6.045

Lecture 21: Finish PSPACE,
 Randomized Complexity

TQBF $=\{\phi \mid \phi$ is a true quantified Boolean formula \}

Theorem: TQBF is PSPACE-Complete

FG $=\{\phi \mid \phi$ is a QBF and Player E has a winning strategy in the Formula Game on $\phi\}$

Theorem: FG = TQBF

The Geography Game

Two players take turns naming cities from anywhere in the world

Each city chosen must begin with the same letter that the previous city ended with

$$
\text { Austin } \rightarrow \text { Newark } \rightarrow \text { Kalamazoo } \rightarrow \text { Opelika }
$$

Cities cannot be repeated
Whenever someone can no longer name any more cities, they lose and the other player wins

Generalized Geography

Geography played on a directed graph
Nodes represent cities. Edges represent moves.
An edge (a, b) means: "if the current city is a , then
a player could choose city b next"
But cities cannot be repeated!
Each city can be visited at most once
Whenever a player cannot move to any adjacent city, they are "stuck" - they lose and the other player wins

Given a graph and a node a,

does Player 1 have a winning strategy starting from a?
Like a two-player Hamiltonian path problem!

Generalized Geography: Simple Examples

Player 2 always wins:
Player 1 must go first and has no edge to take!

Player 1 always wins: Player 1 can take the first edge, Player 2 is stuck

Player 2 always wins
Claim: For every graph, (exactly) one player has a winning strategy

Generalized Geography

Generalized Geography

Who has a winning strategy in this game?

Generalized Geography

Player 1 has a winning strategy!

GG = \{ (G, a) | Player 1 has a winning strategy for geography on graph \mathbf{G} starting at node a \}

Theorem: GG is PSPACE-Complete

GG E PSPACE

Want: PSPACE machine GGM that accepts (G,a) \Leftrightarrow Player 1 has a winning strategy on (G,a)

GGM(G, a): If node a has no outgoing edges, reject Remove node a and all adjacent edges, getting a smaller graph $\mathbf{G}_{-\mathrm{a}}$

For all nodes $a_{1}, a_{2}, \ldots, a_{k}$ that node a pointed to,
Recursively call GGM(G $\left.{ }_{-a}, a_{i}\right)$.
If all k calls accept, then reject else accept
Claim: All of the k calls accept
\Leftrightarrow Player 2 has a winning strategy!
Idea: Each rec. call "reverses the roles" of the players!

GG E PSPACE

Want: PSPACE machine GGM that accepts (G,a) \Leftrightarrow Player 1 has a winning strategy on (\mathbf{G}, a)

GGM(G, a): If node a has no outgoing edges, reject Remove node a and all adjacent edges, getting a smaller graph $\mathrm{G}_{-\mathrm{a}}$

For all nodes $\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{k}}$ that node a pointed to, Recursively call GGM $\left(\mathrm{G}_{-a}, \mathrm{a}_{\mathrm{i}}\right)$. If all k calls accept, then reject else accept

Claim: On graphs of n nodes, GGM takes $\mathrm{O}\left(\mathrm{n}^{2}\right)$ space (only have to store a subset of nodes at each level of recursion, and there are n levels of recursion)

GG is PSPACE-hard

We show that $\operatorname{FG} \leq_{p}$ GG
Convert a quantified formula ϕ into ($G, a)$ such that:
Player E has winning strategy in ϕ (ϕ is true) if and only if
Player 1 has winning strategy in (G, a)
For simplicity we assume ϕ is of the form:

$$
\phi=\exists x_{1} \forall x_{2} \exists x_{3} \ldots \exists x_{k}[F]
$$

where F is in CNF: an AND of ORs of literals.
(Quantifiers alternate, and first \& last move is E's)

GG = \{ (G, a) | Player 1 has a winning strategy for geography on graph \mathbf{G} starting at node a \}

Theorem: GG is PSPACE-Complete

Question:
 Is Chess a PSPACE-complete problem?

No, because determining whether a player has a winning strategy takes CONSTANT time and space (OK, the constant is large...)

But generalized versions of Chess, Go, Hex, Checkers, etc. (on $\mathrm{n} \times \mathrm{n}$ boards) can be shown to be PSPACE-hard

Randomized / Probabilistic Complexity

Probabilistic TMs

A probabilistic TM M is a nondeterministic TM where:

Each nondeterministic step is called a coin flip
Each nondeterministic step has only two legal next moves (heads or tails)
The probability that M runs on a path p is:
$\operatorname{Pr}[p]=2-\mathrm{k}$
where k is the number of coin flips that occur on path p

Probabilistic/Randomized Algorithms

Why study randomized algorithms?

