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Lecture 22:
Finish Randomized Complexity,

Summary of 6.045

6.045
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Randomized / Probabilistic
Complexity
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Probabilistic TMs

Each nondeterministic step 
is called a coin flip

Each nondeterministic step 
has only two legal next 
moves (heads or tails)

A probabilistic TM M is a 
nondeterministic TM where:

The probability that M runs on a 
branch b is: Pr [ b ] = 2-k

where k is the number of coin 
flips that occur on branch b
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Definition. A probabilistic TM M decides a 
language A with error  if for all strings w,

w  A ⇒ Pr [ M accepts w ]  1 - 

w  A ⇒ Pr [ M doesn’t accept w ]  1 - 

Theorem: A language A is in NP if there is a 
nondeterministic polynomial time TM M such that 
for all strings w:

w  A ⇒ Pr[ M accepts w ] = 0

w  A ⇒ Pr[ M accepts w ] > 0
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BPP = { L | L is recognized by a probabilistic 
polynomial-time TM with error at most 1/3 }

Why 1/3?

It doesn’t matter what error value we pick, 
as long as the error is smaller than 1/2.

When the error is smaller than 1/2, we can make 
it very small by repeatedly running the TM.

BPP = Bounded Probabilistic P
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ZERO-POLY = { p | p is an arithmetic formula over Z 
that is identically zero}

An arithmetic formula is like a Boolean formula, 
except it has +, –, and * instead of OR, NOT, AND. 

Two examples of formulas in ZERO-POLY:

(x + y)·(x + y) – x·x – y·y – 2·x·y
Abbreviate as:  (x + y)2 – x2 – y2 – 2xy
(x2 + a2)·(y2 + b2) – (x·y – a·b)2 – (x·b + a·y)2 

There is a rich history of polynomial identities in 
mathematics. Useful also in program testing!

Identically zero means: all coefficients are 0
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Testing Univariate Polynomials

Let p(x) be a polynomial in one variable over Z

Simply evaluate p on d+1 distinct values!
Non-zero degree d polynomials have ≤ d roots.
But the zero polynomial has every value as a root.

Suppose p is hidden in a “black box” –
we can only see its inputs and outputs.
Want to determine if p is identically 0

p(x) = a0 + a1x + a2x2+ … + adxd
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If p(x1,…,xn) is a product of m polynomials, each of 
which is a polynomial in t terms, ς𝒎(σ𝒕 𝒔𝒕𝒖𝒇𝒇)
Then expanding the expression into a σ of ς could 
take tm  time!

Big Idea: Evaluate p on random values

Suppose p(x1,…,xn)  is given to us, but as a very 
complicated arithmetic formula.
Can we efficiently determine if p is identically 0?

Testing Multivariate Polynomials

Let p(x1,…,xn) be a polynomial in n variables over Z
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Theorem (Schwartz-Zippel-DeMillo-Lipton)
Let p(x1,x2,…,xn) be a nonzero polynomial, where 
each xi has degree at most d.  Let F ½ Z be finite.

If a1,…, am are selected randomly from F, then:

Pr [ p(a1, …, am) = 0 ]  dn/|F|

Proof (by induction on n):

Base Case (n = 1):

Nonzero polynomials of degree d have most d 
roots, so at most d elements in F can make p zero 

Pr [ p(a1) = 0 ]  d/|F|

Low-deg. nonzero polynomials are nonzero on MANY inputs
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Inductive Step (n > 1): Assume true for n-1 and prove for n

Let p(x1,…,xn) be not identically zero.

Write: p(x1,…,xn) = p0 + xnp1 + xn
2p2 + … + xn

dpd

where xn does not occur in any pi(x1,…,xn-1)

Observe: At least one pi is not identically zero

Suppose p(a1,…,an) = 0. Let q(xn) = p(a1,…,an-1,xn). Two cases:

(1) q ≡ 0. That is, for all j, pj(a1,…,an-1) = 0 (including pi)

(2) q is not identically zero, but q(an) = 0. 
Note q is a univariate degree-d polynomial!

Pr [ (1) or (2) ] ≤ Pr[(1)] + Pr[(2)] ≤ nd/|F|

Pr [ (1) ] ≤ Pr[pi(a1,…,an-1) = 0] ≤ (n-1)d/|F| by induction

Pr [ (2) ] ≤ Pr[q(an) = 0] ≤ d/|F| by univariate case
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ZERO-POLY = { p | p is an arithmetic formula over Z 
that is identically zero}

Theorem:  ZERO-POLY  BPP

Proof: Suppose n=|p|. Then p has k ≤ n variables, and 
the degree of each variable is at most n.

