6.045

Lecture 17: Finish NP-Completeness, coNP and Friends

Definition: A language B is NP-complete if:

- **1.** B ∈ NP
- 2. Every A in NP is poly-time reducible to B
 That is, A ≤_P B
 When this is true, we say "B is NP-hard"

Last time: We showed $3SAT \leq_P CLIQUE \leq_P IS \leq_P VC \leq_P SUBSET-SUM \leq_P KNAPSACK$

All of them are in NP, and 3SAT is NP-complete, so all of these problems are NP-complete!

The Knapsack Problem

Input: $S = \{(v_1, c_1), (v_n, c_n)\}$ of pairs of positive integers (items)

a capacity budget C a value target V

Decide: Is there an $S' \subseteq \{1,...,n\}$ such that $\sum_{i \in S'} v_i \ge V$ and $\sum_{i \in S'} c_i \le C$?

Define: KNAPSACK = {(S, C, V) | the answer is yes}

A classic economics/logistics/OR problem!

Theorem: KNAPSACK is NP-complete

KNAPSACK is NP-complete

KNAPSACK is in NP?

```
Theorem: SUBSET-SUM ≤<sub>P</sub> KNAPSACK
```

```
Proof: Given an instance (S = \{a_1,...,a_n\}, t)
of SUBSET-SUM, create a KNAPSACK instance:
For all i, set (v_i, c_i) := (a_i, a_i)
Define T = \{(v_1, c_1),..., (v_n, c_n)\}
Define C := V := t
```

Then, (S,t) ∈ SUBSET-SUM ⇔ (T,C,V) ∈ KNAPSACK

Subset of S that sums to t =

Solution to the Knapsack instance!

The Partition Problem

Input: Set $S = \{a_1, ..., a_n\}$ of positive integers

Decide: Is there an $S' \subseteq S$ where $(\sum_{i \in S'} a_i) = (\sum_{i \in S - S'} a_i)$?

(Formally: PARTITION is the set of all encodings of sets *S* such that the answer to the question is yes.)

In other words, is there a way to partition S into two parts, so that both parts have equal sum?

A problem in Fair Division:

Think of a_i as "value" of item i. Want to divide a set of items into two parts S' and S-S', of the same total value. Give S' to one party, and S-S' to the other.

Theorem: PARTITION is NP-complete

PARTITION is NP-complete

- (1) PARTITION is in NP
- (2) SUBSET-SUM ≤_P PARTITION

Input: Set S = {a₁,..., a_n} of positive integers positive integer t

Reduction: If $t > \sum_i a_i$ then output $\{1,2\}$

Else output T := $\{a_1,..., a_n, 2A-t, A+t\}$, where A := $\sum_i a_i$

Claim: (S,t) \in SUBSET-SUM \Leftrightarrow T \in PARTITION That is, S has a subset that sums to t \Leftrightarrow T can be partitioned into two sets with equal sums Easy case: $t > \sum_i a_i$ Input: Set $S = \{a_1,..., a_n\}$ of positive integers, positive t Output: $T := \{a_1,..., a_n, 2A-t, A+t\}$, where $A := \sum_i a_i$

Claim: $(S,t) \in SUBSET-SUM \Leftrightarrow T \in PARTITION$

What's the sum of all numbers in T? 4A

Therefore: $T \in PARTITION$ \Leftrightarrow There is a $T' \subseteq T$ that sums to 2A.

Proof of $(S,t) \in SUBSET-SUM \Rightarrow T \in PARTITION$:

If $(S,t) \in SUBSET-SUM$, then let $S' \subseteq S$ sum to t. The set $S' \cup \{2A-t\}$ sums to 2A, so $T \in PARTITION$ Input: Set $S = \{a_1, ..., a_n\}$ of positive integers, positive t

Output: T := $\{a_1,..., a_n, 2A-t, A+t\}$, where A := $\sum_i a_i$ Remember: sum of all numbers in T is 4A.

Claim: $(S,t) \in SUBSET-SUM \Leftrightarrow T \in PARTITION$

 $T \in PARTITION \Leftrightarrow There is a T' \subseteq T that sums to 2A.$

Proof of: $T \in PARTITION \Rightarrow (S,t) \in SUBSET-SUM$

If $T \in PARTITION$, let $T' \subseteq T$ be a subset that sums to 2A. Observation: Exactly *one* of $\{2A-t,A+t\}$ is in T'.

