6.045

Lecture 22:
 Finish Randomized Complexity, Summary of 6.045

Randomized / Probabilistic Complexity

Probabilistic TMs

A probabilistic TM M is a nondeterministic TM where:

Each nondeterministic step is called a coin flip
Each nondeterministic step has only two legal next moves (heads or tails)
The probability that M runs on a branch b is: $\operatorname{Pr}[b]=2^{-k}$
where k is the number of coin flips that occur on branch b

Definition. A probabilistic TM M decides a language A with error ε if for all strings w,

$$
\begin{aligned}
& w \in A \Rightarrow \operatorname{Pr}[M \text { accepts } w] \geq 1-\varepsilon \\
& w \notin A \Rightarrow \operatorname{Pr}[M \text { doesn't accept w }] \geq 1-\varepsilon
\end{aligned}
$$

Theorem: A language A is in NP if there is a nondeterministic polynomial time TM M such that for all strings w:
$w \in A \Rightarrow \operatorname{Pr}[M$ accepts $w]>0$
$w \notin A \Rightarrow \operatorname{Pr}[M$ accepts $w]=0$

BPP = Bounded Probabilistic \mathbf{P}

$B P P=\{L \mid L$ is recognized by a probabilistic polynomial-time TM with error at most $1 / 3\}$

Why 1/3?

It doesn't matter what error value we pick, as long as the error is smaller than $\mathbf{1 / 2}$.

When the error is smaller than $1 / 2$, we can make it very small by repeatedly running the TM.

An arithmetic formula is like a Boolean formula, except it has +, -, and * instead of OR, NOT, AND.

$$
\begin{gathered}
\text { ZERO-POLY = \{p|p} \text { is an arithmetic formula over } Z \\
\text { that is identically zero }\}
\end{gathered}
$$

Identically zero means: all coefficients are 0
Two examples of formulas in ZERO-POLY:
$(x+y) \cdot(x+y)-x \cdot x-y \cdot y-2 \cdot x \cdot y$
Abbreviate as: $(x+y)^{2}-x^{2}-y^{2}-2 x y$
$\left(x^{2}+a^{2}\right) \cdot\left(y^{2}+b^{2}\right)-(x \cdot y-a \cdot b)^{2}-(x \cdot b+a \cdot y)^{2}$

There is a rich history of polynomial identities in mathematics. Useful also in program testing!

Testing Univariate Polynomials

Let $\mathrm{p}(\mathrm{x})$ be a polynomial in one variable over \mathbf{Z}

$$
p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{d} x^{d}
$$

Suppose p is hidden in a "black box" we can only see its inputs and outputs. Want to determine if p is identically 0

Simply evaluate p on $\mathrm{d}+1$ distinct values!
Non-zero degree d polynomials have $\leq \mathrm{d}$ roots.
But the zero polynomial has every value as a root.

Testing Multivariate Polynomials

Let $\mathrm{p}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ be a polynomial in n variables over \mathbf{Z}
Suppose $\mathrm{p}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ is given to us, but as a very complicated arithmetic formula.
Can we efficiently determine if p is identically 0 ?
If $p\left(x_{1}, \ldots, x_{n}\right)$ is a product of m polynomials, each of which is a polynomial in t terms, $\Pi_{m}\left(\sum_{t} s t u f f\right)$
Then expanding the expression into a \sum of Π could take t^{m} time!

