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Lecture 16:
NP-Complete Problems:

They’re Everywhere! 

6.045
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Polynomial Time Reducibility

f : Σ* → Σ* is a polynomial time computable function

Language A is poly-time reducible to language B, 

written as A P B, 

if there is a poly-time computable f : Σ* → Σ* so that:

w  A  f(w)  B

f is a polynomial time reduction from A to B

Note there is a k such that for all w, |f(w)| ≤ k|w|k

if there is a poly-time Turing machine M that on 
every input w, halts with just f(w) on its tape
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Definition: A language B is NP-complete if:

1. B  NP

2. Every A in NP is poly-time reducible to B
That is, A ≤P B
When this is true, we say “B is NP-hard”

The Cook-Levin Theorem:
3SAT is NP-complete

“Simple Logic can encode any NP problem!”
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The Cook-Levin Theorem:
3SAT is NP-complete

“Simple Logic can encode any NP problem!”

Today we’ll see many more NP-complete problems:
NHALT, 3SAT, CLIQUE, IS, VC, SUBSET-SUM, 
KNAPSACK, PARTITION, BIN-PACKING, …
(There are entire classes at MIT on this kind of stuff)

And even more on pset/pests…

For all of these problems,
assuming P ≠ NP, they are not in P
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There are thousands of 
natural NP-complete problems!

Your favorite topic certainly has an 
NP-complete problem somewhere in it

Even the other sciences are not safe:
biology, chemistry, physics have 

NP-complete problems too!
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Reading Assignment

Read Luca Trevisan’s notes for an 
alternative proof of the Cook-Levin Theorem!

Sketch:
1. Define CIRCUIT-SAT: Given a logical circuit C,

is there an input a such that C(a)=1? 

2. Show that CIRCUIT-SAT is NP-hard:
The nk x nk tableau for N on w can be 
simulated using a logical circuit of O(n2k) gates

3. Reduce CIRCUIT-SAT to 3SAT in polytime

4. Conclude 3SAT is also NP-hard
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Theorem (Cook-Levin): 3SAT is NP-complete

Corollary:  3SAT ∉ P if and only if P ≠ NP

Given a new problem L ∈ NP, 
how can we prove it is NP-hard?

Generic Recipe:
1. Take a problem L’ that you know to be NP-hard 

(e.g., 3SAT)
2. Prove that L’ P L

Then for all A 2 NP,  A P L’  by (1), and L’ P L by (2)

This implies A P L. Therefore L is NP-hard!
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L is NP-Complete

P
NP

L’

L
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The Clique Problem

b
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c
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Given a graph G and positive k, does 
G contain a complete subgraph on k nodes?

CLIQUE = { (G,k) | G is an undirected graph 
with a k-clique }
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The Clique Problem

Given a graph G and positive k, does 
G contain a complete subgraph on k nodes?

CLIQUE = { (G,k) | G is an undirected graph 
with a k-clique }

Theorem (Karp):  CLIQUE is NP-complete

Why is it in NP?
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Theorem: CLIQUE is NP-Complete

P
NP

3SAT

CLIQUE
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3SAT P CLIQUE

Transform every 3-cnf formula  into (G,k) such that

  3SAT   (G,k)  CLIQUE

Want transformation that can be done in time 
that is polynomial in the length of 

How can we encode 
a logic problem as a graph problem?
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3SAT P CLIQUE

We transform any 3-cnf formula  into (G,k) such that

  3SAT   (G,k)  CLIQUE

Let C1, C2, …, Cm be clauses of , let 𝒙𝟏, … , 𝒙𝒏 be vars.  

Put no edges between nodes in the same group

Put edges between all pairs of nodes in different groups, 
except for pairs of nodes with labels 𝒙𝒊 and :𝒙𝒊

Set k := m
Make a graph G with m groups of 3 nodes each. 

Idea: Group i corresponds to clause Ci of 

(Note these labels do not actually appear in the graph!)