If $(2A-t) \in T'$, then $T' - \{2A-t\}$ sums to t. By Observation, the set $T' - \{2A-t\}$ is a subset of S. So $(S,t) \in SUBSET-SUM$. If $(A+t) \in T'$, then $(T-T') - \{2A-t\}$ sums to (2A-(2A-t)) = t By Observation, $(T-T') - \{2A-t\}$ is a subset of S. Therefore $(S,t) \in SUBSET-SUM$ in this case as well.

The Bin Packing Problem

Input: Set $S = \{a_1, ..., a_n\}$ of positive integers, a bin capacity B, and a number of bins K. Decide: Can S be partitioned into disjoint subsets $S_1, ..., S_k$ such that each S_i sums to at most B?

Think of a_i as the capacity of item i. Is there a way to pack the items of S into K bins, where each bin has capacity B?

Ubiquitous problem in shipping and optimization!

Theorem: BIN PACKING is NP-complete

BIN PACKING is NP-complete

- (1) BIN PACKING is in NP (Why?)
- (2) PARTITION \leq_{P} BIN PACKING

Proof: Given an instance $S = \{a_1, ..., a_n\}$ of PARTITION, output an instance of BIN PACKING with:

S = {a₁, ..., a_n}
B =
$$(\sum_i a_i)/2$$

k = 2

Then, S ∈ PARTITION ⇔ (S,B,k) ∈ BIN PACKING: There is a partition of S into two equal sums iff there is a solution to this Bin Packing instance!

Two Problems

Let G denote a graph, and s and t denote nodes.

SHORTEST PATH

```
= {(G, s, t, k) |
G has a simple path of < k edges from s to t }
```

LONGEST PATH

```
= {(G, s, t, k) |
G has a simple path of ≥ k edges from s to t }
```

Are either of these in P? Are both of them?

HAMPATH = { (G,s,t) | G is an directed graph with a Hamiltonian path from s to t}

Theorem: HAMPATH is NP-Complete

- (1) HAMPATH ∈ NP
- (2) 3SAT \leq_{P} HAMPATH

Sipser (p.314-318) and recitation!

$HAMPATH \leq_{P} LONGEST-PATH$

```
LONGEST-PATH

= {(G, s, t, k) |

G has a simple path of ≥ k edges from s to t }
```

Can reduce HAMPATH to LONGEST-PATH by observing:

```
(G, s, t) \in HAMPATH

\Leftrightarrow (G, s, t, |V|-1) \in LONGEST-PATH
```

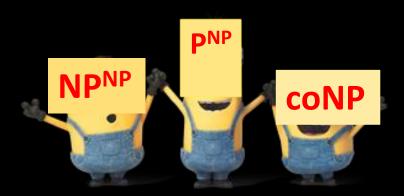
Therefore LONGEST-PATH is NP-hard.

MY HOBBY: EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS

	[CHOTCHKIES RESTAURANT]		
-	~ APPETIZERS~		
l	MIXED FRUIT	2.15	
I	FRENCH FRIES	2.75	
١	SIDE SALAD	3.35	
۱	HOT WINGS	3.55	
	MOZZARELLA STICKS	4.20	
	SAMPLER PLATE	5.80	
	→ SANDWICHES →		
	RARRECUE	6 55	

WE'D LIKE EXACTLY \$15.05 WORTH OF APPETIZERS, PLEASE. ... EXACTLY? UHH ... HERE, THESE PAPERS ON THE KNAPSACK PROBLEM MIGHT HELP YOU OUT. LISTEN, I HAVE SIX OTHER TABLES TO GET TO -- AS FAST AS POSSIBLE, OF COURSE. WANT SOMETHING ON TRAVELING SALESMAN?

coNP and Friends



(Note: any resemblance to other characters, living or animated, is purely coincidental)

NP: "Nifty Proofs"

For every L in NP,
if x ∈ L then there is a "short proof" that x ∈ L:
L = {x | ∃y of poly(|x|) length so that V(x,y) accepts}
But if x ∉ L, there might not be a short proof!

There is an asymmetry between the strings in L and strings not in L.

Compare with a recognizable language L:
Can always verify x ∈ L in finite time (a TM accepts x),
 but if x ∉ L, that could be because
 the TM goes in an infinite loop on x!

Definition: coNP = { L | \neg L \in NP }

What does a coNP problem L look like?

