proof that a formula is satisfiable

When $\phi \in SAT$, I can prove that fact to you with a short proof you can quickly verify

The Hamiltonian Path Problem

A Hamiltonian path traverses through each node exactly once Assume a reasonable encoding of graphs (example: the adjacency matrix is reasonable)

HAMPATH = { (G,s,t) | G is a directed graph with a Hamiltonian path from s to t }

Theorem: HAMPATH \in NP

A Hamiltonian path P in G from s to t is a proof that (G,s,t) is in HAMPATH

Given P (as a permutation on the nodes) can easily check that it is a path through all nodes exactly once

The k-Clique Problem

k-clique = complete subgraph on k nodes

CLIQUE = { (G,k) | G is an undirected graph with a k-clique }

Theorem: CLIQUE \in NP

A k-clique in G is a proof that (G, k) is in CLIQUE

Given a subset S of k nodes from G, we can efficiently check that all possible edges are present between the nodes in S A language is in NP if and only if there are "polynomial-length proofs" for membership in the language

 $\mathbf{P} \approx$ the problems that can be *efficiently solved*

NP ≈ the problems where proposed solutions can be efficiently verified

IS P = NP?

Can problem solving be automated?

If P = NP...

Mathematicians/creators may be out of a job This problem is in NP:

Short-Provability $_{\mathcal{F}}$

= { (T, 1^k) | T has a proof in \mathcal{F} of length $\leq k$ }

Cryptography as we know it may be impossible – there are no "one-way" functions!

Machines could effectively learn *any concept* with a short description

In principle, every aspect of daily life could be efficiently and globally optimized... ... life as we know it would be different

Conjecture: $P \neq NP$

