
1

Lecture 14: 
Time Complexity

and P vs NP

6.045



2

Def. A decidable predicate R(x,y) is a proposition 
about the input strings x and y, 

such that some TM M implements R. That is,

for all x, y, R(x,y) is TRUE ⇒ M(x,y) accepts
R(x,y) is FALSE ⇒ M(x,y) rejects

Can think of R as a function 
R : Σ* × Σ* → { True, False }

EXAMPLES:     R(x,y) = “xy has at most 100 zeroes”
R(N,y) = “TM N halts on y in at most 99 steps”

Recognizability via Decidability



3

Theorem: A language A is recognizable if and only if   
there is a decidable predicate R(x, y) such that:

A = { x | (y ∈ Σ*)[R(x, y) is true]}

Proof: (1) If A = { x | y R(x,y) } then A is recognizable

Define the TM   M(x): For all strings y ∈ Σ*, 
If R(x,y) is true, accept.

Then, M accepts exactly those x s.t. y R(x,y) is true

(2) If A is recognizable, then A = { x | y R(x,y) }

Suppose TM M recognizes A. 
Let R(x,y) be TRUE  iff M accepts x in |y| steps

Then, M accepts x ⇔ y R(x,y) is true



4

Example: L = { ⟨M⟩ | TM M accepts at least one string} 
is recognizable. 

Want: decidable predicate R such that
L = { ⟨M⟩ | y ∈ Σ* R(⟨M⟩, y) is true }

Define R(⟨M⟩,⟨x,y⟩) = “TM M accepts string x in |y| steps”
Note that R is decidable! 

Just run a universal TM on ⟨M, x⟩ for |y| steps

Then: L = { ⟨M⟩ |  ⟨x,y⟩ ∈ Σ* R(⟨M⟩, ⟨x,y⟩) is true}
Therefore, L is recognizable!

Can always recognize L by 
“guessing ⟨x,y⟩ and verifying in finite time”



Deterministic

Computation

Non-Deterministic

Computation

accept or reject accept

reject

Are these equally powerful???

“Massive Parallelism”

“Perfect Guessing”

reject

reject

YES for finite automata, NO for Turing machines!

Decidable

Recognizable



6

Definition: 
TIME(t(𝒏))  = { L’ | there is a Turing machine M

with time complexity O(t(𝒏)) so that L’ = L(M) }

= { L’ | L’ is a language decided by a Turing 
machine with running time ≤ c t(𝒏) + c,

for some c ≥ 1 }

Time-Bounded Complexity Classes

We showed:  A = { 0k1k | k  0 }  TIME(n log n)

Puzzle: Show A ∉ TIME( (n log n)/loglog n)



7

An Efficient Universal TM

Theorem: There is a (one-tape) Turing machine U
which takes as input:
- the code of an arbitrary TM M
- an input string w
- and a string of t 1s, t > |w|

such that U on ⟨M, w, 1t⟩ halts in O(|M|2 t2) steps 
and  U accepts ⟨M, w, 1t⟩  M accepts w in t steps

The Universal TM with a Clock

Idea: Make a multi-tape TM U’ that does the above, 
and runs in O(|M| t) steps. 

Each step of M on w is O(|M|) steps of U’



8

Intuition: If you get more time to compute,
then you can solve strictly more problems.

Theorem: For all “reasonable” f, g : ℕ! ℕwhere 

for all n, g(n) > n2 f(n)2 , TIME(f(n)) ⊊ TIME(g(n))

Proof Idea:  Diagonalization with a clock
Make TM N that on input ⟨M⟩, 

simulates the TM M on input ⟨M⟩ for f(|M|) steps,
then flips the answer. 

We showed L(N) cannot have time complexity f(n)
And there is a TM running in O(g(n)) time for L(N)

The Time Hierarchy Theorem



9

P =        TIME(nk)
k  N

Polynomial Time

The analogue of “decidability”
in the world of complexity theory



10

The EXTENDED
Church-Turing Thesis

Everyone’s 
Intuitive Notion 
of Efficient
Algorithms

= Polynomial-Time
Turing Machines

A controversial (dead?) thesis!
Counterexamples include n100 time algorithms, 
randomized algorithms, quantum algorithms, …



11

Nondeterminism and NP



12

Nondeterministic Turing Machines

…are just like standard TMs, except:

1. The machine may proceed according to 
several possible transitions (like an NFA)

2. The machine accepts an input string if 
there exists an accepting computation 
history for the machine on the string



13

0 → 0, R

read write move

→ , R

qaccept

qreject

0 → 0, R

→ , R

0 → 0, R



14

Definition: A nondeterministic TM is a 7-tuple 
T = (Q, Σ, Γ, , q0, qaccept, qreject), where: 

Q is a finite set of states

Γ is the tape alphabet, where   Γ and Σ  Γ

q0  Q is the start state

Σ is the input alphabet, where   Σ

 : Q  Γ →  2(Q  Γ  {L,R})

qaccept  Q is the accept state

qreject  Q is the reject state, and qreject  qaccept



15

Let N be a nondeterministic Turing machine

An accepting computation history for N on w is a 
sequence of configurations C0,C1,…,Ct where

3. Each configuration Ci yields Ci+1

2. Ct is an accepting configuration,

1. C0 is the start configuration q0w, 

Def.  N(w) accepts in t time  Such a history exists

N has time complexity T(n) if for all n, for all inputs of 
length n and for all histories, N halts in T(n) time

Defining Acceptance for NTMs



16

{ L | L is decided by a O(t(𝒏)) time 
nondeterministic Turing machine }

Definition: NTIME(t(n))  =

Note: TIME(t(n))  NTIME(t(n))

Is TIME(t(n)) = NTIME(t(n)) for all t(n)?

