6.045

Lecture 15: NP-Complete Problems and the
 Cook-Levin Theorem

Time-Bounded Complexity Classes

Turing machine \mathbf{M} has time complexity $\mathrm{O}(\mathrm{t}(\mathrm{n})$) if there is a $\mathbf{c}>0$ such that for all inputs \boldsymbol{x}, M running on x halts within $\mathrm{ct}(|x|)+\mathrm{c}$ steps

Definition:

$\operatorname{TIME}(\mathrm{t}(\mathrm{n}))=\left\{\mathrm{L}^{\prime} \mid\right.$ there is a Turing machine M with time complexity $\mathrm{O}\left(\mathrm{t}(\mathrm{n})\right.$) so that $\mathrm{L}^{\prime}=\mathrm{L}(\mathrm{M})$ \}
$=\left\{L^{\prime} \mid L^{\prime}\right.$ is a language decided by a Turing machine with $\leq \mathrm{ct}(\mathrm{n})+\mathrm{c}$ running time, for some $\mathrm{c} \geq 1$ \}

$P=\bigcup \operatorname{TIME}\left(\mathbf{n}^{k}\right)$ $k \in N$

Polynomial Time

The analogue of "decidability" in the world of complexity theory

Definition: NTIME(t(n)) =

$\{\mathrm{L} \mid \mathrm{L}$ is decided by an $\mathrm{O}(\mathrm{t}(\mathrm{n})$) time

 nondeterministic Turing machine \}
Note: TIME(t(n)) \subseteq NTIME(t(n))

$$
\text { Is TIME(t(n)) = NTIME(t(n)) for all } t(n) \text { ? }
$$

THIS IS AN OPEN QUESTION!

What can be done in "short" NTIME that cannot be done in "short" TIME?

Last time we saw: 3SAT, CLIQUE, HAMPATH are in NP

NP = U NTIME(n^{k}) $k \in N$

Nondeterministic Polynomial Time
The analogue of "recognizability" in complexity

P

Computation

accept or reject

NP

Computation

accept
$\longleftarrow \exp \left(n^{k}\right)$

Theorem: $\mathrm{L} \in \mathrm{NP} \Leftrightarrow$ There is a constant k and polynomial-time TM V such that $L=\left\{x \mid \exists y \in \Sigma^{*}\left[|y| \leq|x|^{k}\right.\right.$ and $V(x, y)$ accepts $\left.]\right\}$

A language L is in NP if and only if there are "polynomial-length proofs" for membership in the language \mathbf{L}

P = the problems that can be efficiently solved
NP = the problems where proposed solutions can be efficiently verified

$$
\text { Is } P=N P ?
$$

Can problem solving be automated?

Is SAT solvable in O(n) time on a multitape TM? Logic circuits of 10n gates for SAT?

If yes, then there would be a "dream machine" that could crank out short proofs of theorems, quickly optimize all aspects of life... recognizing quality work is all you would need to produce quality work

So how do we get a handle on a problem that we have no idea how to resolve?

Try to understand its consequences! Understand its meaning!

Try to better understand NP problems!

In computability theory, we related problems by mapping reductions and oracle reductions....

Polynomial Time Reductions

$\mathrm{f}: \Sigma^{*} \rightarrow \Sigma^{*}$ is a polynomial time computable function if there is a poly-time Turing machine M that on every input w, halts with just $f(w)$ on its tape

Language A is poly-time reducible to language B ,
written as $\mathbf{A} \leq_{p} B$,
if there is a poly-time computable $\mathrm{f}: \Sigma^{*} \rightarrow \Sigma^{*}$ so that:

$$
w \in A \Leftrightarrow f(w) \in B
$$

We say: f is a polynomial time reduction from \mathbf{A} to B
Note: there is a k such that for all $w,|f(w)| \leq k|w|^{k}$

f converts any string w into a string $f(w)$ such that $\mathbf{w} \in A \Leftrightarrow f(w) \in B$

Theorem: If $\mathrm{A} \leq_{\mathrm{p}} \mathrm{B}$ and $\mathrm{B} \leq_{\mathrm{p}} \mathrm{C}$, then $\mathrm{A} \leq_{\mathrm{p}} \mathrm{C}$

Theorem: If $A \leq_{p} B$ and $B \in P$, then $A \in P$
Proof: Let M_{B} be a poly-time TM that decides B . Let f be a poly-time reduction from A to B .

