

Lecture 22: Finish Randomized Complexity, Summary of 6.045

Randomized / Probabilistic Complexity

Probabilistic TMs

A probabilistic TM M is a nondeterministic TM where: **Each nondeterministic step** is called a coin flip Each nondeterministic step has only two legal next moves (heads or tails) The probability that M runs on a branch b is: $Pr[b] = 2^{-k}$ where k is the number of coin flips that occur on branch b

Definition. A probabilistic TM M decides a language A with error ε if for all strings w,

 $w \in A \Rightarrow Pr [Maccepts w] \ge 1 - \varepsilon$

 $w \notin A \Rightarrow Pr [M doesn't accept w] \ge 1 - \varepsilon$

Theorem: A language A is in NP if there is a nondeterministic polynomial time TM M such that for all strings w:

 $w \in A \Rightarrow Pr[M accepts w] > 0$

 $\mathbf{w} \notin \mathbf{A} \Rightarrow \Pr[\mathbf{M} \text{ accepts } \mathbf{w}] = \mathbf{0}$

BPP = Bounded Probabilistic P

BPP = { L | L is recognized by a probabilistic polynomial-time TM with error at most 1/3 }

Why 1/3?

It doesn't matter what error value we pick, as long as the error is smaller than 1/2.

When the error is smaller than 1/2, we can make it very small by repeatedly running the TM.

An arithmetic formula is like a Boolean formula, except it has +, –, and * instead of OR, NOT, AND.

ZERO-POLY = { p | p is an arithmetic formula over Z that is *identically* zero}

Identically zero means: all coefficients are 0

Two examples of formulas in ZERO-POLY:

 $(x + y) \cdot (x + y) - x \cdot x - y \cdot y - 2 \cdot x \cdot y$ Abbreviate as: $(x + y)^2 - x^2 - y^2 - 2xy$ $(x^2 + a^2) \cdot (y^2 + b^2) - (x \cdot y - a \cdot b)^2 - (x \cdot b + a \cdot y)^2$

There is a rich history of polynomial identities in mathematics. Useful also in program testing!

Testing Univariate Polynomials

Let p(x) be a polynomial in one variable over Z

$$p(x) = a_0 + a_1 x + a_2 x^2 + ... + a_d x^d$$

Suppose p is hidden in a "black box" – we can only see its inputs and outputs. Want to determine if p is *identically* 0

Simply evaluate p on d+1 distinct values! Non-zero degree d polynomials have ≤ d roots. But the *zero polynomial* has every value as a root.

Testing Multivariate Polynomials

Let p(x₁,...,x_n) be a polynomial in n variables over Z

Suppose $p(x_1,...,x_n)$ is given to us, but as a very complicated arithmetic formula. Can we efficiently determine if p is identically 0?

If $p(x_1,...,x_n)$ is a product of m polynomials, each of which is a polynomial in t terms, $\prod_m (\sum_t stuff)$ Then expanding the expression into a \sum of \prod could take t^m time!

Big Idea: Evaluate p on *random values*

Theorem (Schwartz-Zippel-DeMillo-Lipton) Let $p(x_1, x_2, ..., x_n)$ be a *nonzero* polynomial, where each x_i has degree at most d. Let $F \subset Z$ be finite. If $a_1, ..., a_m$ are selected randomly from F, then: $Pr[p(a_1, ..., a_m) = 0] \leq dn/|F|$

Low-deg. nonzero polynomials are nonzero on MANY inputs

```
Proof (by induction on n):
Base Case (n = 1):
```

Pr [$p(a_1) = 0$] $\leq d/|F|$

Nonzero polynomials of degree d have most d roots, so at most d elements in F can make p zero

Inductive Step (n > 1): Assume true for n-1 and prove for n Let $p(x_1,...,x_n)$ be not identically zero. Write: $p(x_1,...,x_n) = p_0 + x_n p_1 + x_n^2 p_2 + ... + x_n^d p_d$ where x_n does not occur in any $p_i(x_1, \dots, x_{n-1})$ **Observe: At least one p_i is not identically zero** Suppose $p(a_1,...,a_n) = 0$. Let $q(x_n) = p(a_1,...,a_{n-1},x_n)$. Two cases: (1) $q \equiv 0$. That is, for all j, $p_i(a_1,...,a_{n-1}) = 0$ (including p_i) Pr [(1)] \leq Pr[$p_i(a_1,...,a_{n-1}) = 0$] \leq (n-1)d/|F| by induction (2) q is not identically zero, but $q(a_n) = 0$. Note q is a univariate degree-d polynomial! Pr [(2)] \leq Pr[q(a_n) = 0] \leq d/|F| by univariate case Pr [(1) or (2)] \leq Pr[(1)] + Pr[(2)] \leq nd/|F| 10

