6.045

 Lecture 16: NP-Complete Problems: THIM'R = $=$ MERMWMERE!
Polynomial Time Reducibility

$\mathrm{f}: \Sigma^{*} \rightarrow \Sigma^{*}$ is a polynomial time computable function if there is a poly-time Turing machine \mathbf{M} that on every input w, halts with just $f(w)$ on its tape

Language A is poly-time reducible to language B , written as A $\leq_{\mathrm{p}} \mathrm{B}$,
if there is a poly-time computable $\mathrm{f}: \Sigma^{*} \rightarrow \Sigma^{*}$ so that:

$$
w \in A \Leftrightarrow f(w) \in B
$$

fis a polynomial time reduction from \mathbf{A} to \mathbf{B}
Note there is a k such that for all $w,|f(w)| \leq k|w|^{k}$

Definition: A language B is NP-complete if:

1. $B \in N P$
2. Every A in NP is poly-time reducible to B That is, $\mathrm{A} \leq_{\mathrm{p}} \mathrm{B}$
When this is true, we say "B is NP-hard"

The Cook-Levin Theorem: 3SAT is NP-complete
"Simple Logic can encode any NP problem!"

The Cook-Levin Theorem:

 3SAT is NP-complete"Simple Logic can encode any NP problem!"

Today we'll see many more NP-complete problems:
NHALT, 3SAT, CLIQUE, IS, VC, SUBSET-SUM, KNAPSACK, PARTITION, BIN-PACKING, ...
(There are entire classes at MIT on this kind of stuff)
And even more on pset/pests...
For all of these problems, assuming $P \neq N P$, they are not in P

There are thousands of natural NP-complete problems!

Your favorite topic certainly has an NP-complete problem somewhere in it

Even the other sciences are not safe:
biology, chemistry, physics have NP-complete problems too!

Reading Assignment

Read Luca Trevisan's notes for an
alternative proof of the Cook-Levin Theorem!
Sketch:

1. Define CIRCUIT-SAT: Given a logical circuit C, is there an input a such that $C(a)=1$?
2. Show that CIRCUIT-SAT is NP-hard: The $\mathbf{n}^{k} \mathbf{x} \mathrm{n}^{\mathrm{k}}$ tableau for N on \mathbf{w} can be simulated using a logical circuit of $O\left(n^{2 k}\right)$ gates
3. Reduce CIRCUIT-SAT to 3SAT in polytime
4. Conclude 3SAT is also NP-hard

Theorem (Cook-Levin): 3SAT is NP-complete
Corollary: 3SAT $\notin \mathrm{P}$ if and only if $\mathrm{P} \neq \mathrm{NP}$

Given a new problem $L \in N P$, how can we prove it is NP-hard?

Generic Recipe:

1. Take a problem L' that you know to be NP-hard (e.g., 3SAT)
2. Prove that $\mathrm{L}^{\prime} \leq_{\mathrm{p}} \mathrm{L}$

Then for all $A \in N P, A \leq_{p} L^{\prime}$ by (1), and $L^{\prime} \leq_{p} L$ by (2)
This implies $A \leq_{p} L$. Therefore L is $N P-h a r d!$

L is NP-Complete

The Clique Problem

Given a graph G and positive k, does
G contain a complete subgraph on k nodes?
CLIQUE $=\{(\mathbf{G}, \mathbf{k}) \mid \mathbf{G}$ is an undirected graph with a k-clique \}

The Clique Problem

Given a graph \mathbf{G} and positive k, does
 G contain a complete subgraph on k nodes?

CLIQUE = $\{(\mathbf{G}, \mathbf{k}) \mid \mathrm{G}$ is an undirected graph with a k-clique \}

Theorem (Karp): CLIQUE is NP-complete
Why is it in NP?