We build a machine M_{A} that decides A as follows:

$$
\mathbf{M}_{\mathrm{A}}=\text { On input } \mathbf{w} \text {, }
$$

1. Compute f(w)
2. Run M_{B} on $f(w)$, output its answer

$$
w \in A \Leftrightarrow f(w) \in B
$$

Theorem: If $A \leq_{p} B$ and $B \in N P$, then $A \in N P$

Proof: Analogous...

Theorem: If $A \leq_{p} B$ and $B \in P$, then $A \in P$

Theorem: If $A \leq_{p} B$ and $B \in N P$, then $A \in N P$

Corollary: If $\mathrm{A} \leq_{\mathrm{p}} \mathrm{B}$ and $\mathrm{A} \notin \mathrm{P}$, then $\mathrm{B} \notin \mathrm{P}$

Question: What are the "hardest" NP problems under this partial ordering \leq_{P} ?

Does there even exist a "hardest" NP problem??

Definition: A language B is NP-complete if:

1. $B \in N P$
2. Every $A \in N P$ is poly-time reducible to B That is, $\mathrm{A} \leq_{\mathrm{p}} \mathrm{B}$ When this is true, we say "B is NP-hard"

On homework, you showed (or will show!)
A language L is recognizable iff $L \leq_{m} A_{T M}$
A_{TM} is "complete for recognizable languages":
$A_{T M}$ is recognizable, and for all recognizable $L, L \leq_{m} A_{T M}$

Suppose L is NP-Complete...

Suppose L is NP-Complete...

Then assuming the conjecture $P \neq N P$,
L is not decidable in $\mathbf{n}^{\mathbf{k}}$ time, for every k

Thm: There exists an NP-complete problem

NHALT $=\left\{\left\langle\mathbf{N}, \mathbf{x}, 1^{t}\right\rangle \mid\right.$ Nondeterministic TM \mathbf{N} accepts input x in $\leq \boldsymbol{t}$ steps $\}$ Without 1^{t}, this is undecidable!

1. NHALT \in NP

Nondeterministically guess a sequence of t transitions of N , then check that N following these t transitions accepts x . Takes time polynomial in $t,|x|$, and $|N|$.
2. Every A in NP is poly-time reducible to NHALT In other words, NHALT is NP-hard For each $A \in N P$, there is an $k \boldsymbol{n}^{k}$-time NTM N such that

$$
A=\{x \mid N(x) \text { accepts }\}
$$

Reduction: Map string x to the string $\left\langle\mathrm{N}, \mathrm{x}, \mathbf{1}^{\mathrm{p}(|\mathrm{x}|)}\right\rangle$.

There are thousands of natural NP-complete problems!

Your favorite topic certainly has an NP-complete problem somewhere in it

Even the other sciences are not safe:
biology, chemistry, physics have NP-complete problems too!

A 3cnf-formula has the form:

A 3cnf-formula is satisfiable if there is a setting to the variables that makes the formula true.

3SAT $=\{\phi \mid \phi$ is a satisfiable 3cnf-formula $\}$

The Cook-Levin Theorem:

 3SAT is NP-complete"Simple Logic can encode any NP problem!"

1. 3 SAT $\in N P$

A satisfying assignment is a "proof" that a 3cnf formula is satisfiable (already done!)
2. 3SAT is NP-hard

Every language in NP can be polynomial-time reduced to 3SAT (complex logical formula)

Corollary: 3SAT $\in P$ if and only if $P=N P$

The Cook-Levin Theorem: 3SAT is NP-complete

"Simple Logic can encode any NP problem!"
This theorem is a cornerstone of complexity theory AND of modern (practical) system verification!

There are entire fields and conferences devoted solely to SAT solving!

Few theorems have had
such an impact on both theory and practice!