ZERO-POLY = { p | p is an arithmetic formula over Z that is *identically* zero} Theorem: $ZERO-POLY \in BPP$ **Proof:** Suppose n = |p|. Then p has $k \le n$ variables, and the *degree* of each variable is at most **n**. Algorithm A: Given polynomial p, For all i = 1,...,k, choose r_i randomly from {1,...,3 n^2 } If $p(r_1, ..., r_k) = 0$ then output zero else output nonzero **Observe A runs in polynomial time.** If $p \equiv 0$, then Pr[A(p) outputs zero] = 1

If $p \not\equiv 0$, then by the Schwartz-Zippel lemma, Pr[A(p) outputs *zero*] = Pr_r[p(r) = 0] $\leq n^2/3n^2 \leq 1/3$ Checking Equivalence of Arithmetic Formulas ZERO-POLY = { p | p is an arithmetic formula that is identically zero} Theorem: ZERO-POLY ∈ BPP

EQUIV-POLY = { (p,q) | p and q are arithmetic formulas computing the same polynomial} Corollary: EQUIV-POLY \in BPP **Proof:** (p,q) in EQUIV-POLY \Leftrightarrow p-q in ZERO-POLY Therefore EQUIV-POLY \leq_P ZERO-POLY and we get a BPP algorithm for EQUIV-POLY. See Sipser 10.2 for an application to testing equivalence of simple programs!

Equivalence of Arithmetic Formulas

EQUIV-POLY = { (p,q) | p and q are arithmetic formulas computing the same polynomial}

Corollary: EQUIV-POLY \in BPP

There is a big contrast with Boolean formulas!

EQUIV = { $(\phi, \psi) \mid \phi$ and ψ are Boolean formulas computing the same function}

We showed EQUIV is in coNP. It's also coNP-complete! TAUTOLOGY \leq_P EQUIV: map ϕ to (ϕ, T)

ZERO-POLY = { p | p is an arithmetic formula that is identically zero}

Theorem: $ZERO-POLY \in BPP$

It is not known how to solve ZERO-POLY efficiently *without* randomness!

Thm [KI'04, AvM'11] If ZERO-POLY ∈ P
then NEW LOWER BOUNDS FOLLOW
(not P ≠ NP, but still breakthroughs!)

BPP = { L | L is recognized by a probabilistic polynomial-time TM with error at most 1/3 }

$\mathsf{Is} \; \mathsf{BPP} \subseteq \mathsf{NP?}$

THIS IS AN OPEN QUESTION!

$\mathsf{IS} \mathsf{BPP} \subseteq \mathsf{PSPACE}?$

Yes! Run through all possible sequences of coin flips one at a time, and count the number of branches that accept.

Known: BPP \subseteq NP^{NP} and BPP \subseteq coNP^{NP}, but BPP \subseteq P^{NP} is still open!

$\mathsf{Is} \mathsf{NP} \subseteq \mathsf{BPP?}$

THIS IS AN OPEN QUESTION!

Is BPP = EXPTIME?

THIS IS AN OPEN QUESTION!?*!#!

It's widely conjectured that P = BPP!Certain lower bounds $\Rightarrow P = BPP$

Is BPP = EXPTIME?

THIS IS AN OPEN QUESTION!?*!#!

It's widely conjectured that P = BPP!Certain lower bounds $\Rightarrow P = BPP$ **Definition:** A language A is in RP (Randomized P) if there is a nondeterministic polynomial time TM M such that for all strings x:

 $x \notin A \Rightarrow Pr[M(x) \text{ accepts}] = 0$ $x \in A \Rightarrow Pr[M(x) \text{ accepts}] > 2/3$

NONZERO-POLY = { p | p is an arithmetic formula that is not identically zero}

Theorem: NONZERO-POLY \in RP (Our proof of ZERO-POLY in BPP shows this)

$\mathsf{IS} \mathsf{RP} \subseteq \mathsf{NP?}$

Yes!

Being RP means that not only are there "nifty proofs" but in fact most strings are nifty proofs!