Big Idea: Evaluate p on random values

Theorem (Schwartz-Zippel-DeMillo-Lipton)
Let $p\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a nonzero polynomial, where each x_{i} has degree at most d. Let $F \subset \mathbf{Z}$ be finite. If a_{1}, \ldots, a_{m} are selected randomly from F, then:

$$
\operatorname{Pr}\left[p\left(a_{1}, \ldots, a_{m}\right)=0\right] \leq d n /|F|
$$

Low-deg. nonzero polynomials are nonzero on MANY inputs
Proof (by induction on \mathbf{n}):
Base Case ($\mathrm{n}=1$):

$$
\operatorname{Pr}\left[p\left(a_{1}\right)=0\right] \leq d /|F|
$$

Nonzero polynomials of degree d have most d roots, so at most d elements in F can make p zero

Inductive Step ($n>1$): Assume true for $n-1$ and prove for n

 Let $p\left(x_{1}, \ldots, x_{n}\right)$ be not identically zero.Write: $p\left(x_{1}, \ldots, x_{n}\right)=p_{0}+x_{n} p_{1}+x_{n}{ }^{2} p_{2}+\ldots+x_{n}{ }^{d} p_{d}$ where x_{n} does not occur in any $p_{i}\left(x_{1}, \ldots, x_{n-1}\right)$
Observe: At least one p_{i} is not identically zero
Suppose $\mathrm{p}\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}\right)=0$. Let $\mathrm{q}\left(\mathrm{x}_{\mathrm{n}}\right)=\mathrm{p}\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)$. Two cases:
(1) $q \equiv 0$. That is, for $a / l j, p_{j}\left(a_{1}, \ldots, a_{n-1}\right)=0$ (including $\left.p_{i}\right)$
$\operatorname{Pr}[(1)] \leq \operatorname{Pr}\left[p_{i}\left(a_{1}, \ldots, a_{n-1}\right)=0\right] \leq(n-1) d /|F|$ by induction
(2) q is not identically zero, but $\mathrm{q}\left(\mathrm{a}_{\mathrm{n}}\right)=0$.

Note \mathbf{q} is a univariate degree-d polynomial!
$\operatorname{Pr}[(2)] \leq \operatorname{Pr}\left[q\left(a_{n}\right)=0\right] \leq d /|F|$ by univariate case
$\operatorname{Pr}[(1)$ or $(2)] \leq \operatorname{Pr}[(1)]+\operatorname{Pr}[(2)] \leq n d /|F|$

ZERO-POLY = $\{p \mid p$ is an arithmetic formula over \mathbf{Z} that is identically zero\}
Theorem: ZERO-POLY \in BPP
Proof: Suppose $\mathrm{n}=|\mathrm{p}|$. Then p has $\mathrm{k} \leq \mathrm{n}$ variables, and the degree of each variable is at most n.

Algorithm A: Given polynomial p, For all $i=1, \ldots, k$, choose r_{i} randomly from $\left\{1, \ldots, 3 n^{2}\right\}$ If $p\left(r_{1}, \ldots, r_{k}\right)=0$ then output zero else output nonzero

Observe A runs in polynomial time. If $p \equiv 0$, then $\operatorname{Pr}[A(p)$ outputs zero] = 1 If $p \not \equiv 0$, then by the Schwartz-Zippel lemma, $\operatorname{Pr}[A(p)$ outputs zero $]=\operatorname{Pr}[p(r)=0] \leq n^{2} / 3 n^{2} \leq 1 / 3$

Checking Equivalence of Arithmetic Formulas

ZERO-POLY $=\{p \mid p$ is an arithmetic formula that is identically zero\} Theorem: ZERO-POLY \in BPP

EQUIV-POLY $=\{(p, q) \mid p$ and q are arithmetic
formulas computing the same polynomial\}
Corollary: EQUIV-POLY \in BPP
Proof: (p, q) in EQUIV-POLY $\Leftrightarrow p-q$ in ZERO-POLY
Therefore EQUIV-POLY \leq_{p} ZERO-POLY and we get a BPP algorithm for EQUIV-POLY.
See Sipser 10.2 for an application to testing equivalence of simple programs!