Theorem (Cook-Levin): 3SAT is NP-complete
Proof Idea:
(1) 3SAT \in NP (done)
(2) Every language $A \in N P$ is polynomial time reducible to 3SAT (this is the challenge)

We give a poly-time reduction from A to 3SAT
The reduction converts a string winto a 3cnf formula ϕ such that $w \in \operatorname{A}$ iff $\phi \in$ 3SAT
For $A \in N P$, let N be a nondeterministic TM deciding A in \mathbf{n}^{k} time
Idea: ϕ will "simulate" N on w

Let $L(N) \in \operatorname{NTIME}\left(\mathrm{n}^{k}\right)$. A tableau for N on w is an $\mathrm{n}^{\mathrm{k}} \times \mathrm{n}^{\mathrm{k}}$ matrix whose rows are the configurations of some computation history of N on \mathbf{w}

A tableau is accepting if the last row of the tableau has an accept state

Therefore, \mathbf{N} accepts string \mathbf{w} if and only if there is an accepting tableau for \mathbf{N} on w

Given w, we will construct a 3cnf formula ϕ with O(|w| ${ }^{2 k}$) clauses, describing logical constraints that any accepting tableau for \mathbf{N} on w must satisfy

The 3 cnf formula ϕ will be satisfiable if and only if
there is an accepting tableau for N on \mathbf{w}

> Programming with Boolean logic!

Variables of formula ϕ will encode a tableau

 Let $\mathbf{C}=\mathbf{Q} \cup\ulcorner\cup\{$ \# \} (constant-sized set!)Each cell of a tableau contains a symbol from C cell[$[, j]$ = symbol in the cell at row i and column j $=$ the jth symbol in the ith configuration
For every i and $\mathrm{j}\left(\mathbf{1} \leq \mathrm{i}, \mathrm{j} \leq \mathrm{n}^{k}\right)$ and for every $\mathrm{s} \in \mathrm{C}$ we make a Boolean variable $\mathrm{x}_{\mathrm{i}, \mathrm{j}, \mathrm{s}}$ in ϕ

Total number of variables $=|C| n^{2 k}$, which is $O\left(n^{2 k}\right)$
The $\mathrm{x}_{\mathrm{i}, \mathrm{j}, \mathrm{s}}$ variables represent the cells of a tableau We will enforce the condition: for all $\mathrm{i}, \mathrm{j}, \mathrm{s}$,

$$
\mathrm{x}_{\mathrm{i}, \mathrm{j}, \mathrm{~s}}=1 \Leftrightarrow \operatorname{cell}[\mathrm{i}, \mathrm{j}]=\mathrm{s}
$$

Idea: Make ϕ so that every satisfying assignment to the variables $\mathrm{x}_{\mathrm{i}, \mathrm{j}, \mathrm{s}}$ corresponds to an accepting tableau for \mathbf{N} on w (an assignment to all cell[i,j]'s of the tableau)

The formula ϕ will be the AND of four CNF formulas:

$$
\phi=\phi_{\text {cell }} \wedge \phi_{\text {start }} \wedge \phi_{\text {accept }} \wedge \phi_{\text {move }}
$$

$\phi_{\text {cell }}$: for all i, j, there is a unique $\mathrm{s} \in \mathrm{C}$ with $\mathrm{x}_{\mathrm{i}, \mathrm{j}, \mathrm{s}}=1$
$\phi_{\text {start }}$: the first row of the table equals the start configuration of N on \mathbf{w}
$\phi_{\text {accept }}$: the last row of the table has an accept state
$\phi_{\text {move }}$: every row is a configuration that yields the configuration on the next row
$\phi_{\text {start }}$: the first row of the table equals the start configuration of N on w
$\phi_{\text {start }}=\quad \mathbf{X}_{1,1, \#} \wedge \mathbf{X}_{1,2, q_{0}} \wedge$
$X_{1,3, w_{1}} \wedge X_{1,4, w_{2}} \wedge \ldots \wedge X_{1, n+2, w_{n}} \wedge$
$\mathrm{X}_{1, \mathrm{n}+3, \square} \wedge \ldots \wedge \mathrm{X}_{1, \mathrm{n}^{\mathrm{k}-1, \square}} \wedge \mathrm{X}_{1, \mathrm{n}^{\mathrm{k}}, \#}$