$|\mathsf{IS} \mathsf{RP} \subseteq \mathsf{BPP?}|$

Yes! RP has "one-sided error" BPP has "two-sided error"

Review

Regular Languages are closed under all of the following operations: Union: $A \cup B = \{ w \mid w \in A \text{ or } w \in B \}$ Intersection: $A \cap B = \{ w \mid w \in A \text{ and } w \in B \}$ Complement: $\neg A = \{ w \in \Sigma^* \mid w \notin A \}$ **Reverse:** $A^{R} = \{ W_{1} \dots W_{k} \mid W_{k} \dots W_{1} \in A \}$ **Concatenation:** $A \cdot B = \{vw \mid v \in A \text{ and } w \in B\}$ Star: $A^* = \{ w_1 \dots w_k \mid k \ge 0 \text{ and each } w_i \in A \}$

L is regular *if and only if* (∃ DFA M)(∀ strings x)[M acc. x ⇔ x ∈ L] *"M gives the correct output on all strings"*

L is NOT regular *if and only if* $(\forall \text{ DFA M})(\exists \text{ string } x_M)[\text{M acc. } x_M \Leftrightarrow x \notin L]$ *"M gives the wrong output on x_M"*

So the problem of proving L is NOT regular can be viewed as a problem about designing "bad inputs"

How to Confuse DFAs

Want to show: Language L is not regular

Proof: By contradiction. Assume L *is* regular. So L has a DFA M with Q states, for some Q > 0.

YOU: Cleverly pick strings x, y where |y| > Q

Run M on xy. Pigeons tell us: Some state q of M is visited more than once, while reading in y.

Therefore, M is in state q after reading xy', and

is in **q** after reading xy", for distinct prefixes y' and y" of y

YOU: Cleverly pick string z so that *exactly one* of xy'z and xy"z is in L

But M will give the same output on both! Contradiction!

DFA Minimization:

There is an *efficient algorithm* which, given any DFA M, will output the unique minimum-state DFA M* equivalent to M.

If this were true for more general models of computation, that would be an engineering breakthrough!! (Would imply P=NP, for example)

Table-Filling Algorithm to find "distinguishable" pairs of states

Let $L \subseteq \Sigma^*$ and $x, y \in \Sigma^*$ $x \equiv_L y$ iff for all $z \in \Sigma^*$, $[xz \in L \Leftrightarrow yz \in L]$

The Myhill-Nerode Theorem: A language L is regular *if and only if* the number of equivalence classes of \equiv_{I} is *finite*.

Regular = "easy"

Not Regular = "hard"

The Myhill-Nerode Theorem gives us a (universal) way to prove that a given language is not regular:

L is not regular if and only if there are infinitely many equiv. classes of \equiv_{L}

L is not regular if and only if There are infinitely many strings $w_1, w_2, ...$ so that for all $w_i \neq w_j$, w_i and w_j are distinguishable to L: there is a $z \in \Sigma^*$ such that exactly one of $w_i z$ and $w_i z$ is in L

Streaming Algorithms Have three components: **Initialize:** <variables and their assignments> When next symbol seen is σ : <pseudocode using σ and vars> When stream stops (end of string): <accept/reject condition on vars> (or: <pseudocode for output>)

Algorithm A computes $L \subseteq \Sigma^*$ if A accepts the strings in L, rejects strings not in L L = {x | x has odd number of 1's} Has streaming algorithms using O(1) space (that is, it has a DFA) "very easy"

L = {x | x has more 1's than 0's}

Has streaming algorithms using O(log n) space, no streaming algorithm uses much less "easy"

L = {x | x is a palindrome}

Has streaming algorithms using O(n) space, no streaming algorithm uses much less "hard"

For any $L \subseteq \Sigma^*$ define $L_n = \{x \in L \mid |x| \le n\}$

A streaming distinguisher for L_n is a subset D_n of Σ^* : for all distinct $x, y \in D_n$, there is a z in Σ^* such that $|xz| \leq n$, $|yz| \leq n$, and *exactly one* of xz, yz is in L.

Streaming Theorem: Suppose for all n, there is a streaming distinguisher D_n for L_n with $|D_n| \ge 2^{S(n)}$. Then all streaming algs for L must use at least S(n) space!

Idea: Use the set D_n to show that every streaming algorithm for L must enter at least $2^{S(n)}$ different memory states, over all inputs of length at most n. But if there are at least $2^{S(n)}$ distinct memory states, Then the alg must be using at least S(n) bits of space!