Theorem: CLIQUE is NP-Complete

3SAT \leq_{p} CLIQUE

Transform every 3-cnf formula ϕ into (G, k) such that

$$
\phi \in \text { 3SAT } \Leftrightarrow(\mathrm{G}, \mathrm{k}) \in \text { CLIQUE }
$$

Want transformation that can be done in time that is polynomial in the length of ϕ

How can we encode a logic problem as a graph problem?

3SAT \leq_{p} CLIQUE

We transform any 3-cnf formula ϕ into (G, k) such that

$$
\phi \in \text { 3SAT } \Leftrightarrow(\mathrm{G}, \mathrm{k}) \in \text { CLIQUE }
$$

Let $\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{m}}$ be clauses of ϕ, let x_{1}, \ldots, x_{n} be vars. Set $\mathrm{k}:=\mathrm{m}$
Make a graph G with m groups of 3 nodes each.
Idea: Group i corresponds to clause C_{i} of ϕ
Each node in group i is "labeled" by a literal of C_{i}
(Note these labels do not actually appear in the graph!)
Put edges between all pairs of nodes in different groups, except for pairs of nodes with labels x_{i} and $-x_{i}$

Put no edges between nodes in the same group

$$
\left(x_{1} \vee x_{1} \vee x_{2}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{2}\right)
$$

|V| = 3(number of clauses)
k = number of clauses ${ }_{14}$

Claim: $\phi \in 3$ SAT $\Leftrightarrow(\mathrm{G}, \mathrm{m}) \in$ CLIQUE

Claim: If $\phi \in$ 3SAT then $(\mathbf{G}, \mathrm{m}) \in$ CLIQUE
Proof: Let A be a SAT assignment of ϕ.
For each clause \mathbf{C} of ϕ, there is a literal in \mathbf{C} set true by \mathbf{A} Let \mathbf{v}_{C} be that literal's corresponding vertex in \mathbf{G}.

Claim: $\mathrm{S}=\left\{\mathrm{v}_{\mathrm{C}} \mid \mathrm{C}\right.$ is a clause in $\left.\phi\right\}$ is an m -clique in G .
Proof: Let $\mathbf{v}_{\mathrm{c}} \neq \mathbf{v}_{\mathbf{C}^{\prime}}$ be in S. Suppose ($\left.\mathbf{v}_{\mathrm{c}}, \mathbf{v}_{\mathrm{C}^{\prime}}\right) \notin \mathrm{E}$. Note \mathbf{v}_{C} and $\mathbf{v}_{\mathrm{C}^{\prime}}$ are from different groups. So they must label inconsistent literals, call these literals x and $\neg \mathrm{x}$

But assignment A cannot set true both x and $\neg \mathrm{x}$!
Contradiction. So $\left(\mathbf{v}_{\mathbf{C}}, \mathbf{v}_{\mathbf{C}^{\prime}}\right) \in E$, for all $\mathbf{v}_{\mathbf{C}}, \mathbf{v}_{\mathbf{c}^{\prime}} \in \mathbf{S}$.
Hence S is an m-clique, and (G, m) \in CLIQUE

Claim: $\phi \in$ 3SAT $\Leftrightarrow(\mathrm{G}, \mathrm{m}) \in$ CLIQUE

Claim: If (G, m) \in CLIQUE then $\phi \in$ 3SAT
Proof: Let S be an m -clique of G .
We'll construct a satisfying assignment A of ϕ.
Claim: S contains exactly one node from each group of G .
For each variable x of ϕ, define variable assignment A :
$A(x):=1$, if there is a vertex in S with label x,
$A(x):=0$, if there is a vertex in S with label $\neg x$,
or no vertices in S are labeled x or $\neg \mathrm{x}$
For all $i=1, \ldots, m$, one vertex from the i-th group is in S.
\Rightarrow one literal from the i-th clause of ϕ is a vertex in S
So for all $\mathrm{i}=1, . ., \mathrm{m}, \mathrm{A}$ sets at least one literal true in i -th clause of ϕ. Therefore A is a satisfying assignment to ϕ.

