6.045

Lecture 2: Finite Automata and Nondeterminism

Problem Set 0 is coming out soon! Look for it on Piazza

Recitations start tomorrow

Hot Topics in Computing talk:

4:00 - 5:00pm CSAIL's Patil Conference Room (32-G449).

Scott Aaronson on Quantum Computational Supremacy and Its Applications

Read string left to right

DFA with 2 states

The DFA accepts a string x if the process on x ends in a double circle

Above DFA accepts exactly those strings with an odd number of 1s **Definition.** A DFA is a 5-tuple M = (Q, Σ , δ , q_0 , F)

- **Q** is the set of states (finite)
- **\Sigma** is the alphabet (finite)
- **δ**: $\mathbf{Q} \times \mathbf{\Sigma} \rightarrow \mathbf{Q}$ is the transition function
- $\mathbf{q}_0 \in \mathbf{Q}$ is the start state
- $\mathbf{F} \subseteq \mathbf{Q}$ is the set of accept/final states

A DFA is a 5-tuple M = (Q, Σ , δ , q_0 , F)

Let $w_1, ..., w_n \in \Sigma$ and $w = w_1 \cdots w_n \in \Sigma^*$ **M accepts w** if the (unique) path starting from q_0 with edge labels $w_1, ..., w_n$ ends in a state in **F**.

M rejects w iff M does not accept w

L(M) = set of all strings that M accepts = "the language recognized by M"

Definition: A language L' is regular if L' is recognized by a DFA; that is, there is a DFA M where L' = L(M). Theorem: The union of two regular languages (over Σ) is also a regular language (over Σ)

Proof: Let

 $M_{1} = (Q_{1}, \Sigma, \delta_{1}, q_{0}, F_{1})$ be a finite automaton for L₁ and

 $M_2 = (Q_2, \Sigma, \delta_2, q'_0, F_2)$ be a finite automaton for L_2

We want to construct a finite automaton $M = (Q, \Sigma, \delta, p_0, F)$ that recognizes $L = L_1 \cup L_2$ Proof Idea: Run both M_1 and M_2 "in parallel"! $M_1 = (Q_1, \Sigma, \delta_1, q_0, F_1)$ recognizes L_1 and $M_2 = (Q_2, \Sigma, \delta_2, q'_0, F_2)$ recognizes L_2 Define M as follows:

- $Q = \{ (q_1, q_2) \mid q_1 \in Q_1 \text{ and } q_2 \in Q_2 \} \\ = Q_1 \times Q_2$
- $p_0 = (q_0, q'_0)$
- $\mathsf{F} = \{ \, (\mathsf{q}_1, \, \mathsf{q}_2) \mid \mathsf{q}_1 \in \mathsf{F}_1 \ \ \mathsf{OR} \ \ \mathsf{q}_2 \in \mathsf{F}_2 \, \}$

How would you prove that this works?

 $\delta((\mathbf{q}_1,\mathbf{q}_2),\,\sigma)=(\delta_1(\mathbf{q}_1,\,\sigma),\,\delta_2(\mathbf{q}_2,\,\sigma))$

Prove by induction on |x|: M on x reaches state (p,q) $\Leftrightarrow M_1$ on x reaches state p AND M_2 on x reaches state q

Intersection Theorem for Regular Languages

Given two languages, L_1 and L_2 , define the intersection of L_1 and L_2 as $L_1 \cap L_2 = \{ w \mid w \in L_1 \text{ and } w \in L_2 \}$

Theorem: The intersection of two regular languages is also a regular language

Idea: Simulate in parallel as before, but re-define F = { $(q_1, q_2) | q_1 \in F_1$ AND $q_2 \in F_2$ }

Union Theorem for Regular Languages

The union of two regular languages is also a regular language

"Regular Languages are closed under union"

Intersection Theorem for Regular Languages

The intersection of two regular languages is also a regular language **Complement Theorem for Regular Languages**

The complement of a regular language is also a regular language

In other words,

if A is regular than so is $\neg A$,

where $\neg A = \{ w \in \Sigma^* \mid w \notin A \}$

Proof Idea: Flip the final and non-final states!

We can do much more...

The **Reverse** of a Language

Reverse of A:

 $A^{R} = \{ w_{1} \cdots w_{k} \mid w_{k} \cdots w_{1} \in A, w_{i} \in \Sigma \}$ Example: $\{0, 10, 110, 0101\}^{R} = \{0, 01, 011, 1010\}$

Intuition: If A is recognized by a DFA, then A^R is recognized by a "backwards" DFA that reads its strings from *right to left*!

Question: If A is regular, then is A^R also regular?

Can every "Right-to-Left" DFA be replaced by a normal "Left-to-Right" DFA?

L(M) = { w | w begins with 1} Suppose M reads its input from *right* to *left*... Then L(M) = {w | w ends with a 1}. *Is this regular?* **Reverse Theorem for Regular Languages**

The reverse of a regular language is also a regular language!

"Regular Languages Are Closed Under Reverse"

For every language that can be recognized by a DFA that reads its input from *right* to *left*, there is an "normal" left-to-right DFA recognizing that same language

Counterintuitive! DFAs have finite memory... Strings can be *much longer* than the number of states

Reversing DFAs?