Communication Complexity

A theoretical model of distributed computing

• Function $f: \{0,1\}^* \times \{0,1\}^* \to \{0,1\}$

- Two inputs, $x \in \{0,1\}^*$ and $y \in \{0,1\}^*$

- We assume |x| = |y| = n. Think of n as HUGE
- Two computers: Alice and Bob
 Alice only knows x, Bob only knows y
- Goal: Compute f(x, y) by communicating as few bits as possible between Alice and Bob

We do not count computation cost. We only care about the number of bits communicated.

Connection to Streaming and DFAs

Let $L \subseteq \{0,1\}^*$ Def. $f_L: \{0,1\}^* \times \{0,1\}^* \rightarrow \{0,1\}$ for x, y with |x| = |y| as: $f_L(x, y) = 1 \Leftrightarrow xy \in L$

Theorem: If *L* has a streaming algorithm using $\leq s$ space, then cc(f_L) is at most 2s + 1.

 Lower bounds on cc
 Lower bounds on streaming (even with multiple passes)

Connection to Streaming and DFAs

Let $L \subseteq \{0,1\}^*$ Def. $f_L: \{0,1\}^* \times \{0,1\}^* \rightarrow \{0,1\}$ for x, y with |x| = |y| as: $f_L(x, y) = 1 \Leftrightarrow xy \in L$

Examples:

 $L = \{ x \mid x \text{ has an odd number of 1s} \}$ $\Rightarrow f_L(x, y) = PARITY(x, y) \text{ has } \Theta(1) \text{ comm. compl.}$ $L = \{ x \mid x \text{ has more 1s than 0s} \}$ $\Rightarrow f_L(x, y) = MAJORITY(x, y) \text{ has } \Theta(\log n) \text{ comm. compl.}$ $L = \{ xx \mid x \in \{0,1\}^* \}$ $\Rightarrow f_L(x, y) = EQUALS(x, y) \text{ has } \Theta(n) \text{ comm. compl.}$

iff both L and -L are recognizable

Recognizable Computation

accept or reject

accept

Theorem: L is recognizable ⇔ There is a TM V halting on all inputs such that

 $L = \{ x \mid \exists y \in \Sigma^* [V(x,y) \text{ accepts }] \}_{42}$

NO for Turing Machines

Diagonalization Mapping **Reductions** and Oracle **Reductions Rice's Theorem Recursion Theorem** Gödel's Theorems

Decidable = Recognizable ∩ Co-recognizable Church-Turing Thesis

 $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts string } w \}$ Thm. A_{TM} is undecidable: (proof by contradiction) Assume H is a machine that decides A_{TM} Accept if M accepts w $H(\langle M, w \rangle) =$ **Reject** if M does not accept w Define a new TM D with the following spec: $D(\langle M \rangle)$: Run H on $\langle M, M \rangle$ and output the *opposite* of H Rejear if **D** accepts (**D**) $D(\langle D \rangle) =$ Set M=D? Accept (D) does not accept (D)

45

 $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts string } w \}$ Thm. A_{TM} is undecidable: (proof by contradiction) Assume H is a machine that decides A_{TM} Accept if M accepts w $H(\langle M, w \rangle) =$ Reject if M does not accept w Define a new TM D with the following spec: $D(\langle M \rangle)$: Run H on $\langle M, M \rangle$ and output the *opposite* of H Reje .r if D accepts (D) 0 0 D($\langle D \rangle$) = Set M=D? Accept (D) does not accept (D)

46

Mapping Reductions

$f: \Sigma^* \to \Sigma^*$ is a computable function if there is a Turing machine M that halts with just f(w) written on its tape, for every input w

A language A is mapping reducible to language B, written as $A \leq_m B$, if there is a computable $f: \Sigma^* \to \Sigma^*$ such that for every $w \in \Sigma^*$,

$w \in A \Leftrightarrow f(w) \in B$

f is called a mapping reduction (or many-one reduction) from A to B Recursion Thm: For every computable t, there is a computable r such that r(w) = t(R,w) where R is a description of a TM computing r

Moral: Suppose we can design a TM T of the form "On input (x,w), do bla bla with x, do bla bla bla with w, etc. etc." We can always find a TM R with the behavior: "On input w, do bla bla with code of R, do bla bla bla with w, etc. etc."