Independent Set is NP-hard

IS: Given a graph G = (V, E) and integer k, is there $\mathrm{S} \subseteq \mathrm{V}$ such that $|\mathrm{S}| \geq \mathrm{k}$ and no pair of vertices in S have an edge?

CLIQUE: Given $\mathbf{G}=(\mathbf{V}, \mathrm{E})$ and integer \mathbf{k}, is there $\mathrm{S} \subseteq \mathrm{V}$ such that $|\mathrm{S}| \geq \mathrm{k}$ and every pair of vertices in \mathbf{S} have an edge?

CLIQUE \leq_{p} IS:
Given $\mathbf{G}=(\mathbf{V}, \mathrm{E})$, output $\mathbf{G}^{\prime}=\left(\mathbf{V}, \mathrm{E}^{\prime}\right)$ where

$$
E^{\prime}=\{(u, v) \mid(u, v) \notin E\} .
$$

$(G, k) \in$ CLIQUE iff ($\left.\mathbf{G}^{\prime}, k\right) \in I S$
each k-Clique in \mathbf{G} is an k-IS in \mathbf{G}^{\prime}

The Vertex Cover Problem

vertex cover = set of nodes C that cover all edges For all edges, at least one endpoint is in C

VERTEX-COVER $=\{(\mathbf{G}, \mathrm{k}) \mid \mathrm{G}$ is a graph with a vertex cover of size at most k\}

Theorem: VERTEX-COVER is NP-Complete
(1) VERTEX-COVER $\in N P$
(2) IS \leq_{p} VERTEX-COVER

Want to transform a graph \mathbf{G} and integer k into \mathbf{G}^{\prime} and k^{\prime} such that

$$
(\mathrm{G}, \mathrm{k}) \in \mathrm{IS} \Leftrightarrow\left(\mathrm{G}^{\prime}, \mathrm{k}^{\prime}\right) \in \operatorname{VERTEX}-\mathrm{COVER}
$$

IS \leq_{p} VERTEX-COVER

Claim: For every graph $\mathbf{G}=(\mathbf{V}, \mathrm{E})$, and subset $\mathrm{S} \subseteq \mathbf{V}$,
S is an independent set if and only if ($\mathrm{V}-\mathrm{S}$) is a vertex cover

Proof: S is an independent set
$\Leftrightarrow(\forall \mathbf{u}, \mathbf{v} \in \mathbf{V})[(\mathbf{u} \in \mathbf{S}$ and $\mathbf{v} \in \mathbf{S}) \Longrightarrow(\mathbf{u}, \mathbf{v}) \notin E]$
$\Leftrightarrow(\forall \mathbf{u}, \mathbf{v} \in \mathbf{V})[(\mathbf{u}, \mathbf{v}) \in \mathrm{E} \Rightarrow(\mathbf{u} \notin \mathbf{S}$ or $\mathbf{v} \notin \mathbf{S})]$
$\Leftrightarrow(\mathbf{V}-\mathbf{S})$ is a vertex cover!
Therefore $(\mathrm{G}, \mathrm{k}) \in \mathrm{IS} \Leftrightarrow(\mathrm{G},|\mathrm{V}|-\mathrm{k}) \in \operatorname{VERTEX}$-COVER
Our polynomial time reduction: $f(\mathrm{G}, \mathrm{k}):=(\mathrm{G},|\mathrm{V}|-\mathrm{k})$

The Subset Sum Problem

Given: Set $\mathrm{S}=\left\{\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}\right\}$ of positive integers and a positive integer t
Is there an $A \subseteq\{1, \ldots, n\}$ such that $t=\sum_{i \in A} a_{i}$?
SUBSET-SUM $=\left\{(\mathbf{S}, \mathrm{t}) \mid \exists \mathrm{S}^{\prime} \subseteq \mathbf{S}\right.$ s.t. $\left.\mathbf{t}=\sum_{\mathrm{b} \in \mathbf{S}^{\prime}} \mathrm{b}\right\}$

A simple summation problem!
Theorem (in algs): There is a $\mathbf{O}(\mathrm{n} \cdot \mathrm{t})$ time algorithm for solving SUBSET-SUM.
But t can be specified in $(\log \mathrm{t})$ bits... this isn't an algorithm that runs in poly-time in the input!