Let L be a regular language, let M be a DFA that recognizes L We want to build a DFA M^R that recognizes L^R Know: M accepts w ⇔ w describes a directed path in M from start state to an accept state Want: M^R accepts w^R ⇔ M accepts w

First Attempt:

Try to define M^R as M with all the arrows reversed! Turn start state into a final state, turn final states into start states

Problem: M^R IS NOT ALWAYS A DFA!

It could have many start states

Some states may have *more than one* transition for a given symbol, or it may have no transition at all!

Non-deterministic Finite Antomata (NFA)

What happens with 100?

We will say this new kind of machine accepts string x if there is some path reading in x that reaches some accept state from some start state

Non-deterministic Finite Antomata (NFA)

Then, this machine recognizes: {w | w contains 100}

We will say this new kind of machine accepts string x if there is some path reading in x that reaches some accept state from some start state

Another Example of an NFA

At each state, we'll allow *any* number (including zero) of out-arrows for letters $\sigma \in \Sigma$, including ϵ

Set of strings accepted by this NFA = {w | w contains a 0}

Multiple Start States

We allow *multiple* start states for NFAs, and Sipser allows only one

Can easily convert NFA with many start states into one with a single start state:

A *non-deterministic* finite automaton (NFA) is a 5-tuple N = (Q, Σ , δ , Q₀, F) where

Q is the set of states

 $Q_0 \subseteq Q$ is the set of start states

 $\mathbf{F} \subseteq \mathbf{Q}$ is the set of accept states

 2^{Q} is the set of all possible subsets of Q $\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\}$

 $N = (Q, \Sigma, \delta, Q_0, F)$ $\mathbf{Q} = \{\mathbf{q}_1, \, \mathbf{q}_2, \, \mathbf{q}_3, \, \mathbf{q}_4\}$ $\Sigma = \{0,1\}$ $Q_0 = \{q_1, q_2\}$ $\mathsf{F} = \{\mathsf{q}_{\mathtt{A}}\}$ $\delta(\mathbf{q}_2,\mathbf{1}) = \{\mathbf{q}_4\} \ \delta(\mathbf{q}_4,\mathbf{1}) = \emptyset$ $\delta(\mathbf{q}_3,\mathbf{1}) = \emptyset$ $\delta(q_1, 0) = \{q_3\}$

Def. Let $w \in \Sigma^*$. Let N be an NFA. N accepts w if there's a sequence of states $r_0, r_1, ..., r_k \in Q$ and w can be written as $w_1 \cdots w_k$ with $w_i \in \Sigma \cup \{\epsilon\}$ such that

1.
$$r_0 \in Q_0$$

2. $r_i \in \delta(r_{i-1}, w_i)$ for all $i = 1, ..., k$, and
3. $r_k \in F$

L(N) = the language recognized by N = set of all strings that NFA N accepts

A language L' is recognized by an NFA N if L' = L(N). Def. Let $w \in \Sigma^*$. Let N be an NFA. N accepts w if there's some path of states in N, from a state in Q_0 to a state in F, with edges labeled $w_1 \cdots w_k$ with $w_i \in \Sigma \cup \{\epsilon\}$ such that $w = w_1 \cdots w_k$

L(N) = the language recognized by N = set of all strings that NFA N accepts

A language L' is recognized by an NFA N if L' = L(N).

NFAs are generally simpler than DFAs

An NFA recognizing the language <a>{1}

Every NFA can be perfectly simulated by some DFA!

Theorem: For every NFA N, there is a DFA M such that L(M) = L(N)

Corollary: A language A is regular if and only if A is recognized by an NFA

Corollary: A is regular iff A^R is regular left-to-right DFAs \equiv right-to-left DFAs

From NFAs to DFAs

Input: NFA N = (Q, Σ , δ , Q₀, F) Output: DFA M = (Q', Σ , δ' , q₀', F')

To learn if NFA N accepts, our M will do the computation of N *in parallel*, maintaining the set of *all* possible states of N that can be reached so far

Idea: Set $Q' = 2^Q$

From NFAs to DFAs: Subset Construction Input: NFA N = (Q, Σ , δ , \overline{Q}_0 , F) Output: DFA M = (Q', Σ , δ' , q_0' , F') **Q' = 2**^Q $\delta': \mathbf{Q}' \times \mathbf{\Sigma} \rightarrow \mathbf{Q}'$ For $S \in Q', \sigma \in \Sigma$: $\delta'(S,\sigma) = \bigcup \varepsilon(\delta(q,\sigma)) *$ q∈S $q_0' = \epsilon(Q_0)$ $F' = \{ S \in Q' \mid S \text{ contains } some f \in F \}$ For $S \subset Q$, the ϵ -closure of S is $\varepsilon(S) = \{r \in Q \text{ reachable from some } q \in S\}$ by taking zero or more *\varepsilon*-transitions}

Example of the ε-closure

 $\epsilon(\{q_0\}) = \{q_0, q_1, q_2\}$ $\epsilon(\{q_1\}) = \{q_1, q_2\}$ $\epsilon(\{q_2\}) = \{q_2\}$

Reverse Theorem for Regular Languages

The reverse of a regular language is also a regular language

If a language can be recognized by a DFA that reads strings from right to left, then there is an "normal" DFA that accepts the same language

Proof Sketch?

Given a DFA for a language L, "reverse" its arrows, and flip its start and accept states, getting an NFA. Convert that NFA back to a DFA! Using NFAs in place of DFAs can make proofs about regular languages *much* easier!

Remember this on homework/exams!