Equivalence of Arithmetic Formulas

EQUIV-POLY $=\{(p, q) \mid p$ and q are arithmetic formulas computing the same polynomial\}

Corollary: EQUIV-POLY \in BPP

There is a big contrast with Boolean formulas!
EQUIV $=\{(\phi, \psi) \mid \phi$ and ψ are Boolean formulas computing the same function\}

We showed EQUIV is in coNP. It's also coNP-complete! TAUTOLOGY \leq_{p} EQUIV: map ϕ to (ϕ, T)

ZERO-POLY $=\{p \mid p$ is an arithmetic formula that is identically zero\}

Theorem: ZERO-POLY \in BPP

It is not known how to solve ZERO-POLY efficiently without randomness!

Thm [Kl'04, AvM'11] If ZERO-POLY $\in \mathbf{P}$ then NEW LOWER BOUNDS FOLLOW (not P $\neq \mathrm{NP}$, but still breakthroughs!)

$B P P=\{L \mid L$ is recognized by a probabilistic polynomial-time TM with error at most 1/3 \}

Is $B P P \subseteq N P ?$

THIS IS AN OPEN QUESTION!

Is BPP \subseteq PSPACE?

Yes! Run through all possible sequences of coin flips one at a time, and count the number of branches that accept.

Known: BPP $\subseteq N^{N P}$ and $B P P \subseteq c o N P N P$, but $B P P \subseteq P^{N P}$ is still open!

Is $N P \subseteq B P P$?

THIS IS AN OPEN QUESTION!

Is BPP = EXPTIME?

THIS IS AN OPEN QUESTIONL?*!\#!

It's widely conjectured that $\mathrm{P}=\mathrm{BPP}$! Certain lower bounds \Rightarrow P = BPP

Is BPP = EXPTIME?

THIS IS AN OPEN QUESTIONL?*!\#!

It's widely conjectured that $\mathrm{P}=\mathrm{BPP}$! Certain lower bounds $\Rightarrow \mathbf{P}=\mathrm{BPP}$

Definition: A language \mathbf{A} is in RP (Randomized P) if there is a nondeterministic polynomial time TM M such that for all strings x :

$$
\begin{aligned}
& x \notin A \Rightarrow \operatorname{Pr}[M(x) \text { accepts }]=0 \\
& x \in A \Rightarrow \operatorname{Pr}[M(x) \text { accepts }]>2 / 3
\end{aligned}
$$

NONZERO-POLY $=\{p \mid p$ is an arithmetic formula that is not identically zero\}

Theorem: NONZERO-POLY \in RP (Our proof of ZERO-POLY in BPP shows this)

Is RP \subseteq NP?

Yes!

Being RP means that not only are there "nifty proofs" but in fact most strings are nifty proofs!

Is $R P \subseteq B P P ?$

Yes!
RP has "one-sided error"
BPP has "two-sided error"

- MIN-FORMULA

EXPTIME PSPACE

Review

Deterministic Finite Automata

transition: for every state and alphabet symbol

Deterministic
Computation

accept or reject

Non-Deterministic Computation

accept

Are these equally powerful??? YES for finite automata

Regular Languages are closed under all of the following operations:

Union: $\mathbf{A} \cup \mathbf{B}=\{\mathbf{w} \mid \mathbf{w} \in \mathbf{A}$ or $\mathbf{w} \in \mathbf{B}\}$
Intersection: $\mathbf{A} \cap \mathbf{B}=\{\mathbf{w} \mid \mathbf{w} \in \mathbf{A}$ and $\mathbf{w} \in \mathbf{B}\}$
Complement: $\neg \mathbf{A}=\left\{\mathbf{w} \in \mathbf{\Sigma}^{*} \mid \mathbf{w} \nsubseteq \mathbf{A}\right\}$
Reverse: $A^{R}=\left\{w_{1} \ldots w_{k} \mid w_{k} \ldots w_{1} \in A\right\}$
Concatenation: $\mathbf{A} \cdot \mathbf{B}=\{\mathbf{v w} \mid \mathbf{v} \in \mathbf{A}$ and $\mathbf{w} \in \mathbf{B}\}$
Star: $A^{*}=\left\{w_{1} \ldots w_{k} \mid k \geq 0\right.$ and each $\left.w_{i} \in A\right\}$