Each node in group i is “labeled” by a literal of Ci
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(x1  x1  x2)  (x1  x2  x2)  (x1  x2  x2)

x1 x1

x1 x2

x2 x2

x2 x2

x1

k = number of clauses|V| = 3(number of clauses)
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(x1  x1  x1)  (x1  x1  x2) 
(x2  x2  x2)  (x2  x2  x1)

x1

x1

x2

x2

x1 x1

x2 x2

x1 x2

x2

x1
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Claim:   3SAT  (G,m)  CLIQUE

Claim:  If   3SAT then (G,m)  CLIQUE
Proof: Let A be a SAT assignment of .
For each clause C of , there is a literal in C set true by A
Let vC be that literal’s corresponding vertex in G.

Claim: S = {vC | C is a clause in } is an m-clique in G. 
Proof: Let vC ≠ vC’ be in S. Suppose (vC,vC’) ∉ E.
Note vC and vC’ are from different groups. So they must 
label inconsistent literals, call these literals x and :x

But assignment A cannot set true both x and :x! 
Contradiction. So (vC,vC’) 2 E, for all vC, vC’2 S.

Hence S is an m-clique, and (G,m)  CLIQUE
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Claim:  If (G,m)  CLIQUE then   3SAT

Claim:   3SAT  (G,m)  CLIQUE

Proof: Let S be an m-clique of G. 
We’ll construct a satisfying assignment A of . 

Claim:  S contains exactly one node from each group of G.

For each variable x of , define variable assignment A:
A(x) := 1, if there is a vertex in S with label x,
A(x) := 0, if there is a vertex in S with label ¬x, 

or no vertices in S are labeled x or ¬x

For all i = 1,…,m, one vertex from the i-th group is in S.  
⇒ one literal from the i-th clause of  is a vertex in S

So for all i = 1,…,m, A sets at least one literal true in i-th
clause of .  Therefore A is a satisfying assignment to . 
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Independent Set is NP-hard

IS: Given a graph G = (V, E) and integer k, 
is there S ⊆ V such that |S| ≥ k and 
no pair of vertices in S have an edge?

CLIQUE: Given G = (V, E) and integer k,
is there S ⊆ V such that |S| ≥ k 
and every pair of vertices in S have an edge?

CLIQUE ≤P IS:
Given G = (V, E), output G’ = (V, E’) where 

E’ = {(u,v) | (u,v) ∉ E}.

(G, k) 2 CLIQUE  iff (G’, k) 2 IS

each k-Clique in G  is an k-IS in G’
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The Vertex Cover Problem

b
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vertex cover = set of nodes C that cover all edges
For all edges, at least one endpoint is in C
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VERTEX-COVER = { (G,k) | G is a graph with 
a vertex cover of size at most k}

Theorem: VERTEX-COVER is NP-Complete

(1) VERTEX-COVER  NP

(2) IS P VERTEX-COVER

Want to transform a graph G and integer k
into G’ and k’ such that

(G,k)  IS  (G’,k’)  VERTEX-COVER
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Claim: For every graph G = (V,E), and subset S µ V, 

S is an independent set 
if and only if  (V – S) is a vertex cover

Therefore (G,k)  IS   (G,|V| – k)  VERTEX-COVER

Proof:  S is an independent set 
 (∀ u, v ∈ V)[ (u ∈ S and v ∈ S) ⟹ (u,v) ∉ E ]
 (∀ u, v ∈ V)[ (u,v) ∈ E  ⟹ (u ∉ S or v ∉ S) ]
 (V – S) is a vertex cover!

IS P VERTEX-COVER

Our polynomial time reduction: f(G,k) := (G, |V| – k)
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Theorem (in algs):  There is a O(n ⋅ t) time algorithm
for solving SUBSET-SUM.

But t can be specified in (log t) bits… this isn’t 
an algorithm that runs in poly-time in the input!

The Subset Sum Problem

Given: Set S = {a1,…, an} of positive integers and a
positive integer t

Is there an A ⊆ {1, … ,n} such that t = i 2 A ai ?

