6.045

Lecture 16: NP-Complete Problems:

Polynomial Time Reducibility

 $f: \Sigma^* \rightarrow \Sigma^*$ is a polynomial time computable function if there is a poly-time Turing machine M that on every input w, halts with just f(w) on its tape

Language A is poly-time reducible to language B, written as $A \leq_{p} B$, if there is a poly-time computable $f : \Sigma^* \to \Sigma^*$ so that:

 $w \in A \Leftrightarrow f(w) \in B$

f is a polynomial time reduction from A to B

Note there is a k such that for all w, $|f(w)| \le k |w|^k$

Definition: A language B is NP-complete if:

1. B ∈ NP

2. Every A in NP is poly-time reducible to B That is, $A \leq_{p} B$ When this is true, we say "B is NP-hard"

The Cook-Levin Theorem: 3SAT is NP-complete "Simple Logic can encode any NP problem!"

The Cook-Levin Theorem: 3SAT is NP-complete

"Simple Logic can encode any NP problem!"

Today we'll see many more NP-complete problems: NHALT, 3SAT, CLIQUE, IS, VC, SUBSET-SUM, KNAPSACK, PARTITION, BIN-PACKING, ... (There are entire classes at MIT on this kind of stuff)

And even more on pset/pests...

For all of these problems, assuming $P \neq NP$, they are not in P There are thousands of *natural* NP-complete problems!

Your favorite topic certainly has an NP-complete problem somewhere in it

Even the other sciences are not safe: biology, chemistry, physics have NP-complete problems too!

Reading Assignment

Read Luca Trevisan's notes for an alternative proof of the Cook-Levin Theorem!

Sketch:

- 1. Define CIRCUIT-SAT: Given a logical circuit C, is there an input a such that C(a)=1?
- Show that CIRCUIT-SAT is NP-hard: The n^k x n^k tableau for N on w can be simulated using a logical circuit of O(n^{2k}) gates
- 3. Reduce CIRCUIT-SAT to 3SAT in polytime
- 4. Conclude 3SAT is also NP-hard

Theorem (Cook-Levin): 3SAT is NP-complete Corollary: $3SAT \notin P$ if and only if $P \neq NP$ Given a new problem $L \in NP$, how can we prove it is NP-hard?

Generic Recipe:

- 1. Take a problem L' that you know to be NP-hard (e.g., 3SAT)
- **2.** Prove that $L' \leq_{P} L$

Then for all $A \in NP$, $A \leq_P L'$ by (1), and $L' \leq_P L$ by (2) This implies $A \leq_P L$. Therefore L is NP-hard!

L is NP-Complete

The Clique Problem

Given a graph G and positive k, does G contain a complete subgraph on k nodes? CLIQUE = { (G,k) | G is an undirected graph with a k-clique }

The Clique Problem

Given a graph G and positive k, does G contain a complete subgraph on k nodes?

CLIQUE = { (G,k) | G is an undirected graph with a k-clique }

Theorem (Karp): CLIQUE is NP-complete Why is it in NP?

Theorem: CLIQUE is NP-Complete

$3SAT \leq_{P} CLIQUE$

Transform every 3-cnf formula ϕ into (G,k) such that

$\phi \in 3SAT \Leftrightarrow (G,k) \in CLIQUE$

Want transformation that can be done in time that is polynomial in the length of ϕ

How can we encode a *logic* problem as a *graph* problem?

$3SAT \leq_{P} CLIQUE$

We transform any 3-cnf formula ϕ into (G,k) such that $\phi \in 3SAT \Leftrightarrow (G,k) \in CLIQUE$ Let C₁, C₂, ..., C_m be clauses of ϕ , let x_1, \ldots, x_n be vars. Set k := m Make a graph G with m groups of 3 nodes each. Idea: Group *i* corresponds to clause C_i of ϕ Each node in group *i* is "labeled" by a literal of C_i (Note these labels do not actually appear in the graph!) Put edges between all pairs of nodes in different groups, except for pairs of nodes with labels x_i and $\neg x_i$ Put no edges between nodes in the same group

|V| = 3(number of clauses)

k = number of clauses 14

Claim: $\phi \in 3SAT \Leftrightarrow (G,m) \in CLIQUE$

Claim: If $\phi \in 3SAT$ then (G,m) \in CLIQUE Proof: Let A be a SAT assignment of ϕ . For each clause C of ϕ , there is a literal in C set true by A Let v_c be that literal's corresponding vertex in G.