L is regular
if and only if
(\exists DFA \mathbf{M})(\forall strings \boldsymbol{x})[M acc. $\mathrm{x} \Leftrightarrow \mathrm{x} \in \mathrm{L}]$ " M gives the correct output on all strings"

L is NOT regular
if and only if
$(\forall$ DFA $M)\left(\exists\right.$ string $\left.x_{M}\right)\left[M\right.$ acc. $\left.x_{M} \Leftrightarrow \mathbf{x} \notin \mathrm{~L}\right]$ " M gives the wrong output on x_{M} "

So the problem of proving L is NOT regular can be viewed as a problem about designing "bad inputs"

How to Confuse DFAs

Want to show: Language L is not regular

Proof: By contradiction. Assume L is regular. So L has a DFA M with Q states, for some Q > 0 .

YOU: Cleverly pick strings x, y where $|\mathrm{y}|>\mathbf{Q}$

Run M on xy. Pigeons tell us: Some state q of M is visited more than once, while reading in y.

Therefore, \mathbf{M} is in state \mathbf{q} after reading $\mathbf{x y}$ ', and is in q after reading $x y^{\prime \prime}$, for distinct prefixes y^{\prime} and $y^{\prime \prime}$ of y

YOU: Cleverly pick string z so that exactly one of $x y^{\prime} z$ and $x y^{\prime \prime} z$ is in L

But M will give the same output on both! Contradiction!

DFA Minimization:

There is an efficient algorithm which, given any DFA M, will output the unique minimum-state DFA M* equivalent to M.

If this were true for more general models
of computation, that would be an engineering breakthrough!!
(Would imply $\mathrm{P}=\mathrm{NP}$, for example)

Table-Filling Algorithm to find "distinguishable" pairs of states

Let $\mathrm{L} \subseteq \mathbf{\Sigma}^{*}$ and $\mathrm{x}, \mathrm{y} \in \mathbf{\Sigma}^{*}$
 $x \equiv_{\mathrm{L}} y$ iff for all $\mathbf{z} \in \mathbf{\Sigma}^{*},[\mathrm{xz} \in \mathrm{L} \Leftrightarrow \mathrm{yz} \in \mathrm{L}]$

The Myhill-Nerode Theorem:
A language L is regular if and only if the number of equivalence classes of $\equiv_{\llcorner }$is finite.

$$
\begin{gathered}
\text { Regular = "easy" } \\
\text { Not Regular = "hard" }
\end{gathered}
$$

The Myhill-Nerode Theorem gives us a (universal) way to prove that a given language is not regular:

L is not regular if and only if
there are infinitely many equiv. classes of $\overline{\mathrm{E}}_{\mathrm{L}}$

L is not regular if and only if

Distinguishing set for L

There are infinitely many strings w_{1}, w_{2}, \ldots so that for all $\mathrm{w}_{\mathrm{i}} \neq \mathrm{w}_{\mathrm{j}}, \mathrm{w}_{i}$ and w_{j} are distinguishable to L : there is a $\mathbf{z} \in \mathbf{\Sigma}^{*}$ such that exactly one of $w_{i} z$ and $w_{j} z$ is in L

Streaming Algorithms

Have three components:

Initialize:
<variables and their assignments>
When next symbol seen is σ :
<pseudocode using σ and vars>
When stream stops (end of string):
<accept/reject condition on vars>
(or: <pseudocode for output>)
Algorithm A computes $L \subseteq \Sigma^{\star}$ if
A accepts the strings in L, rejects strings not in L

$$
L=\{x \mid x \text { has odd number of 1's }\}
$$

Has streaming algorithms using O(1) space (that is, it has a DFA) "very easy"

$$
L=\{x \mid x \text { has more 1's than 0's }\}
$$

Has streaming algorithms using O(log n) space, no streaming algorithm uses much less "easy"

$$
L=\{x \mid x \text { is a palindrome }\}
$$

Has streaming algorithms using O(n) space, no streaming algorithm uses much less "hard"

For any $L \subseteq \Sigma^{*}$ define $L_{n}=\{x \in L| | x \mid \leq n\}$
A streaming distinguisher for L_{n} is a subset D_{n} of Σ^{*} : for all distinct $\mathbf{x}, \mathrm{y} \in \mathrm{D}_{\mathrm{n}}$, there is a \mathbf{z} in Σ^{*} such that $|x z| \leq n,|y z| \leq n$, and exactly one of $x z, y z$ is in L.