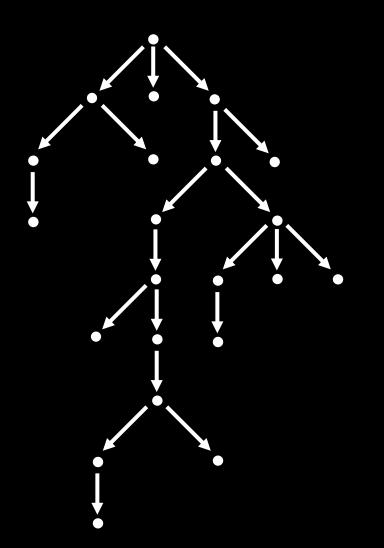
The instances NOT in L have *nifty proofs*. Recall we can write any NP problem L in the form: L = $\{x \mid \exists y \text{ of poly}(|x|) \text{ length so that } V(x,y) \text{ accepts}\}$ Therefore:

 $\neg L = \{x \mid \neg \exists y \text{ of poly}(|x|) \text{ length so that } V(x,y) \text{ accepts}\}$ = $\{x \mid \forall y \text{ of poly}(|x|) \text{ length, } V(x,y) \text{ rejects}\}$

Instead of using an "existentially guessing" (nondeterministic) machine, we can define a "universally verifying" machine!

Definition: coNP = { L | \neg L \in NP }

What does a coNP computation look like?

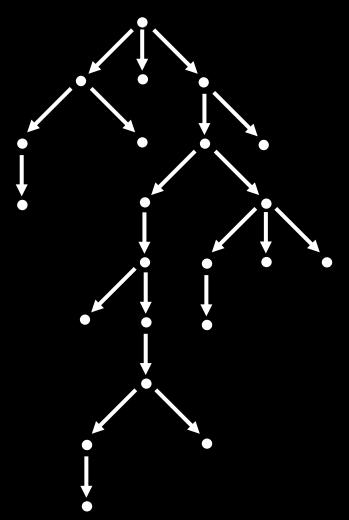


A *co-nondeterministic* machine has multiple computation paths, and has the following behavior:

- the machine accepts
 if all paths reach accept state
- the machine rejects
 if at least one path reaches
 reject state

Definition: coNP = { L | \neg L \in NP }

What does a coNP computation look like?



In NP algorithms, we can use a "guess" instruction in pseudocode: Guess string y of k|x|^k length...
and the machine accepts if some y leads to an accept state

In coNP algorithms, we can use a "try all" instruction:

Try all strings y of k|x|^k length...

and the machine accepts if every y leads to an accept state

TAUTOLOGY = $\{ \phi \mid \phi \text{ is a Boolean formula and} \}$ every variable assignment satisfies $\{ \phi \mid \phi \} \}$

Theorem: TAUTOLOGY is in coNP

How would we write pseudocode for a coNP machine that decides TAUTOLOGY?

How would we write TAUTOLOGY as the complement of some NP language?

Is $P \subseteq coNP$?

Yes!

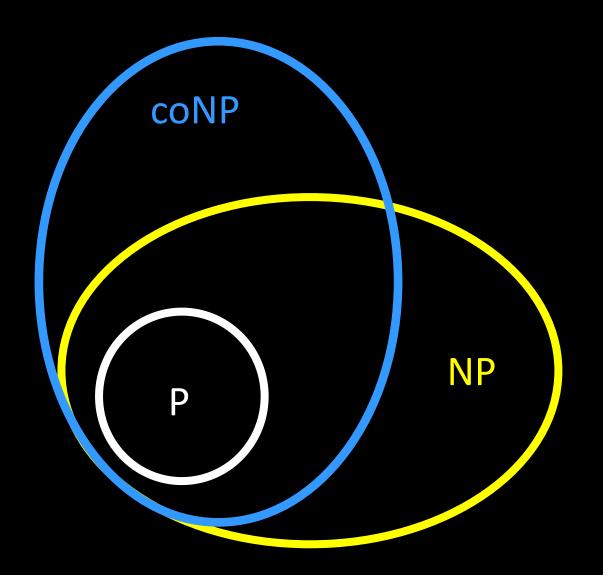
 $L \in P$ implies that $\neg L \in P$ (hence $\neg L \in NP$)

In general, deterministic complexity classes are closed under complement

Is NP = coNP?

THIS IS AN OPEN QUESTION!

It is believed that NP \neq coNP



$$coNP = \{ L \mid \neg L \in NP \}$$

Definition: A language B is coNP-complete if

- 1. $B \in coNP$
- 2. For every A in coNP, there is a polynomial-time reduction from A to B(B is coNP-hard)

Key Trick: Can use $A \leq_P B \Leftrightarrow \neg A \leq_P \neg B$ to turn NP-hardness into co-NP hardness

UNSAT = $\{ \phi \mid \phi \text{ is a Boolean formula and } no$ variable assignment satisfies $\phi \}$

Theorem: UNSAT is coNP-complete

Proof: (1) UNSAT
$$\in$$
 coNP (why?)