Claim: $S = \{v_c \mid C \text{ is a clause in } \phi\}$ is an m-clique in G. Proof: Let $v_c \neq v_{c'}$ be in S. Suppose $(v_c, v_{c'}) \notin E$. Note v_c and $v_{c'}$ are from different groups. So they must label *inconsistent* literals, call these literals x and $\neg x$ But assignment A cannot set true both x and $\neg x!$ Contradiction. So $(v_c, v_{c'}) \in E$, for all $v_c, v_{c'} \in S$. Hence S is an m-clique, and $(G,m) \in CLIQUE$

Claim: $\phi \in 3SAT \Leftrightarrow (G,m) \in CLIQUE$ Claim: If (G,m) \in CLIQUE then $\phi \in$ 3SAT **Proof:** Let **S** be an m-clique of G. We'll construct a satisfying assignment A of ϕ . Claim: S contains exactly one node from each group of G. For each variable x of ϕ , define variable assignment A: A(x) := 1, if there is a vertex in S with label x, A(x) := 0, if there is a vertex in S with label $\neg x$, or no vertices in S are labeled x or $\neg x$ For all i = 1,...,m, one vertex from the i-th group is in S.

For all I = 1,...,m, one vertex from the I-th group is in S. \Rightarrow one literal from the i-th clause of ϕ is a vertex in S So for all i = 1,...,m, A sets at least one literal true in i-th clause of ϕ . Therefore A is a satisfying assignment to ϕ . 17

Independent Set is NP-hard

IS: Given a graph G = (V, E) and integer k, is there $S \subseteq V$ such that $|S| \ge k$ and *no pair* of vertices in S have an edge?

CLIQUE: Given G = (V, E) and integer k, is there S \subseteq V such that $|S| \ge k$ and *every pair* of vertices in S have an edge?

CLIQUE \leq_p IS: Given G = (V, E), output G' = (V, E') where E' = {(u,v) | (u,v) \notin E}. (G, k) \in CLIQUE iff (G', k) \in IS each k-Clique in G is an k-IS in G'

The Vertex Cover Problem

vertex cover = set of nodes C that cover all edges For all edges, at least one endpoint is in C

VERTEX-COVER = { (G,k) | G is a graph with a vertex cover of size at most k}

Theorem: VERTEX-COVER is NP-Complete (1) VERTEX-COVER \in NP (2) IS \leq_{P} VERTEX-COVER Want to transform a graph G and integer k into G' and k' such that

 $(G,k) \in IS \Leftrightarrow (G',k') \in VERTEX-COVER$

$\mathsf{IS} \leq_{\mathsf{P}} \mathsf{VERTEX}\operatorname{-}\mathsf{COVER}$

Claim: For every graph G = (V,E), and subset $S \subseteq V$, S is an independent set if and only if (V - S) is a vertex cover

Proof: S is an independent set \Leftrightarrow (\forall u, v \in V)[(u \in S and v \in S) \Rightarrow (u,v) \notin E] \Leftrightarrow (\forall u, v \in V)[(u,v) \in E \Rightarrow (u \notin S or v \notin S)] \Leftrightarrow (V – S) is a vertex cover!

Therefore (G,k) \in IS \Leftrightarrow (G, |V| – k) \in VERTEX-COVER

Our polynomial time reduction: f(G,k) := (G, |V| - k)

The Subset Sum Problem

Given: Set S = {a₁,..., a_n} of positive integers and a positive integer t

Is there an A \subseteq {1, ... ,n} such that t = $\sum_{i \in A} a_i$?

SUBSET-SUM = {(S, t) | $\exists S' \subseteq S \text{ s.t. } t = \sum_{b \in S'} b$ }

A simple summation problem!

Theorem (in algs): There is a $O(n \cdot t)$ time algorithm for solving SUBSET-SUM.

But t can be specified in (log t) bits... this isn't an algorithm that runs in poly-time in the input!

The Subset Sum Problem

Given: Set S = {a₁,..., a_n} of positive integers and a positive integer t

Is there an A \subseteq {1, ... ,n} such that t = $\sum_{i \in A} a_i$?