Streaming Theorem: Suppose for all n, there is a streaming distinguisher D_{n} for L_{n} with $\left|D_{n}\right| \geq 2^{S(n)}$.
Then all streaming algs for L must use at least $S(n)$ space!
Idea: Use the set D_{n} to show that every streaming algorithm for L must enter at least $2^{S(n)}$ different memory states, over all inputs of length at most \boldsymbol{n}. But if there are at least $2^{S(n)}$ distinct memory states, Then the alg must be using at least $S(n)$ bits of space!

Communication Complexity

A theoretical model of distributed computing

- Function $f:\{0,1\}^{*} \times\{0,1\}^{*} \rightarrow\{0,1\}$
- Two inputs, $x \in\{0,1\}^{*}$ and $y \in\{0,1\}^{*}$
- We assume $|x|=|y|=n$. Think of n as HUGE
- Two computers: Alice and Bob
- Alice only knows x, Bob only knows y
- Goal: Compute $f(x, y)$ by communicating as few bits as possible between Alice and Bob
We do not count computation cost. We only care about the number of bits communicated.

Connection to Streaming and DFAs

Let $L \subseteq\{0,1\}^{*}$

Def. $f_{L}:\{0,1\}^{*} \times\{0,1\}^{*} \rightarrow\{0,1\}$ for x, y with $|x|=|y|$ as:

$$
f_{L}(x, y)=1 \Leftrightarrow x y \in L
$$

Theorem: If L has a streaming algorithm using $\leq s$ space, then $\mathrm{cc}\left(f_{L}\right)$ is at most $2 s+1$.

Lower bounds on cc
\Rightarrow Lower bounds on streaming
(even with multiple passes)

Connection to Streaming and DFAs

Let $L \subseteq\{0,1\}^{*}$
Def. $f_{L}:\{0,1\}^{*} \times\{0,1\}^{*} \rightarrow\{0,1\}$ for x, y with $|x|=|y|$ as:

$$
f_{L}(x, y)=1 \Leftrightarrow x y \in L
$$

Examples:
$L=\{x \mid x$ has an odd number of $1 s\}$
$\Rightarrow f_{L}(x, y)=\operatorname{PARITY}(x, y)$ has $0(1)$ comm. compl.
$L=\{x \mid x$ has more 1s than 0 s $\}$
$\Rightarrow f_{L}(x, y)=\operatorname{MAJORITY}(\mathrm{x}, \mathrm{y})$ has $0(\log \mathrm{n})$ comm. compl.
$L=\left\{x x \mid x \in\{0,1\}^{*}\right\}$
$\Rightarrow f_{L}(x, y)=$ EQUALS (x, y) has $\Theta(\mathrm{n})$ comm. compl.

Theorem: L is decidable iff both L and $\neg L$ are recognizable

Decidable
 Computation

accept or reject

Recognizable Computation

accept

Theorem: L is recognizable \Leftrightarrow There is a TM V halting on all inputs such that

$$
L=\left\{x \mid \exists y \in \Sigma^{*}[V(x, y) \text { accepts }]\right\}_{\Delta 2}
$$