(2) UNSAT is coNP-hard:

Let $A \in coNP$. We show $A \leq_p UNSAT$

Since $\neg A \in NP$, we have $\neg A \leq_P 3SAT$ by the Cook-Levin theorem. This reduction already works!

$$w \in \neg A \Rightarrow \phi_w \in 3SAT$$

$$\mathbf{w} \notin \neg \mathbf{A} \Rightarrow \phi_{\mathbf{w}} \notin \mathbf{3SAT}$$

$$\mathbf{w} \notin \mathbf{A} \Rightarrow \phi_{\mathbf{w}} \notin \mathbf{UNSAT}$$

$$\mathbf{w} \in \mathbf{A} \Rightarrow \phi_{\mathbf{w}} \in \mathbf{UNSAT}$$

```
UNSAT = \{ \phi \mid \phi \text{ is a Boolean formula and } no \}
variable assignment satisfies \phi \}
```

Theorem: UNSAT is coNP-complete

TAUTOLOGY =
$$\{ \phi \mid \phi \text{ is a Boolean formula and} \\ every \text{ variable assignment satisfies } \phi \}$$

= $\{ \phi \mid \neg \phi \in \text{UNSAT} \}$

Theorem: TAUTOLOGY is coNP-complete

- (1) TAUTOLOGY \in coNP (already shown)
- (2) TAUTOLOGY is coNP-hard:

UNSAT \leq_{p} TAUTOLOGY: Given Boolean formula ϕ , output $\neg \phi$ $NP \cap coNP = \{ L \mid L \text{ and } \neg L \in NP \}$

L \in NP \cap coNP means that both $x \in$ L and $x \notin$ L have "nifty proofs"

Is $P = NP \cap coNP$?

THIS IS AN OPEN QUESTION!

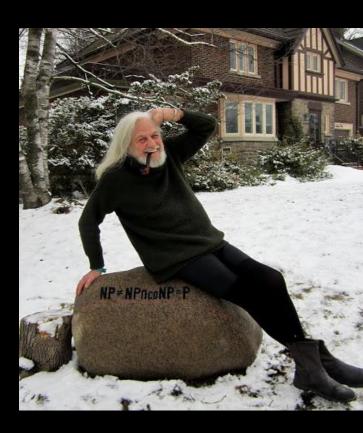
Is $P = NP \cap coNP$?

Why might this be true?

Analogy with computability

Why might this be false?

If it's true, most crypto fails!



An Interesting Problem in NP ∩ coNP

FACTORING

= { (n, k) | n > k > 1 are integers written in binary, and there is a prime factor p of n where k ≤ p < n }

If FACTORING ∈ P, we could potentially use the algorithm to factor every integer, and break RSA! Can binary search on k to find a prime factor of n. More details in slides posted online

Theorem: FACTORING \in NP \cap coNP

PRIMES = {n | n is a prime number written in binary}

Theorem (Pratt '70s): PRIMES \in NP \cap coNP

PRIMES is in P

Manindra Agrawal, Neeraj Kayal and Nitin Saxena Ann. of Math. Volume 160, Number 2 (2004), 781-793.

Abstract

We present an unconditional deterministic polynomialtime algorithm that determines whether an input number is prime or composite.

FACTORING

Theorem: FACTORING \in NP \cap coNP

Proof: (1) FACTORING \in NP

A prime factor p of n such that $p \ge k$ is a proof that (n, k) is in FACTORING

(can check primality in P, can check p divides n in P)

(2) FACTORING ∈ coNP

The prime factorization p_1^{e1} ... p_m^{em} of n is a proof that (n, k) is not in FACTORING:

Verify each p_i is prime in P, and that p_1^{e1} ... $p_m^{em} = n$ Verify that for all i=1,...,m that $p_i < k$

FACTORING

Theorem: If FACTORING ∈ P, then there is a polynomial-time algorithm which, given an integer n, outputs either "n is PRIME" or a prime factor of n.

Idea: Binary search for the prime factor!

Given binary integer n, initialize an interval [2,n].

If (n, 2) is not in FACTORING then output "PRIME"

If (n,[n/2]) is in FACTORING then
shrink interval to [[n/2],n] (set k := [3n/4])
else, shrink interval to [2,[n/2]] (set k := [n/4])

Keep picking k to halve the interval after each (n,k) call to FACTORING. Takes O(log n) calls to FACTORING!