6.045

Lecture 2:

Finite Automata and Nondeterminism

6.045

Problem Set 0 is coming out soon! Look for it on Piazza

Recitations start tomorrow

6.045

Hot Topics in Computing talk:

4:00-5:00pm
CSAIL's Patil Conference Room (32-G449).

Scott Aaronson on Quantum Computational Supremacy and Its Applications

DFA with 2 states

The DFA accepts a string x if the process on x ends in a double circle

Above DFA accepts exactly those strings with an odd number of $1 s$

Definition. A DFA is a 5 -tuple $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$
Q is the set of states (finite)
Σ is the alphabet (finite)
$\delta: Q \times \Sigma \rightarrow \mathbf{Q}$ is the transition function $\mathrm{q}_{0} \in \mathrm{Q}$ is the start state
$\mathbf{F} \subseteq \mathbf{Q}$ is the set of accept/final states

A DFA is a 5-tuple $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$

Let $\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{n}} \in \mathbf{\Sigma}$ and $\mathbf{w}=\mathrm{w}_{1} \cdots \mathrm{w}_{\mathrm{n}} \in \mathbf{\Sigma}^{*}$
\mathbf{M} accepts \mathbf{w} if the (unique) path starting from $\mathbf{q}_{\mathbf{0}}$ with edge labels $\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{n}}$ ends in a state in F .

M rejects wiff M does not accept w

$L(M)=$ set of all strings that M accepts = "the language recognized by M"

Definition: A language L^{\prime} is regular if L^{\prime} is recognized by a DFA;
that is, there is a DFA M where $L^{\prime}=L(M)$.

Theorem: The union of two regular languages (over Σ) is also a regular language (over $\bar{\Sigma}$)

> Proof: Let
> $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{0}, F_{1}\right)$ be a finite automaton for L_{1} and
> $M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{0}^{\prime}, F_{2}\right)$ be a finite automaton for L_{2}

We want to construct a finite automaton $\mathbf{M}=\left(\mathbf{Q}, \Sigma, \delta, P_{0}, F\right)$ that recognizes $L=L_{1} \cup L_{2}$

Proof Idea: Run both \mathbf{M}_{1} and $\mathbf{M}_{\mathbf{2}}$ "in parallel"!
$M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{0}, F_{1}\right)$ recognizes L_{1} and $M_{2}=\left(\mathbf{Q}_{2}, \Sigma, \delta_{2}, \mathrm{q}^{\prime}{ }_{0}, \mathrm{~F}_{2}\right)$ recognizes L_{2} Define \mathbf{M} as follows:
$\mathbf{Q}=\left\{\left(q_{1}, q_{2}\right) \mid q_{1} \in \mathbf{Q}_{1}\right.$ and $\left.q_{2} \in \mathbf{Q}_{2}\right\}$
$=Q_{1} \times Q_{2}$
$p_{0}=\left(q_{0}, q_{0}^{\prime}\right)$
$F=\left\{\left(q_{1}, q_{2}\right) \mid q_{1} \in F_{1}\right.$ OR $\left.q_{2} \in F_{2}\right\}$
How would you prove that this works? $\delta\left(\left(q_{1}, q_{2}\right), \sigma\right)=\left(\delta_{1}\left(q_{1}, \sigma\right), \delta_{2}\left(q_{2}, \sigma\right)\right)$

Prove by induction on $|\mathbf{x}|$:
M on x reaches state $(\mathrm{p}, \mathrm{q}) \Leftrightarrow \mathrm{M}_{1}$ on x reaches state p AND M_{2} on x reaches state q

Intersection Theorem for Regular Languages

Given two languages, L_{1} and L_{2}, define the intersection of L_{1} and L_{2} as
$L_{1} \cap L_{2}=\left\{w \mid w \in L_{1}\right.$ and $\left.w \in L_{2}\right\}$
Theorem: The intersection of two regular languages is also a regular language

Idea: Simulate in parallel as before, but re-define $F=\left\{\left(q_{1}, q_{2}\right) \mid q_{1} \in F_{1}\right.$ AND $\left.q_{2} \in F_{2}\right\}$

Union Theorem for Regular Languages

The union of two regular languages is also a regular language
"Regular Languages are closed under union"

Intersection Theorem for Regular Languages
The intersection of two regular languages is also a regular language

Complement Theorem for Regular Languages

The complement of a regular language is also a regular language

In other words,
if A is regular than so is $\neg \mathrm{A}$, where $\neg \mathbf{A}=\left\{\mathbf{w} \in \mathbf{\Sigma}^{*} \mid \mathbf{w} \notin \mathbf{A}\right\}$

Proof Idea: Flip the final and non-final states!