Algorithm A: Given polynomial p,
For all i = 1,…,k,  choose ri randomly from {1,…,3n2} 
If p(r1, …, rk) = 0 then output zero 

else output nonzero

Observe A runs in polynomial time.
If p ≡ 0, then Pr[A(p) outputs zero] = 1
If p ≢ 0, then by the Schwartz-Zippel lemma,

Pr[A(p) outputs zero] = Prr[p(r) = 0] ≤ n2/3n2 ≤ 1/3
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Theorem:  ZERO-POLY  BPP

ZERO-POLY = { p | p is an arithmetic formula 
that is identically zero}

Checking Equivalence of Arithmetic Formulas

Corollary:  EQUIV-POLY  BPP

EQUIV-POLY = { (p,q) | p and q are arithmetic 
formulas computing the same polynomial}

Proof: (p,q) in EQUIV-POLY ⇔ p-q in ZERO-POLY
Therefore EQUIV-POLY ≤𝑷 ZERO-POLY

and we get a BPP algorithm for EQUIV-POLY.

See Sipser 10.2 for an application to testing 
equivalence of simple programs!
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Equivalence of Arithmetic Formulas

Corollary:  EQUIV-POLY  BPP

EQUIV-POLY = { (p,q) | p and q are arithmetic 
formulas computing the same polynomial}

There is a big contrast with Boolean formulas!

EQUIV = { (𝝓,𝝍) | 𝝓 and 𝝍 are Boolean formulas 
computing the same function}

We showed EQUIV is in coNP. It’s also coNP-complete! 
TAUTOLOGY ≤𝑷 EQUIV: map  𝝓 to (𝝓, T) 
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Theorem:  ZERO-POLY  BPP

ZERO-POLY = { p | p is an arithmetic formula 
that is identically zero}

It is not known how to solve ZERO-POLY 
efficiently without randomness!

Thm [KI’04, AvM’11] If ZERO-POLY  P
then NEW LOWER BOUNDS FOLLOW
(not P ≠ NP, but still breakthroughs!)
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Is BPP  NP?

BPP = { L | L is recognized by a probabilistic 
polynomial-time TM with error at most 1/3 }

THIS IS AN OPEN QUESTION!



16

Is BPP  PSPACE?

Yes! Run through all possible sequences 
of coin flips one at a time, and count the 
number of branches that accept. 

Known: BPP  NPNP and BPP  coNPNP, 
but BPP  PNP is still open!
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Is NP  BPP?

THIS IS AN OPEN QUESTION!
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Is BPP = EXPTIME?

THIS IS AN OPEN QUESTION!?*!#!

It’s widely conjectured that P = BPP!
Certain lower bounds ⇒ P = BPP
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Is BPP = EXPTIME?

THIS IS AN OPEN QUESTION!?*!#!

It’s widely conjectured that P = BPP!
Certain lower bounds ⇒ P = BPP
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Definition: A language A is in RP (Randomized P) if 
there is a nondeterministic polynomial time TM M 
such that for all strings x:

x  A  ⇒ Pr[M(x) accepts] = 0

x  A  ⇒ Pr[M(x) accepts] > 2/3

NONZERO-POLY = { p | p is an arithmetic formula 
that is not identically zero}

Theorem:  NONZERO-POLY  RP
(Our proof of ZERO-POLY in BPP 
shows this)
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Is RP  NP?
Yes!

Being RP means that not only are there “nifty proofs”
but in fact most strings are nifty proofs!
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Is RP  BPP?
Yes!

RP has “one-sided error”
BPP has “two-sided error”
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Review
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Deterministic Finite Automata

states

states

q0

q1

q2

q3
start state (q0)

accept states (F)

transition: for every state and alphabet symbol
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Deterministic

Computation

Non-Deterministic

Computation

accept or reject accept

reject

Are these equally powerful???