SUBSET-SUM = {(S, t) | $\exists S' \subseteq S \text{ s.t. } t = \sum_{b \in S'} b$ }

A simple summation problem!

Theorem: SUBSET-SUM is NP-complete

VC ≤_P SUBSET-SUM

Want to reduce a graph to a set of numbers

Given (G, k), let E = {e₀,...,e_{m-1}} and V = {1,...,n}

Our subset sum instance (S, t) will have |S| = n + m

"Edge numbers":
 For every e_i ∈ E, put b_i = 4^j in S

"Node numbers": For every $i \in V$, put $a_i = 4^m + \sum_{j:i \in e_i} 4^j$ in S

Set the target number: $t = k \cdot 4^m + \sum_{j=0}^{m-1} (2 \cdot 4^j)$

Think of the numbers as being in "base 4"... as vectors with m+1 components For every $e_j \in E$ (j=0,...,m-1) put $b_j = 4^j$ in S For every $i \in V$, put $a_i = 4^m + \sum_{j:i \in e_j} 4^j$ in S Set $t = k \cdot 4^m + \sum_{j=0}^{m-1} (2 \cdot 4^j)$

Claim: If $(G,k) \in VC$ then $(S,t) \in SUBSET-SUM$

Suppose $C \subseteq V$ is a VC with k vertices. Define $S' = \{a_i : i \in C\} \cup \{b_i : |e_i \cap C| = 1\}$

S' = (node numbers corresponding to nodes in C) plus (edge numbers corresponding to edges covered only once by C)

Claim: The sum of all numbers in S' equals t

$$\begin{split} \sum_{i \in C} a_i &= k \cdot 4^m + \sum_{i \in C} \left(\sum_{j : i \in e_j} 4^j \right) \\ &= k \cdot 4^m + \sum_{j : e_j \text{ covered once by } C} 4^j + \sum_{j : e_j \text{ covered twice by } C} (2 \cdot 4^j) \\ \sum_{j : |e_j \cap C| = 1} b_j &= \sum_{j : e_j \text{ covered once by } C} 4^j \quad \text{Total sum is t} \end{split}$$

For every $e_j \in E$ (j=0,...,m-1) put $b_j = 4^j$ in S For every $i \in V$, put $a_i = 4^m + \sum_{j:i \in e_j} 4^j$ in S Set $t = k \cdot 4^m + \sum_{j=0}^{m-1} (2 \cdot 4^j)$

Claim: If (S,t) \in SUBSET-SUM then (G,k) \in VC Suppose C \subseteq V and F \subseteq E satisfy $\sum_{i \in C} a_i + \sum_{e_j \in F} b_i = t = k \cdot 4^m + \sum_{j=0}^{m-1} (2 \cdot 4^j)$

Claim: C is a vertex cover of size k. Proof: Subtract the b_j numbers from the LHS. Each $b_j = 4^j$. So what remains is a sum of the form: $\sum_{i \in C} a_i = k \cdot 4^m + \sum_{j=0}^{m-1} (c_j \cdot 4^j)$ where each $c_j > 0$. But $c_j =$ number of nodes in C covering e_j Therefore every e_j is covered by C, so C is a vertex cover! Moreover, |C| = k: each a_j in C adds 4^m to t

The Knapsack Problem

Given: $S = \{(v_1, c_1), ..., (v_n, c_n)\}$ of pairs of positive integers (items)

> a capacity budget C a value target V Is there an S' \subseteq {1,...,n} such that $(\sum_{i \in S'} v_i) \ge V$ and $(\sum_{i \in S'} c_i) \le C$?

Define: KNAPSACK = {(S, C, V) | the answer is yes}

A classic economics/logistics/OR problem!

Theorem: KNAPSACK is NP-complete

KNAPSACK is NP-complete

KNAPSACK is in NP?

Theorem: SUBSET-SUM \leq_p KNAPSACK Proof: Given an instance (S = {a₁,...,a_n}, t) of SUBSET-SUM, create a KNAPSACK instance: For all i, set (v_i, c_i) := (a_i, a_i) Define T = {(v₁, c₁),..., (v_n, c_n)} Define C := V := t

Then, (S,t) ∈ SUBSET-SUM ⇔ (T,C,V) ∈ KNAPSACK
Subset of S that sums to t =
Solution to the Knapsack instance!