1. They can be simpler than deterministic algorithms
2. They can be more efficient than deterministic algorithms
3. Can randomness be used to solve problems provably much faster than deterministic algorithms? This is an open question!

Theorem: A language A is in NP if there is a nondeterministic polynomial time TM M such that for all strings w:
$\mathbf{w} \in \mathbf{A} \Rightarrow \operatorname{Pr}[\mathbf{M}$ accepts $\mathbf{w}]>0$
$\mathbf{w} \notin \mathbf{A} \Rightarrow \operatorname{Pr}[\mathbf{M}$ accepts $\mathbf{w}]=0$

Theorem: A language A is in coNP if there is a nondeterministic polynomial time TM M such that for all strings w:

$$
\begin{aligned}
& w \in A \Rightarrow \operatorname{Pr}[M \text { accepts w }]=0 \\
& w \notin A \Rightarrow \operatorname{Pr}[M \text { accepts w }]>0
\end{aligned}
$$

Theorem: A language A is in NP if there is a nondeterministic polynomial time TM M such that for all strings w:
$w \in A \Rightarrow \operatorname{Pr}[M$ accepts $w]>0$
$w \notin A \Rightarrow \operatorname{Pr}[M$ accepts $w]=0$

Definition. A probabilistic TM M decides a

language A with error ε if for all strings w, $w \in A \Rightarrow \operatorname{Pr}[M$ accepts $w] \geq 1-\varepsilon$
$w \notin A \Rightarrow \operatorname{Pr}[M$ doesn't accept w] $\mathbf{w} \mathbf{1 - \varepsilon}$

Error Reduction Lemma

Lemma: Let ε be a constant, $0<\varepsilon<1 / 2$, let $k \in \mathbb{N}$.
If M_{1} has error $1 / 2-\varepsilon$ and runs in $t(n)$ time then there is an equivalent machine $\mathbf{M}_{\mathbf{2}}$ such that
M_{2} has error $<1 / 2^{n^{k}}$ and runs in $O\left(n^{k} \cdot t(n) / \varepsilon^{2}\right)$ time Proof Idea:
On input $\mathbf{w}, \mathbf{M}_{\mathbf{2}}$ runs \mathbf{M}_{1} on \mathbf{w} for $\mathrm{m}=10 \mathrm{n}^{\mathrm{k}} / \varepsilon^{2}$ random independent trials, records the m answers of M_{1} on \mathbf{w}, returns most popular answer (accept or reject)
Can use Chernoff Bound to show the error is $<1 / 2^{n^{k}}$ Probability that the Majority answer over $10 \mathrm{~m} / \varepsilon^{2}$ trials is different from the $1 / 2+\varepsilon$ prob event is $<1 / 2^{m}$

Error Reduction Lemma

Lemma: Let ε be a constant, $0<\varepsilon<1 / 2$, let $k \in \mathbb{N}$. If M_{1} has error $1 / 2-\varepsilon$ and runs in $t(n)$ time then there is an equivalent machine $\mathbf{M}_{\mathbf{2}}$ such that
M_{2} has error $<1 / 2^{n^{k}}$ and runs in $O\left(n^{k} \cdot t(n) / \varepsilon^{2}\right)$ time Proof Idea:
On input w, M_{2} runs M_{1} on w for $m=10 n^{k} / \varepsilon^{2}$ random independent trials, records the m answers of M_{1} on \mathbf{w}, returns most popular answer (accept or reject)

Define indicator $X_{i}=1$ iff M_{1} outputs right answer in trial \boldsymbol{i} Set $X=\sum_{i} X_{i}$. Then $E[X]=\sum_{i} E\left[X_{i}\right] \geq(1 / 2+\varepsilon) m$
Show: $\operatorname{Pr}\left[M_{2}(w)\right.$ is wrong $]=\operatorname{Pr}[X<m / 2]<1 / 2^{\varepsilon^{2} m / 10}$

BPP = Bounded Probabilistic \mathbf{P}

$B P P=\{L \mid L$ is recognized by a probabilistic polynomial-time TM with error at most $1 / 3\}$

Why 1/3?