SUBSET-SUM = {(S, t) | 9 S’ ⊆ S  s.t. t = b 2 S’ b }

A simple summation problem!



23

The Subset Sum Problem

Theorem: SUBSET-SUM is NP-complete

Given: Set S = {a1,…, an} of positive integers and a
positive integer t

Is there an A ⊆ {1, … ,n} such that t = i 2 A ai ?

SUBSET-SUM = {(S, t) | 9 S’ ⊆ S  s.t. t = b 2 S’ b }

A simple summation problem!
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VC P SUBSET-SUM

Want to reduce a graph to a set of numbers

Given (G, k), let E = {e0,…,em-1} and V = {1,…,n}

Our subset sum instance (S, t) will have |S| = n + m

“Edge numbers”: 
For every ej 2 E, put bj = 4j in S

“Node numbers”: 
For every i 2 V, put ai = 4m + j : i 2 ej

4j in S 

Set the target number: t = k ¢ 4m + j=0
m-1 (2 ¢ 4j)

Think of the numbers as being in “base 4”…
as vectors with m+1 components
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Claim:  If (G,k)  VC then (S,t)  SUBSET-SUM

Suppose  C ⊆ V is a VC with k vertices.
Define  S’ = {ai :  i 2 C}  ∪ {bj : |ej ∩ C| = 1}

S’ = (node numbers corresponding to nodes in C) plus
(edge numbers corresponding to edges covered only once by C)

Claim: The sum of all numbers in S’ equals t

i 2 C ai =  k ¢ 4m + i 2 C (j : i 2 ej
4j)

= k ¢ 4m + j : ej covered once by C 4j  + j : ej covered twice by C (2 ¢ 4j)

j : |ej \ C| = 1 bj = j : ej covered once by C 4j          Total sum is t

For every ej 2 E (j=0,…,m-1) put bj = 4j in S

For every i 2 V, put ai = 4m + j : i 2 ej
4j in S

Set t = k ¢ 4m + j=0
m-1 (2 ¢ 4j)
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Claim: If (S,t)  SUBSET-SUM  then (G,k)  VC

Suppose  C ⊆ V and F ⊆ E satisfy
i 2 C ai + ej 2 F b

j
= t = k ¢ 4m + j=0

m-1 (2 ¢ 4j)

Claim: C is a vertex cover of size k.
Proof: Subtract the bj numbers from the LHS.

Each bj = 4j. So what remains is a sum of the form:
i 2 C ai = k ¢ 4m + j=0

m-1 (cj ¢ 4j)

where each cj > 0. But cj = number of nodes in C covering ej

Therefore every ej is covered by C, so C is a vertex cover!
Moreover, |C| = k: each ai in C adds 4m to t

For every ej 2 E (j=0,…,m-1) put bj = 4j in S

For every i 2 V, put ai = 4m + j : i 2 ej
4j in S

Set t = k ¢ 4m + j=0
m-1 (2 ¢ 4j)
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The Knapsack Problem

Given: S = {(v1,c1)…, (vn,cn)} of pairs of positive integers
(items) 

a capacity budget C
a value target V 

Is there an S’ µ {1,…,n} such that 

(i 2 S’ vi ) ≥ V and (i 2 S’ ci ) ≤ C ?

Define:  KNAPSACK = {(S, C, V) | the answer is yes}

A classic economics/logistics/OR problem!

Theorem: KNAPSACK is NP-complete
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KNAPSACK is NP-complete

KNAPSACK is in NP?

Theorem: SUBSET-SUM P KNAPSACK 

Proof: Given an instance (S = {a1,…,an}, t) 
of SUBSET-SUM,  create a KNAPSACK instance:

For all i, set (vi, ci) := (ai, ai)
Define T = {(v1, c1),…, (vn, cn)}

Define C := V := t

Then, (S,t) 2   SUBSET-SUM  (T,C,V) 2 KNAPSACK 

Subset of S that sums to t =
Solution to the Knapsack instance!