$\phi_{\text {accept }}$: the last row of the table has an accept state

$$
\phi_{\text {accept }}=\bigvee_{1 \leq j \leq n^{k}} X_{n^{k}, j, q_{\text {accept }}}
$$

$\phi_{\text {accept }}$: the last row of the table has an accept state

$$
\phi_{\text {accept }}=\bigvee_{1 \leq j \leq n^{k}} X_{n^{k}, j,} q_{\text {accept }}
$$

How can we convert $\phi_{\text {accept }}$ into a 3-cnf formula?
Can write the clause $\left(a_{1} \vee a_{2} \vee \ldots \vee a_{t}\right)$ as
$\left(a_{1} \vee a_{2} \vee z_{1}\right) \wedge\left(\neg z_{1} \vee a_{3} \vee z_{2}\right) \wedge \ldots \wedge\left(\neg z_{t-3} \vee a_{t-1} \vee a_{t}\right)$ where z_{i} are brand new variables.
This produces $\mathrm{O}(\mathrm{t})$ new 3cnf clauses, and the new formula is SAT iff the old one is SAT.

$$
O\left(n^{k}\right) 3 \mathrm{cnf} \text { clauses }
$$

$\phi_{\text {cell }}$: for all i, j, there is a unique $\mathrm{s} \in \mathrm{C}$ with $\mathrm{x}_{\mathrm{i}, \mathrm{j}, \mathrm{s}}=1$

$$
\phi_{\text {cell }}=\bigwedge_{1 \leq \mathrm{i}, \mathrm{j} \leq \mathrm{n}^{\mathrm{k}}}\left[\left(\bigvee_{\mathrm{s} \in \mathrm{C}} \mathrm{x}_{\mathrm{i}, \mathrm{j}, \mathrm{~s}}\right) \wedge\left(\prod_{\substack{\mathrm{s}, \mathrm{t} \in \mathrm{C} \\ \mathrm{~s} \neq \mathrm{t}}}\left(\neg \mathrm{x}_{\mathrm{i}, \mathrm{j}, \mathrm{~s}} \vee \neg \mathrm{x}_{\mathrm{i}, \mathrm{j}, \mathrm{t}}\right)\right)\right]
$$

for all i,j at least one at most one $x_{i, j, s}$ is set to $1 \quad x_{i, j, s}$ is set to 1
$\mathrm{O}\left(\mathrm{n}^{2 \mathrm{k}}\right) 3 \mathrm{cnf}$ clauses
$\phi_{\text {move }}:$ every row is a configuration that yields the configuration on the next row

Key Question: If one row yields the next row, how many cells can be different between the two rows?

Answer: AT MOST THREE CELLS!

$\#$	\mathbf{b}	\mathbf{a}	\mathbf{a}	\mathbf{q}_{1}	\mathbf{b}	\mathbf{c}	\mathbf{b}	$\#$
$\#$	\mathbf{b}	\mathbf{a}	\mathbf{q}_{2}	\mathbf{a}	\mathbf{c}	\mathbf{c}	\mathbf{b}	$\#$

$\phi_{\text {move }}:$ every row is a configuration that yields the configuration on the next row

Key Question: If one row yields the next row, how many cells can be different between the two rows?

Answer: AT MOST THREE CELLS!

$\phi_{\text {move }}:$ every row is a configuration that yields the configuration on the next row Idea: check that every 2×3 "window" of cells is legal: consistent with the transition function of N

If $\delta\left(q_{1}, a\right)=\left\{\left(q_{1}, b, R\right)\right\}$ and $\delta\left(q_{1}, b\right)=\left\{\left(q_{2}, c, L\right),\left(q_{2}, a, R\right)\right\}$ which of the following windows are legal?

Key Lemma:
IF Every window of the tableau is legal, and
The $1^{\text {st }}$ row is the start configuration of N on \mathbf{w}
THEN for all $i=1, . ., n^{k}-1$, the ith row of the tableau is a configuration which yields the (i+1)th row.