THIS IS AN OPEN QUESTION!

What can be done in “short” NTIME 
that cannot be done in “short” TIME?



17

Boolean Formulas

(x  y)  z =

logical 
operations

Boolean variables (0 or 1)

parentheses

A satisfying assignment is a setting of the variables 
that makes the formula true

x = 1, y = 1, z = 1 is a satisfying assignment for 

(x  y)  (z  x)
0 0 1 0



18

SAT = {  |  is a satisfiable Boolean formula }

A Boolean formula is satisfiable if there exists 
a true/false setting to the variables that 
makes the formula true

(x  y)  x

a  b  c  dYES

NO

(Q: How are we encoding formulas? A: In a “reasonable” way!)
Encoding: takes formula 𝝓 of 𝒏 symbols, and outputs O(𝒏𝒄) bits
Decoding: takes O(𝒏𝒄) bits and 𝒊, and outputs 𝒊-th symbol of 𝝓



19

A 3cnf-formula has the form:

(x1  x2  x3)   (x4  x2  x5)  (x3  x2  x1)

clauses

Ex: (x1  x2  x1)

(x3  x1)  (x3  x2  x1)

(x1  x2  x3)  (x4  x2  x1)  (x3  x1  x1)

(x1  x2  x3)  (x3  x2  x1)

3SAT = {  |  is a satisfiable 3cnf-formula }

literals



20

Theorem: 3SAT  NTIME(nc) for some constant c > 1

3SAT = {  |  is a satisfiable 3cnf-formula }

1. Check if the formula is in 3cnf

Proof Idea: On input :

2. For each variable v in , nondeterministically
substitute either 0 or 1 in place of v

3. Evaluate the formula with 0-1s all plugged in, 
accept iff  is true

( x  y  x )

(  y  )0 0 (  y  )1 1

(    )0 00 (    )0 1 0



21

NP =       NTIME(nk)
k  N

Nondeterministic Polynomial Time

The analogue of “recognizability”
in complexity theory



22

Theorem: L  NP  There is a constant k and 
polynomial-time TM V such that

L = { x |  y ϵ Σ* [|y| ≤ k|x|k and V(x,y) accepts ] }

Proof: (1) If L = { x | y |y| ≤ k|x|k and V(x,y) accepts } 
then L  NP

(2) If L  NP then
L = { x | y |y| ≤ k|x|k and V(x,y) accepts } 

Given the poly-time TM V, our NP machine for L is:
N(x): Nondeterministically guess y. 

Run V(x,y) and output its answer.

Let N be a nondet. poly-time TM that decides L. 
Define a TM V(x,y) which accepts 
 y encodes an accepting computation history of N on x



23

Moral: A language L is in NP 
if and only if 

there are polynomial-length proofs 
for membership in L

3SAT = {  | y such that  is in 3cnf and 
y is a satisfying assignment to  } 

SAT = {  | y such that  is a Boolean formula and
y is a satisfying assignment to  } 

NP = “Nifty Proofs”



24

NP ≈ Problems with the property that,
once you have a solution, it is
“easy” to verify the solution

SAT is in NP because a satisfying assignment is 
a polynomial-length proof that a formula is 

satisfiable

When  ϵ SAT, I can prove that fact to you
with a short proof you can quickly verify



25

The Hamiltonian Path Problem

b

a

e

c

d

f

h
i

g

A Hamiltonian path traverses through each node 
exactly once



26

HAMPATH = { (G,s,t) | G is a directed graph with 
a Hamiltonian path from s to t }

Theorem: HAMPATH  NP

A Hamiltonian path P in G from s to t 
is a proof that (G,s,t) is in HAMPATH

Assume a reasonable encoding of graphs 
(example: the adjacency matrix is reasonable)

Given P (as a permutation on the nodes)
can easily check that it is a path through
all nodes exactly once



27

The k-Clique Problem

b

a

e

c

d f

g

k-clique = complete subgraph on k nodes



28

CLIQUE = { (G,k) | G is an undirected graph with 
a k-clique }

Theorem: CLIQUE  NP

A k-clique in G is a proof
that (G, k) is in CLIQUE

Given a subset S of k nodes from G, we can
efficiently check that all possible edges 
are present between the nodes in S



29

A language is in NP if and only if there are 
“polynomial-length proofs’’ for membership 

in the language

P ≈ the problems that can be efficiently solved

NP ≈ the problems where proposed solutions 
can be efficiently verified

Is P = NP?
Can problem solving be automated?



30

P = NP?

$$$

$$$



31

If P = NP…

Cryptography as we know it may be impossible 
– there are no “one-way” functions!

Mathematicians/creators may be out of a job
This problem is in NP:
Short-ProvabilityF

= { (T, 𝟏𝒌) | T has a proof in F of length ≤ 𝒌} 

In principle, every aspect of daily life could be 
efficiently and globally optimized… 
… life as we know it would be different

Conjecture: P  NP

Machines could effectively learn any concept 
with a short description



Deterministic

Computation

Non-Deterministic

Computation

accept or reject accept

reject

Are these equally powerful???

“Massive Parallelism”

“Perfect Guessing”

reject

reject

YES for FAs, NO for TMs, OPEN for Polynomial Time