The Subset Sum Problem

Given: Set $\mathrm{S}=\left\{\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}\right\}$ of positive integers and a positive integer t
Is there an $A \subseteq\{1, \ldots, n\}$ such that $t=\sum_{i \in A} a_{i}$?
SUBSET-SUM $=\left\{(\mathbf{S}, \mathrm{t}) \mid \exists \mathbf{S}^{\prime} \subseteq \mathbf{S}\right.$ s.t. $\left.\mathrm{t}=\mathrm{\Sigma}_{\mathrm{b} \in \mathbf{S}^{\prime}} \mathrm{b}\right\}$
A simple summation problem!

Theorem: SUBSET-SUM is NP-complete

VC \leq_{p} SUBSET-SUM

Want to reduce a graph to a set of numbers
Given (G, k), let $E=\left\{e_{0}, \ldots, e_{m-1}\right\}$ and $V=\{1, \ldots, n\}$
Our subset sum instance (S, t) will have $|\mathrm{S}|=\mathbf{n}+\mathrm{m}$
"Edge numbers":
For every $\mathrm{e}_{\mathrm{j}} \in \mathrm{E}$, put $\mathrm{b}_{\mathrm{j}}=4^{j}$ in S
"Node numbers":
For every $\mathrm{i} \in \mathrm{V}$, put $\mathrm{a}_{\mathrm{i}}=\mathbf{4}^{\mathrm{m}}+\sum_{\mathrm{j}: \mathrm{i} \in \mathrm{e}_{\mathrm{j}}} 4^{\mathrm{j}}$ in S
Set the target number: $\mathrm{t}=\mathrm{k} \cdot \mathbf{4}^{\mathrm{m}}+\sum_{\mathrm{j}=0}^{\mathrm{m}-1}\left(\mathbf{2} \cdot \mathbf{4}^{\mathrm{j}}\right)$
Think of the numbers as being in "base 4"... as vectors with $m+1$ components

For every $\mathrm{e}_{\mathrm{j}} \in \mathrm{E}(\mathrm{j}=0, \ldots, \mathrm{~m}-1)$ put $\mathrm{b}_{\mathrm{j}}=4^{\mathrm{i}}$ in S
For every $\mathrm{i} \in \mathrm{V}$, put $\mathrm{a}_{\mathrm{i}}=4^{\mathrm{m}}+\sum_{\mathrm{j}}: \mathrm{i} \in \mathrm{e}_{\mathrm{j}} 4^{\mathrm{j}}$ in \mathbf{S}
Set $t=k \cdot 4^{m}+\sum_{j=0}^{m-1}\left(2 \cdot 4^{j}\right)$

Claim: If $(\mathbf{G}, \mathrm{k}) \in \mathrm{VC}$ then $(\mathrm{S}, \mathrm{t}) \in$ SUBSET-SUM

Suppose $\mathbf{C} \subseteq \mathbf{V}$ is a VC with k vertices. Define $S^{\prime}=\left\{a_{i}: i \in C\right\} \cup\left\{b_{j}:\left|e_{j} \cap C\right|=1\right\}$ $\mathrm{S}^{\prime}=($ node numbers corresponding to nodes in C$)$ plus (edge numbers corresponding to edges covered only once by C)