Proof Sketch: (Strong) induction on i.
The $1^{\text {st }}$ row is a configuration. If it didn't yield the $2^{\text {nd }}$ row, there's a 2×3 "illegal" window on $1^{\text {st }}$ and $2^{\text {nd }}$ rows Assume rows 1,...,L are all configurations which yield the next row, and assume every window is legal. If row $L+1$ did not yield row $L+2$, then there's a 2×3 window along those two rows which is "illegal"

The (i, j) window of a tableau is the tuple $\left(a_{1}, \ldots, a_{6}\right) \in C^{6}$ such that
col. j col. j+1 col. j+2

$\phi_{\text {move }}$: every row is a configuration that legally follows from the previous configuration

$$
\phi_{\text {move }}=\bigwedge_{\substack{1 \leq i \leq n^{k}-1 \\ 1 \leq j \leq n^{k}-2}}(\text { the }(i, j) \text { window is legal })
$$

(the (\mathbf{i}, j) window is legal $)=$
$\left(a_{1}, \ldots, a_{6}\right)$
is a legal window

$$
\equiv \bigwedge_{\left(a_{1,}, \ldots, a_{6}\right)}\left(\bar{x}_{i, j,} \vee \bar{x}_{i, j+1, a_{2}} \vee \bar{x}_{i, j+2, a_{3}} \vee \bar{x}_{i+1, j, a_{4}} \vee \bar{x}_{i+1, j+1, a_{5}} \vee \bar{x}_{i+1, j+2, a_{6}}\right)
$$

is NOT a legal window

$\phi_{\text {move }}=\bigwedge($ the (i, j) window is "legal" $)$ $1 \leq \mathrm{i}, \mathrm{j} \leq \mathrm{n}^{\mathrm{k}}$

the (\mathbf{i}, j) window is "legal" =

$$
\equiv \bigwedge_{\left(a_{1}, \ldots, a_{6}\right)}\left(\bar{x}_{i, j, a_{1}} \vee \overline{\mathbf{x}}_{i, j+1, a_{2}} \vee \bar{x}_{i, j+2, a_{3}} \vee \overline{\mathbf{x}}_{i+1, j, a_{4}} \vee \overline{\mathbf{x}}_{i+1, j+1, a_{5}} \vee \overline{\mathbf{x}}_{i+1, j+2, a_{6}}\right)
$$ ISN'T "legal"

$O\left(n^{2 k}\right)$ clauses

Summary. Our goal was to prove:
Every A in NP has a polynomial time reduction to 3SAT
For every $\mathbf{A} \in \mathrm{NP}$, we know A is decided by some nondeterministic $\mathbf{n}^{\mathbf{k}}$ time Turing machine \mathbf{N}

We gave a generic method to reduce \mathbf{N} and a string \mathbf{w} to a 3 cnf formula ϕ of $\mathrm{O}\left(|\mathbf{w}|^{2 k}\right)$ clauses such that satisfying assignments to the variables of ϕ directly correspond to
accepting computation histories of N on w
The formula ϕ is the AND of four 3cnf formulas:

$$
\phi=\phi_{\text {cell }} \wedge \phi_{\text {start }} \wedge \phi_{\text {accept }} \wedge \phi_{\text {move }}
$$

THUS, FOR ANY NONDETERMINISTIC TURING MACHINE M THAT RUNS IN SOME POLYNOMIAL TIME $\rho(n)$, WE CAN DEVISE AN ALGORITHM
THAT TAKES AN INPUT ω OF LENGTH n AND PRODUCES EM,w. THE RUNNING TIME IS $O\left(\rho^{2}(n)\right)$ ON A MULTITAPE DETERMINISTIC TURING MACHINE AND...

https://iwastesomuchtime.com/43776

Reading Assignment

Read Luca Trevisan's notes for an
alternative proof of the Cook-Levin Theorem!
Sketch:

1. Define CIRCUIT-SAT: Given a logical circuit C, is there an input a such that $C(a)=1$?
2. Show that CIRCUIT-SAT is NP-hard: The $\mathbf{n}^{k} \mathbf{x} \mathrm{n}^{\mathrm{k}}$ tableau for N on \mathbf{w} can be simulated using a logical circuit of $O\left(n^{2 k}\right)$ gates
3. Reduce CIRCUIT-SAT to 3SAT in polytime
4. Conclude 3SAT is also NP-hard