> We can use the operation: *"Obtain your own description"* in Turing machine pseudocode!

C Limitations on Mathematics

For every consistent and interesting *F*,

Theorem 1. (Gödel 1931) F is *incomplete:* There are mathematical statements in **F** that are *true* but cannot be proved in **F**.

Theorem 2. (Gödel 1931) The consistency of \mathcal{F} cannot be proved in \mathcal{F} .

Theorem 3. (Church-Turing 1936) The problem of checking whether a given statement in *F* has a proof is undecidable.

- For every consistent and interesting *F*,
- **Theorem 1. (Gödel 1931) F** is *incomplete:* There are mathematical statements in **F** that are *true* but cannot be proved in **F**.
- **Theorem 2.** (Gödel 1931) The consistency of \mathcal{F} cannot be proved in \mathcal{F} .

Theorem 3. (Church-Turing 1936) The problem of checking whether a given statement in \mathcal{F} has a proof is undecidable.

Time Complexity

Definition: TIME(t(n)) = { L' | there is a Turing machine M with time complexity O(t(n)) so that L' = L(M) } = { L' | L' is a language decided by a Turing machine with ≤ c t(n) + c running time }

The Time Hierarchy Theorem

Intuition: The more computing time you have, the more problems you can solve.

Theorem: For all "reasonable" f, $g : \mathbb{N} \to \mathbb{N}$ where for all n, $g(n) > n^2 f(n)^2$, TIME(f(n)) \subsetneq TIME(g(n))

Theorem: $L \in NP \iff$ There is a constant k and polynomial-time TM V such that

 $L = \{ x \mid \exists y \in \Sigma^* [|y| \le |x|^k \text{ and } V(x,y) \text{ accepts }] \}$

Moral: A language L is in NP if and only if there are polynomial-length ("nifty") proofs for membership in L

Theorem: L is recognizable \Leftrightarrow There is a TM V that halts on all inputs such that L = { x | \exists y $\in \Sigma^*$ [V(x,y) accepts] } **Definition:** A language B is NP-complete if:

1. B ∈ NP

2. Every A in NP is poly-time reducible to B That is, $A \leq_{p} B$ When this is true, we say "B is NP-hard"

NP-complete problems: "very likely hard" 3SAT, SAT, CLIQUE, IS, VC, SUBSET-SUM, KNAPSACK, PARTITION, BIN-PACKING, ... **Definition:** $coNP = \{ L \mid \neg L \in NP \}$

What does a coNP problem L look like?

The instances *not* in L have *nifty proofs*. Any NP problem L can be written in the form: $L = \{x \mid \exists y \text{ of } poly(|x|) \text{ length so that } V(x,y) \text{ accepts} \}$

¬L = {x | ¬∃y of poly(|x|) length so that V(x,y) accepts} = {x | ∀y of poly(|x|) length, V(x,y) rejects}

Instead of using an "existentially guessing" (nondeterministic) machine, we can define a "universally verifying" machine!

Complexity Classes With Oracles

Let B be a language.

- P^B = { L | L can be decided by some polynomial-time TM with an oracle for B }
- PNP = the class of languages decidable by some polynomial-time oracle TM with an oracle for some B in NP
- NP^{NP} = the class of languages decidable by *some* nondeterministic polynomial-time oracle TM with an oracle for *some* B in NP

NP-complete problems: NHALT, SAT, 3SAT, CLIQUE, VC, SUBSET-SUM, ... **coNP-complete** problems: UNSAT, TAUTOLOGY, NOHAMPATH, ... **PSPACE-complete problems: SPACE-HALT, TQBF, GG** There are also NP^{NP}-complete and coNP^{NP} problems (but you don't need to know them for the final!)

EXPTIME

Oracles: P^{NP}, NP^{NP}, coNP^{NP}

coNP

NP Completeness

Poly-time Reductions

Time Hierarchy

What's next?

- A few possibilities...
- 6.046 Design and Analysis of Algorithms
- 6.841/18.405 Advanced Complexity Theory
- **18.408** Topics in Theoretical Computer Science
- **18.416** Randomized Algorithms
- 6.875 Cryptography and Cryptanalysis

Many more! There's a big theory group at MIT! Time to let the credits roll...

You have been watching: 6.045

Filmed at the MASSACHVSETTS INSTITVTE OF TECHNOLOGY in front of absolutely nobody

Starring: Ryan Williams as "the professor"

A Large Hand Sanitizer Station