We can do much more...

The Reverse of a Language

Reverse of A:

$$
A^{R}=\left\{w_{1} \cdots w_{k} \mid w_{k} \cdots w_{1} \in A, w_{i} \in \Sigma\right\}
$$

Example: $\{0,10,110,0101\}^{\mathrm{R}}=\{0,01,011,1010\}$
Intuition: If A is recognized by a DFA, then A^{R} is recognized by a "backwards" DFA that reads its strings from right to left!

Question: If A is regular, then is A^{R} also regular?
Can every "Right-to-Left" DFA be replaced by a normal "Left-to-Right" DFA?

$\mathrm{L}(\mathrm{M})=\{\mathrm{w} \mid \mathrm{w}$ begins with 1$\}$
Suppose M reads its input from right to left... Then $\mathrm{L}(\mathrm{M})=\{\mathrm{w} \mid \mathrm{w}$ ends with a 1$\}$. Is this regular?

Reverse Theorem for Regular Languages

The reverse of a regular language is also a regular language!
"Regular Languages Are Closed Under Reverse"
For every language that can be recognized by a DFA that reads its input from right to left, there is an "normal" left-to-right DFA recognizing that same language

Counterintuitive! DFAs have finite memory...

Strings can be much longer than the number of states

Reversing DFAs?

Let L be a regular language, let M be a DFA that recognizes L

We want to build a DFA M^{R} that recognizes L^{R}
Know: M accepts w $\Leftrightarrow \mathbf{w}$ describes a directed path in \mathbf{M} from start state to an accept state
Want: \mathbf{M}^{R} accepts $\mathbf{w}^{\mathrm{R}} \Leftrightarrow \mathrm{M}$ accepts w
First Attempt:
Try to define \mathbf{M}^{R} as \mathbf{M} with all the arrows reversed!
Turn start state into a final state,
turn final states into start states

Problem: M^{R} IS NOT ALWAYS A DFA!

It could have many start states

Some states may have
more than one
transition for a given symbol, or it may have no transition at all!

Non-deterministic Finite Antomata (NF,A)

What happens with 100?
We will say this new kind of machine accepts string x if there is some path reading in x that reaches some accept state from some start state

Non-deterministic Finite Antomata (NF,A)

Then, this machine recognizes: $\{w \mid$ w contains 100\}
We will say this new kind of machine accepts string x if there is some path reading in x that reaches some accept state from some start state

Another Example of an NFA

At each state, we'll allow any number (including zero) of out-arrows for letters $\boldsymbol{\sigma} \in \boldsymbol{\Sigma}$, including $\boldsymbol{\varepsilon}$

Set of strings accepted by this NFA = \{w | w contains a 0$\}$

Multiple Start States

We allow multiple start states for NFAs, and Sipser allows only one

Can easily convert NFA with many start states into one with a single start state:

A non-deterministic finite automaton (NFA) is a

$$
\text { 5-tuple } \mathrm{N}=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{Q}_{0}, \mathrm{~F}\right) \text { where }
$$

Q is the set of states
Σ is the alphabet
Not deterministic!
$\delta: \mathbf{Q} \times \Sigma_{\varepsilon} \rightarrow \mathbf{2}^{\mathrm{Q}}$ is the transition function
$\mathrm{Q}_{0} \subseteq \mathrm{Q}$ is the set of start states
$\mathrm{F} \subseteq \mathbf{Q}$ is the set of accept states

2^{Q} is the set of all possible subsets of \mathbf{Q}

$$
\Sigma_{\varepsilon}=\Sigma \cup\{\varepsilon\}
$$

Set of strings accepted $=$ \{1,00,01\}

$$
\begin{gathered}
N=\left(Q, \Sigma, \delta, Q_{0}, F\right) \\
Q=\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\} \\
\Sigma=\{0,1\} \\
Q_{0}=\left\{q_{1}, q_{2}\right\} \\
F=\left\{q_{4}\right\} \\
\delta\left(q_{2}, 1\right)=\left\{q_{4}\right\} \quad \delta\left(q_{4}, 1\right)=\varnothing \\
\delta\left(q_{3}, 1\right)=\varnothing \\
\delta\left(q_{1}, 0\right)=\left\{q_{3}\right\}
\end{gathered}
$$

Def. Let $w \in \Sigma^{*}$. Let N be an NFA. N accepts w if there's a sequence of states $r_{0}, r_{1}, \ldots, r_{k} \in \mathbf{Q}$ and w can be written as $w_{1} \cdots w_{k}$ with $w_{i} \in \Sigma \cup\{\varepsilon\}$ such that