YES for finite automata

DFAs

NFAs



DFAs NFAs

Regular
Languages

Regular
Expressions

DEFINITION GNFAs
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Regular Languages are closed 
under all of the following operations:

Union: A  B = { w | w  A or w  B } 

Intersection: A  B = { w | w  A and w  B } 

Complement: A = { w  Σ* | w  A } 

Reverse: AR = { w1 …wk | wk …w1  A }

Concatenation: A  B = { vw | v  A and w  B }

Star: A* = { w1 …wk | k ≥ 0 and each wi  A }



L is regular 
if and only if

(∃ DFA M)(∀ strings 𝒙)[M acc. x  x ∈ L]
“M gives the correct output on all strings”

L is NOT regular 
if and only if

(∀ DFA M)(∃ string 𝒙𝑴)[M acc. 𝒙𝑴  x ∉ L]
“M gives the wrong output on 𝒙𝑴”
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So the problem of proving L is NOT regular can be 
viewed as a problem about designing “bad inputs”



Want to show: Language L is not regular 

Proof: By contradiction. Assume L is regular. 
So L has a DFA M with Q states, for some Q > 0. 

YOU: Cleverly pick strings x, y where |y| > Q 

Therefore, M is in state q after reading xy’, and 
is in q after reading xy’’, for distinct prefixes y’ and y’’ of y

But M will give the same output on both! Contradiction!

How to Confuse DFAs

Run M on xy. Pigeons tell us: Some state q of M is 
visited more than once, while reading in y. 

YOU: Cleverly pick string z so that
exactly one of xy’z and xy’’z is in L
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DFA Minimization:

There is an efficient algorithm which, 
given any DFA M, will output the unique 
minimum-state DFA M* equivalent to M.
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If this were true for more general models 
of computation, that would be an 

engineering breakthrough!! 
(Would imply P=NP, for example)

Table-Filling Algorithm 
to find “distinguishable” pairs of states



The Myhill-Nerode Theorem:
A language L is regular if and only if

the number of equivalence classes of  ≡L is finite.

Let L  Σ* and x, y 2 Σ*
x ≡L y   iff for all z 2 Σ*, [xz 2 L  yz 2 L]
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Regular = “easy”

Not Regular = “hard”



The Myhill-Nerode Theorem gives us a (universal) 
way to prove that a given language is not regular:

L is not regular 
if and only if

there are infinitely many equiv. classes of  ≡L

L is not regular 
if and only if
There are infinitely many strings w1, w2, … so that
for all wi  wj, wi and wj are distinguishable to L:

there is a z 2 Σ* such that 

exactly one of wi z and wj z is in L

Distinguishing set for L
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Initialize:
<variables and their assignments>

When next symbol seen is 𝝈:
<pseudocode using 𝝈 and vars>

When stream stops (end of string):
<accept/reject condition on vars>

(or: <pseudocode for output>) 

Streaming Algorithms
Have three components:

Algorithm A computes L ⊆ 𝚺⋆ if 
A accepts the strings in L, rejects strings not in L



L = {x | x has more 1’s than 0’s}

Has streaming algorithms using O(log n) space, 
no streaming algorithm uses much less
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L = {x | x has odd number of 1’s}
Has streaming algorithms using O(1) space
(that is, it has a DFA)

L = {x | x is a palindrome}

Has streaming algorithms using O(n) space, 
no streaming algorithm uses much less

“very easy”

“easy”

“hard”



A streaming distinguisher for Ln is a subset Dn of Σ*: 
for all distinct x, y ∈ Dn , there is a z in Σ* such that 
|xz| ≤ n, |yz| ≤ n, and exactly one of xz, yz is in L.
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Idea: Use the set Dn to show that every streaming 

algorithm for L must enter at least 𝟐𝑺 𝒏 different 
memory states, over all inputs of length at most n.

Streaming Theorem: Suppose for all n, there is a streaming 

distinguisher Dn for Ln with |Dn| ≥ 𝟐𝑺 𝒏 . 
Then all streaming algs for L must use at least 𝑺(𝒏) space!

For any L µ Σ* define Ln = {x ∈ L | |x|≤ n}

But if there are at least 𝟐𝑺 𝒏 distinct memory states, 
Then the alg must be using at least 𝑺(𝒏) bits of space!
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Communication Complexity

A theoretical model of distributed computing
• Function f : {0,1}*£ {0,1}*! {0,1}

– Two inputs, 𝑥 ∈ {0,1}* and 𝑦 ∈ {0,1}*

– We assume |𝒙|=|𝒚|=𝒏. Think of 𝒏 as HUGE

• Two computers: Alice and Bob

– Alice only knows 𝑥, Bob only knows 𝑦

• Goal: Compute f(𝒙, 𝒚) by communicating as 
few bits as possible between Alice and Bob

We do not count computation cost. We only care 
about the number of bits communicated.
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Theorem: If 𝑳 has a streaming algorithm using ≤ 𝒔 space, 
then cc(𝒇𝑳) is at most 2𝒔 + 1.