It doesn't matter what error value we pick, as long as the error is smaller than $1 / 2-1 / n^{k}$ for some constant \boldsymbol{k}

When the error is smaller than $1 / 2$, we can apply the error reduction lemma and get $1 / 2^{n^{c}}$ error

Checking Matrix Multiplication

CHECK $=\left\{\left(M_{1}, M_{2}, N\right) \mid M_{1}, M_{2}\right.$ and N are matrices and $\mathbf{M}_{1} \cdot \mathbf{M}_{\mathbf{2}}=\mathbf{N}$ \}
If $\mathbf{M}_{\mathbf{1}}$ and $\mathbf{M}_{\mathbf{2}}$ are $\boldsymbol{n} \times \mathbf{n}$ matrices, computing $\mathbf{M}_{\mathbf{1}} \cdot \mathbf{M}_{\mathbf{2}}$ takes $\mathrm{O}\left(\mathrm{n}^{3}\right)$ time normally, and $O\left(n^{2.373}\right)$ time using very sophisticated methods.

Here is an $\mathrm{O}\left(\mathrm{n}^{2}\right)$-time randomized algorithm for CHECK: Pick a 0-1 bit vector r at random, test if $M_{1} \cdot M_{2} r=N r$

Claim: If $\mathbf{M}_{1} \cdot \mathbf{M}_{\mathbf{2}}=\mathbf{N}$, then $\operatorname{Pr}\left[\mathbf{M}_{1} \cdot \mathbf{M}_{2} \mathbf{r}=\mathbf{N r}\right]=1$

$$
\text { If } M_{1} \cdot M_{2} \neq N \text {, then } \operatorname{Pr}\left[M_{1} \cdot M_{2} r=N r\right] \leq 1 / 2
$$

If we pick 20 random vectors and test them all, what is the probability of incorrect output?

Checking Matrix Multiplication

CHECK $=\left\{\left(M_{1}, M_{2}, N\right) \mid M_{1}, M_{2}\right.$ and N are matrices and $\mathbf{M}_{1} \cdot \mathbf{M}_{\mathbf{2}}=\mathbf{N}$ \}
Pick a 0-1 bit vector r at random, test if $M_{1} \cdot M_{2} r=N r$ Claim: If $M_{1} \cdot M_{2} \neq N$, then $\operatorname{Pr}\left[M_{1} \cdot M_{2} r=N r\right] \leq 1 / 2$ Proof: Define $\mathbf{M}^{\prime}=\mathbf{N}-\left(\mathbf{M}_{1} \cdot \mathbf{M}_{2}\right)$. \mathbf{M}^{\prime} is a non-zero matrix. Some row \mathbf{M}^{\prime} is non-zero, some entry $\mathbf{M}_{\mathrm{i}, \mathrm{j}}{ }_{\mathrm{j}}$ is non-zero. Want to show: $\operatorname{Pr}\left[M^{\prime} r=\overrightarrow{\mathbf{0}}\right] \leq 1 / 2$ We have: $\operatorname{Pr}\left[M^{\prime} r=\overrightarrow{0}\right] \leq \operatorname{Pr}\left[\left\langle M^{\prime}{ }_{i}, r>=0\right]\right.$ $=\operatorname{Pr}\left[\sum_{k} M_{i, k}^{\prime} \cdot r_{k}=0\right]$ (def of inner product) $=\operatorname{Pr}\left[-r_{j}=\left(\sum_{k \neq j} M_{i, k}^{\prime} \cdot r_{k}\right) / M_{i, j}^{\prime}\right] \leq 1 / 2$
Why $\leq 1 / 2$? After everything else is assigned on RHS, there is at most one value of r_{k} that satisfies the equation!

An arithmetic formula is like a Boolean formula, except it has +, -, and * instead of OR, NOT, AND.

ZERO-POLY = $\{p \mid p$ is an arithmetic formula

 that is identically zero\}Identically zero means: all coefficients are 0
Two examples of formulas in ZERO-POLY:
$(x+y) \cdot(x+y)-x \cdot x-y \cdot y-2 \cdot x \cdot y$
Abbreviate as: $(x+y)^{2}-x^{2}-y^{2}-2 x y$
$\left(x^{2}+a^{2}\right) \cdot\left(y^{2}+b^{2}\right)-(x \cdot y-a \cdot b)^{2}-(x \cdot b+a \cdot y)^{2}$

There is a rich history of polynomial identities in mathematics. Useful also in program testing!

Testing Univariate Polynomials

Let $\mathrm{p}(\mathrm{x})$ be a polynomial in one variable over \mathbf{Z}

$$
p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{d} x^{d}
$$

Suppose p is hidden in a "black box" we can only see its inputs and outputs. Want to determine if p is identically 0

Simply evaluate p on $\mathrm{d}+1$ distinct values!
Non-zero degree d polynomials have $\leq \mathrm{d}$ roots.
But the zero polynomial has every value as a root.