Decidable
Computation

accept or reject

Recognizable Computation

accept

Are these equally powerful??? NO for Turing Machines

Diagonalization Mapping Reductions and Oracle Reductions
Rice's Theorem Recursion Theorem Gödel's Theorems

recognizable

- NARCISSIST: $\{<M>\mid L(M)=\{<M>\}\}$
decidable

Regular

Decidable $=$ Recognizable \cap Co-recognizable Church-Turing Thesis

$A_{T M}=\{\langle M, w\rangle \mid M$ is a TM that accepts string $w\}$
Thm. A_{TM} is undecidable: (proof by contradiction) Assume H is a machine that decides A_{TM}

$$
H(\langle M, w\rangle)= \begin{cases}\text { Accept } & \text { if } M \text { accepts } w \\ \text { Reject } & \text { if } M \text { does not accept } w\end{cases}
$$

Define a new TM D with the following spec:
$\mathrm{D}(\langle\mathrm{M}\rangle)$: Run H on $\langle\mathrm{M}, \mathrm{M}\rangle$ and output the opposite of H

$$
D(\langle D\rangle)= \begin{cases}\text { Reje } \Delta & \text { if }\rangle \text { accepts }\langle D\rangle \\ \text { Acce t } & \quad \Delta \text { does not accept }\langle D\rangle\end{cases}
$$

$A_{T M}=\{\langle M, w\rangle \mid M$ is a TM that accepts string $w\}$
Thm. A_{TM} is undecidable: (proof by contradiction) Assume H is a machine that decides A_{TM}

$$
H(\langle M, w\rangle)= \begin{cases}\text { Accept } & \text { if } M \text { accepts } w \\ \text { Reject } & \text { if } M \text { does not accept } w\end{cases}
$$

Define a new TM D with the following spec:
$\mathrm{D}(\langle\mathrm{M}\rangle)$: Run H on $\langle\mathrm{M}, \mathrm{M}\rangle$ and output the opposite of H

Mapping Reductions

$f: \Sigma^{*} \rightarrow \Sigma^{*}$ is a computable function if there is a Turing machine M that halts with just $f(w)$ written on its tape, for every input w

A language A is mapping reducible to language B , written as $A \leq_{m} B$, if there is a computable $f: \Sigma^{*} \rightarrow \Sigma^{*}$ such that for every $w \in \Sigma^{*}$,

$$
w \in A \Leftrightarrow f(w) \in B
$$

f is called a mapping reduction (or many-one reduction) from A to B

Recursion Thm: For every computable t, there is a computable r such that $r(w)=t(R, w)$ where R is a description of a TM computing r

Moral: Suppose we can design a TM T of the form "On input (x, w), do bla bla with x , do bla bla bla with w, etc. etc." We can always find a TM R with the behavior: "On input w, do bla bla with code of R, do bla bla bla with w, etc. etc."

We can use the operation: "Obtain your own description" in Turing machine pseudocode!

Limitations on Mathematics

For every consistent and interesting \mathcal{F},
Theorem 1. (Gödel 1931) F is incomplete:
There are mathematical statements in F that are true but cannot be proved in \mathcal{F}.

Theorem 2. (Gödel 1931) The consistency of \mathcal{F} cannot be proved in \mathcal{F}.

Theorem 3. (Church-Turing 1936) The problem of checking whether a given statement in \mathcal{F} has a proof is undecidable.

Limitations on Mathematics

For every consistent and interesting \mathcal{F},
Theorem 1. (Gödel 1931) F is incomplete:
There are mathematical statements in \mathcal{F} that are true but cannot be proved in \mathcal{F}.

Theorem 2. (Gödel 1931) The consistency of \mathcal{F} cannot be proved in \mathcal{F}.

Theorem 3. (Church-Turing 1936) The problem of checking whether a given statement in \mathcal{F} has a proof is undecidable.