Claim: The sum of all numbers in \mathbf{S}^{\prime} equals \mathbf{t}
$\sum_{i \in c} a_{i}=k \cdot 4^{m}+\sum_{i \in c}\left(\sum_{j: i \in e_{j}} 4^{j}\right)$
$=k \cdot 4^{m}+\sum_{j}: e_{j}$ covered once by $c 4^{j}+\sum_{j: e_{j}}$ covered twice by c (2 $\left.\mathbf{4}^{\mathbf{j}}\right)$
$\sum_{j:\left|e_{j} \cap c\right|=1} b_{j}=\sum_{j: e_{j} \text { covered once by } c} 4^{j} \quad$ Total sum is t

For every $e_{j} \in E(j=0, \ldots, m-1)$ put $b_{j}=4^{i}$ in S
For every $\mathrm{i} \in \mathrm{V}$, put $\mathrm{a}_{\mathrm{i}}=4^{\mathrm{m}}+\sum_{\mathrm{j}: \mathrm{i} \in \mathrm{e}_{\mathrm{j}}} 4^{\mathrm{j}}$ in \mathbf{S}
Set $t=k \cdot 4^{m}+\sum_{j=0}^{m-1}\left(2 \cdot 4^{j}\right)$
Claim: If $(\mathbf{S}, \mathrm{t}) \in$ SUBSET-SUM then $(\mathbf{G}, \mathrm{k}) \in \operatorname{VC}$
Suppose $\mathbf{C} \subseteq \mathbf{V}$ and $\mathbf{F} \subseteq E$ satisfy

$$
\sum_{i \in C} a_{i}+\sum_{e_{j} \in F} b_{j}=t=k \cdot 4^{m}+\sum_{j=0}^{m-1}\left(2 \cdot 4^{j}\right)
$$

Claim: \mathbf{C} is a vertex cover of size k.
Proof: Subtract the b_{j} numbers from the LHS.
Each $b_{j}=4$. . So what remains is a sum of the form:

$$
\sum_{i \in c} a_{i}=k \cdot 4^{m}+\sum_{j=0}^{m-1}\left(c_{j} \cdot 4^{j}\right)
$$

where each $c_{j}>0$. But $c_{j}=$ number of nodes in C covering e_{j}
Therefore every e_{j} is covered by C , so C is a vertex cover!
Moreover, $|\mathrm{C}|=\mathrm{k}$: each a_{i} in C adds 4^{m} to t

The Knapsack Problem

Given: $S=\left\{\left(v_{1}, c_{1}\right) \ldots,\left(v_{n}, c_{n}\right)\right\}$ of pairs of positive integers
(items)
a capacity budget C a value target V

Is there an $S^{\prime} \subseteq\{1, . ., n\}$ such that

$$
\left(\sum_{i \in S^{\prime}} v_{i}\right) \geq V \text { and }\left(\sum_{i \in S^{\prime}} c_{i}\right) \leq C ?
$$

Define: KNAPSACK = \{(S, C, V) \| the answer is yes $\}$
A classic economics/logistics/OR problem!

Theorem: KNAPSACK is NP-complete

KNAPSACK is NP-complete

KNAPSACK is in NP?
Theorem: SUBSET-SUM \leq_{p} KNAPSACK
Proof: Given an instance ($\mathrm{S}=\left\{\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}\right\}, \mathrm{t}$) of SUBSET-SUM, create a KNAPSACK instance:

$$
\begin{gathered}
\text { For all } i \text {, set }\left(v_{i}, c_{i}\right):=\left(a_{i}, a_{i}\right) \\
\text { Define } T=\left\{\left(v_{1}, c_{1}\right), \ldots,\left(v_{n}, c_{n}\right)\right\} \\
\text { Define } \mathrm{C}:=\mathrm{V}:=\mathrm{t}
\end{gathered}
$$

Then, $(S, t) \in$ SUBSET-SUM $\Leftrightarrow(T, C, V) \in$ KNAPSACK
Subset of S that sums to $t=$
Solution to the Knapsack instance!