1. $r_{0} \in \mathbf{Q}_{0}$
2. $r_{i} \in \delta\left(r_{i-1}, w_{i}\right)$ for all $i=1, \ldots, k$, and
3. $r_{k} \in F$
$\mathrm{L}(\mathrm{N})=$ the language recognized by N
= set of all strings that NFA N accepts

A language L^{\prime} is recognized by an NFA N

$$
\text { if } L^{\prime}=L(N) \text {. }
$$

Def. Let $w \in \Sigma^{*}$. Let N be an NFA.
\mathbf{N} accepts w if there's some path of states in \mathbf{N},
from a state in Q_{0} to a state in F , with edges labeled $\mathrm{w}_{1} \cdots \mathrm{w}_{\mathrm{k}}$ with $\mathrm{w}_{\mathrm{i}} \in \Sigma \cup\{\varepsilon\}$ such that $\mathbf{w}=\mathbf{w}_{1} \cdots \mathbf{w}_{k}$
$\mathrm{L}(\mathrm{N})=$ the language recognized by N
= set of all strings that NFA N accepts
A language L^{\prime} is recognized by an NFA N

$$
\text { if } L^{\prime}=L(N) \text {. }
$$

Deterministic Computation

accept or reject

Non-Deterministic Computation

accept

Are these equally powerful???

NFAs are generally simpler than DFAs

A (minimal) DFA recognizing
the language $\{1\} \quad 0,1$

An NFA recognizing the language $\{1\}$

Every NFA can be perfectly simulated by some DFA!

Theorem: For every NFA N, there is a DFA M such that $\mathrm{L}(\mathrm{M})=\mathrm{L}(\mathrm{N})$

Corollary: A language A is regular if and only if A is recognized by an NFA

Corollary: A is regular iff A^{R} is regular left-to-right DFAs = right-to-left DFAs

From NFAs to DFAs

Input: $N F A N=\left(Q, \Sigma, \delta, Q_{0}, F\right)$
Output: DFA $M=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}{ }^{\prime}, F^{\prime}\right)$

To learn if NFA N accepts, our M will do the computation of N in parallel, maintaining the set of all possible states of \mathbf{N} that can be reached so far

Idea:

$$
\text { Set } Q^{\prime}=2^{Q}
$$

From NFAs to DFAs: Subset Construction

Input: NFA N = (Q, $\left.\Sigma, \delta, Q_{0}, F\right)$
Output: DFA M = (Q', $\left.\Sigma, \delta^{\prime}, \mathrm{q}^{\prime}{ }^{\prime}, \mathrm{F}^{\prime}\right)$

$$
\begin{aligned}
& Q^{\prime}=2^{Q} \\
& \delta^{\prime}: Q^{\prime} \times \Sigma \rightarrow Q^{\prime}
\end{aligned}
$$

For $S \in Q^{\prime}, \sigma \in \Sigma: \quad \delta^{\prime}(S, \sigma)=U \varepsilon(\delta(q, \sigma))$ * $\mathbf{q} \in \mathbf{S}$

$$
\begin{aligned}
\mathbf{q}_{0}^{\prime} & =\varepsilon\left(Q_{0}\right) \\
F^{\prime} & =\left\{S \in Q^{\prime} \mid S \text { contains some } f \in F\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { For } \mathbf{S} \subseteq \mathbf{Q}, \text { the } \boldsymbol{\varepsilon} \text {-closure of } \mathbf{S} \text { is } \\
& \varepsilon(\mathbf{S})=\{r \in \mathbf{Q} \text { reachable from some } \mathbf{q} \in \mathbf{S} \\
&\text { by taking zero or more } \boldsymbol{\varepsilon} \text {-transitions }\}
\end{aligned}
$$

Example of the ε-closure

$$
\begin{gathered}
\varepsilon\left(\left\{q_{0}\right\}\right)=\left\{q_{0}, q_{1}, q_{2}\right\} \\
\varepsilon\left(\left\{q_{1}\right\}\right)=\left\{q_{1}, q_{2}\right\} \\
\varepsilon\left(\left\{q_{2}\right\}\right)=\left\{q_{2}\right\}
\end{gathered}
$$

Given: NFA $\mathrm{N}=(\{1,2,3\},\{\mathrm{a}, \mathrm{b}\}, \delta,\{1\},\{1\})$

Reverse Theorem for Regular Languages

The reverse of a regular language is also a regular language

If a language can be recognized by a DFA that reads strings from right to left, then there is an "normal" DFA that accepts the same language

Proof Sketch?

Given a DFA for a language L, "reverse" its arrows, and flip its start and accept states, getting an NFA.

Convert that NFA back to a DFA!

Using NFAs in place of DFAs can make proofs about regular languages much easier!

Remember this on homework/exams!