Time Complexity

Definition:

$\operatorname{TIME}(\mathrm{t}(\mathrm{n}))=\left\{\mathrm{L}^{\prime} \mid\right.$ there is a Turing machine M with time complexity $O(t(n))$ so that $\mathbf{L}^{\prime}=\mathrm{L}(\mathrm{M})$ \}
$=\left\{L^{\prime} \mid L^{\prime}\right.$ is a language decided by a Turing machine with $\leq \mathrm{ct}(\mathrm{n})+\mathrm{c}$ running time $\}$

The Time Hierarchy Theorem

Intuition: The more computing time you have, the more problems you can solve.

Theorem: For all "reasonable" $\mathbf{f}, \mathbf{g}: \mathbb{N} \rightarrow \mathbb{N}$ where for all $n, g(n)>n^{2} f(n)^{2}, \operatorname{TIME}(f(n)) \subset \operatorname{TIME}(g(n))$

Deterministic
 Poly-Time Computation

accept or reject

Non-Deterministic
Poly-Time Computation

Are these equally powerful???

$$
P=N P \text { ???? }
$$

Theorem: $L \in N P \Leftrightarrow$ There is a constant k and polynomial-time TM V such that

$$
L=\left\{x \mid \exists y \in \Sigma^{*}\left[|y| \leq|x|^{k} \text { and } V(x, y) \text { accepts }\right]\right\}
$$

Moral: A language L is in NP if and only if
there are polynomial-length ("nifty") proofs for membership in L

Theorem: L is recognizable \Leftrightarrow
There is a TM V that halts on all inputs such that

$$
L=\left\{x \mid \exists y \in \Sigma^{*}[V(x, y) \text { accepts }]\right\}
$$

Definition: A language B is NP-complete if:

1. $B \in N P$
2. Every A in NP is poly-time reducible to B That is, $\mathrm{A} \leq_{\mathrm{p}} \mathrm{B}$ When this is true, we say "B is NP-hard"

NP-complete problems: "very likely hard" 3SAT, SAT, CLIQUE, IS, VC, SUBSET-SUM, KNAPSACK, PARTITION, BIN-PACKING, ...

Definition: coNP = \{ L \| $\mathrm{L} \in \mathrm{NP}\}$
What does a coNP problem L look like?
The instances not in L have nifty proofs.
Any NP problem L can be written in the form:
$\mathrm{L}=\{\mathrm{x} \mid \exists \mathrm{y}$ of poly(|x|) length so that $\mathrm{V}(\mathrm{x}, \mathrm{y})$ accepts $\}$
$\neg L=\{x \mid \neg \exists y$ of poly(|x|) length so that $V(x, y)$ accepts $\}$ $=\{x \mid \forall y$ of poly(|x|) length, $V(x, y)$ rejects $\}$

Instead of using an "existentially guessing" (nondeterministic) machine,
we can define a "universally verifying" machine!

Complexity Classes With Oracles

Let B be a language.
$P^{B} \quad=\{L \mid L$ can be decided by some
 polynomial-time TM with an oracle for B \}
PNP = the class of languages decidable by some polynomial-time oracle TM with an oracle for some B in NP

NPNP = the class of languages decidable by some nondeterministic polynomial-time oracle TM with an oracle for some B in NP

NP-complete problems:
NHALT, SAT, 3SAT, CLIQUE, VC, SUBSET-SUM, ...
coNP-complete problems:

UNSAT, TAUTOLOGY, NOHAMPATH, ...

PSPACE-complete problems:
SPACE-HALT, TQBF, GG

There are also NPNP-complete and coNPNP problems
(but you don't need to know them for the final!)

EXPTIME

What's next?

A few possibilities...
6.046 - Design and Analysis of Algorithms
6.841/18.405 - Advanced Complexity Theory
18.408 - Topics in Theoretical Computer Science
18.416 - Randomized Algorithms
6.875 - Cryptography and Cryptanalysis

Many more! There's a big theory group at MIT!
Time to let the credits roll...

You have been watching:

6.045

Filmed at the MASSACHVSETTS INSTITVTE OF TECHNOLOGY in front of absolutely nobody

Starring: Ryan Williams as "the professor"

A Large Hand Sanitizer Station
ncitcolf