Lower bounds on cc 
➔ Lower bounds on streaming 

(even with multiple passes)

Connection to Streaming and DFAs

x y

Let 𝑳 ⊆ {0,1}*
Def. 𝒇𝑳: {0,1}*×{0,1}*→ {0,1}
for 𝒙, 𝒚 with |𝒙|=|𝒚| as:

𝒇𝑳 𝒙, 𝒚 = 𝟏 ⇔ 𝒙𝒚 ∈ 𝑳
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x y

Examples:
𝑳 = { x | x has an odd number of 1s} 
⇒ 𝒇𝑳 𝒙, 𝒚 = PARITY(x,y) has 𝚯(1) comm. compl.
𝑳 = { x | x has more 1s than 0s}
⇒ 𝒇𝑳 𝒙, 𝒚 = MAJORITY(x,y) has 𝚯(log n) comm. compl.
𝑳 = { xx | x ∈ {0,1}*} 
⇒ 𝒇𝑳 𝒙, 𝒚 = EQUALS(x,y) has 𝚯(n) comm. compl.

Connection to Streaming and DFAs

Let 𝑳 ⊆ {0,1}*
Def. 𝒇𝑳: {0,1}*×{0,1}*→ {0,1}
for 𝒙, 𝒚 with |𝒙|=|𝒚| as:

𝒇𝑳 𝒙, 𝒚 = 𝟏 ⇔ 𝒙𝒚 ∈ 𝑳
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w  L ?

accept reject

TM

yes no

w  Σ*

L is decidable

w  L ?

accept reject or loop

TM

yes no

w  Σ*

L is recognizable 

Theorem: L is decidable
iff both L and L are recognizable

“easy” “not so easy”
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Decidable

Computation

Recognizable

Computation

accept or reject accept

reject

Theorem: L is recognizable  There is a TM V halting 
on all inputs such that

L = { x |  y ϵ Σ* [ V(x,y) accepts ] }
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Decidable

Computation

Recognizable

Computation

accept or reject accept

reject

Are these equally powerful???

NO for Turing Machines
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Regular

Rice’s Theorem

Recursion Theorem

PROVABILITY

Gödel’s Theorems

Diagonalization

Mapping 
Reductions
and Oracle
Reductions

NARCISSIST:

{<M> | L(M) = {<M>}}

Decidable = Recognizable ∩ Co-recognizable

Church-Turing Thesis
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ATM = { ⟨M,w⟩ | M is a TM that accepts string w }

Thm. ATM is undecidable: (proof by contradiction)

Assume H is a machine that decides ATM

H(⟨M,w⟩) =
Accept if M accepts w

Reject if M does not accept w

Define a new TM D with the following spec:

D( ⟨M⟩ ) =
Reject if M accepts ⟨M⟩

Accept  if M does not accept ⟨M⟩

⟨D⟩
D ⟨D⟩

D ⟨D⟩
Set M=D?

D(⟨M⟩):  Run H on ⟨M,M⟩ and output the opposite of H
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ATM = { ⟨M,w⟩ | M is a TM that accepts string w }

Thm. ATM is undecidable: (proof by contradiction)

Assume H is a machine that decides ATM

H(⟨M,w⟩) =
Accept if M accepts w

Reject if M does not accept w

Define a new TM D with the following spec:

D( ⟨M⟩ ) =
Reject if M accepts ⟨M⟩

Accept  if M does not accept ⟨M⟩

⟨D⟩
D ⟨D⟩

D ⟨D⟩
Set M=D?

D(⟨M⟩):  Run H on ⟨M,M⟩ and output the opposite of H
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Mapping Reductions

f : Σ* → Σ* is a computable function if 
there is a Turing machine M that halts with
just f(w) written on its tape, for every input w

A language A is mapping reducible to language B, 
written as A ≤m B, if there is a computable 
f : Σ* → Σ* such that for every w ∈ Σ*,

w  A   f(w)  B

f is called a mapping reduction 
(or many-one reduction) from A to B
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Recursion Thm: For every computable t, there is a 
computable r such that r(w) = t(R,w) where R is a 

description of a TM computing r

Moral: Suppose we can design a TM T of the form
“On input (x,w), do bla bla with x, 

do bla bla bla with w, etc. etc.”
We can always find a TM R with the behavior:
“On input w, do bla bla with code of R, 

do bla bla bla with w, etc. etc.”

We can use the operation:
“Obtain your own description”
in Turing machine pseudocode!
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For every consistent and interesting F,

Theorem 1. (Gödel 1931) F is incomplete:
There are mathematical statements in F that are 
true but cannot be proved in F.

Theorem 2. (Gödel 1931) The consistency of F
cannot be proved in F.

Theorem 3. (Church-Turing 1936) The problem 
of checking whether a given statement in F has 
a proof is undecidable.

Limitations on Mathematics
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For every consistent and interesting F,

Theorem 1. (Gödel 1931) F is incomplete:
There are mathematical statements in F that are 
true but cannot be proved in F.

Theorem 2. (Gödel 1931) The consistency of F
cannot be proved in F.

Theorem 3. (Church-Turing 1936) The problem 
of checking whether a given statement in F has 
a proof is undecidable.

Limitations on Mathematics
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Definition: 
TIME(t(n))  = { L’ | there is a Turing machine M

with time complexity O(t(n)) so that L’ = L(M) }
= { L’ | L’ is a language decided by a Turing 

machine with ≤ c t(n) + c running time }

Time Complexity

Intuition: The more computing time you have,
the more problems you can solve.

Theorem: For all “reasonable” f, g : ℕ ! ℕ where 

for all n, g(n) > n2 f(n)2 ,

The Time Hierarchy Theorem

TIME(f(n)) ⊊ TIME(g(n))
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Deterministic
Poly-Time Computation

Non-Deterministic
Poly-Time Computation

accept or reject accept

reject

Are these equally powerful???

P = NP ????

“easy” “probably not easy”
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Theorem: L  NP  There is a constant k and 
polynomial-time TM V such that

L = { x |  y ϵ Σ* [|y| ≤ |x|k and V(x,y) accepts ] }

Moral: A language L is in NP 
if and only if 

there are polynomial-length (“nifty”) proofs 
for membership in L

Theorem: L is recognizable 
There is a TM V that halts on all inputs such that

L = { x |  y ϵ Σ* [ V(x,y) accepts ] }
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Definition: A language B is NP-complete if:

1. B  NP

2. Every A in NP is poly-time reducible to B
That is, A ≤P B
When this is true, we say “B is NP-hard”

NP-complete problems:
3SAT, SAT, CLIQUE, IS, VC, SUBSET-SUM, KNAPSACK,
PARTITION, BIN-PACKING, …

“very likely hard”



55

Definition: coNP = { L | L  NP }

The instances 𝒏𝒐𝒕 in L have nifty proofs.
Any NP problem L can be written in the form:
L = {x | ∃y of poly(|x|) length so that V(x,y) accepts}

L = {x | ∃y of poly(|x|) length so that V(x,y) accepts}
= {x | ∀y of poly(|x|) length, V(x,y) rejects} 

Instead of using an “existentially guessing” 
(nondeterministic) machine,
we can define a “universally verifying” machine!

What does a coNP problem L look like?
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Complexity Classes With Oracles

PB =  { L | L can be decided by some 
polynomial-time TM with an oracle for B }

PNP =  the class of languages decidable by 
some polynomial-time oracle TM with an 
oracle for some B in NP

Let B be a language.

P

B

NPNP =  the class of languages decidable by 
some nondeterministic polynomial-time 
oracle TM with an oracle for some B in NP
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NP-complete problems:

NHALT, SAT, 3SAT, CLIQUE, VC, SUBSET-SUM, …

coNP-complete problems:

UNSAT, TAUTOLOGY, NOHAMPATH, …

PSPACE-complete problems:

SPACE-HALT, TQBF, GG

There are also NPNP-complete and coNPNP

problems
(but you don’t need to know them for the final!)
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What’s next?

6.841/18.405 – Advanced Complexity Theory

18.408 – Topics in Theoretical Computer Science

Many more! There’s a big theory group at MIT!
Time to let the credits roll…

A few possibilities…

6.046 – Design and Analysis of Algorithms

18.416 – Randomized Algorithms

6.875 – Cryptography and Cryptanalysis



You have been watching:

6.045

Filmed at the 
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