
1

Lecture 22:
Finish Randomized Complexity,

Summary of 6.045

6.045

2

Randomized / Probabilistic
Complexity

3

Probabilistic TMs

Each nondeterministic step
is called a coin flip

Each nondeterministic step
has only two legal next
moves (heads or tails)

A probabilistic TM M is a
nondeterministic TM where:

The probability that M runs on a
branch b is: Pr [b] = 2-k

where k is the number of coin
flips that occur on branch b

1/4

1/4 1/4

1/16

1/32

1/32

1/16

1/16

4

Definition. A probabilistic TM M decides a
language A with error if for all strings w,

w A ⇒ Pr [M accepts w] 1 -

w A ⇒ Pr [M doesn’t accept w] 1 -

Theorem: A language A is in NP if there is a
nondeterministic polynomial time TM M such that
for all strings w:

w A ⇒ Pr[M accepts w] = 0

w A ⇒ Pr[M accepts w] > 0

5

BPP = { L | L is recognized by a probabilistic
polynomial-time TM with error at most 1/3 }

Why 1/3?

It doesn’t matter what error value we pick,
as long as the error is smaller than 1/2.

When the error is smaller than 1/2, we can make
it very small by repeatedly running the TM.

BPP = Bounded Probabilistic P

6

ZERO-POLY = { p | p is an arithmetic formula over Z
that is identically zero}

An arithmetic formula is like a Boolean formula,
except it has +, –, and * instead of OR, NOT, AND.

Two examples of formulas in ZERO-POLY:

(x + y)·(x + y) – x·x – y·y – 2·x·y
Abbreviate as: (x + y)2 – x2 – y2 – 2xy
(x2 + a2)·(y2 + b2) – (x·y – a·b)2 – (x·b + a·y)2

There is a rich history of polynomial identities in
mathematics. Useful also in program testing!

Identically zero means: all coefficients are 0

7

Testing Univariate Polynomials

Let p(x) be a polynomial in one variable over Z

Simply evaluate p on d+1 distinct values!
Non-zero degree d polynomials have ≤ d roots.
But the zero polynomial has every value as a root.

Suppose p is hidden in a “black box” –
we can only see its inputs and outputs.
Want to determine if p is identically 0

p(x) = a0 + a1x + a2x2+ … + adxd

8

If p(x1,…,xn) is a product of m polynomials, each of
which is a polynomial in t terms, ς𝒎(σ𝒕 𝒔𝒕𝒖𝒇𝒇)
Then expanding the expression into a σ of ς could
take tm time!

Big Idea: Evaluate p on random values

Suppose p(x1,…,xn) is given to us, but as a very
complicated arithmetic formula.
Can we efficiently determine if p is identically 0?

Testing Multivariate Polynomials

Let p(x1,…,xn) be a polynomial in n variables over Z

9

Theorem (Schwartz-Zippel-DeMillo-Lipton)
Let p(x1,x2,…,xn) be a nonzero polynomial, where
each xi has degree at most d. Let F ½ Z be finite.

If a1,…, am are selected randomly from F, then:

Pr [p(a1, …, am) = 0] dn/|F|

Proof (by induction on n):

Base Case (n = 1):

Nonzero polynomials of degree d have most d
roots, so at most d elements in F can make p zero

Pr [p(a1) = 0] d/|F|

Low-deg. nonzero polynomials are nonzero on MANY inputs

10

Inductive Step (n > 1): Assume true for n-1 and prove for n

Let p(x1,…,xn) be not identically zero.

Write: p(x1,…,xn) = p0 + xnp1 + xn
2p2 + … + xn

dpd

where xn does not occur in any pi(x1,…,xn-1)

Observe: At least one pi is not identically zero

Suppose p(a1,…,an) = 0. Let q(xn) = p(a1,…,an-1,xn). Two cases:

(1) q ≡ 0. That is, for all j, pj(a1,…,an-1) = 0 (including pi)

(2) q is not identically zero, but q(an) = 0.
Note q is a univariate degree-d polynomial!

Pr [(1) or (2)] ≤ Pr[(1)] + Pr[(2)] ≤ nd/|F|

Pr [(1)] ≤ Pr[pi(a1,…,an-1) = 0] ≤ (n-1)d/|F| by induction

Pr [(2)] ≤ Pr[q(an) = 0] ≤ d/|F| by univariate case

11

ZERO-POLY = { p | p is an arithmetic formula over Z
that is identically zero}

Theorem: ZERO-POLY BPP

Proof: Suppose n=|p|. Then p has k ≤ n variables, and
the degree of each variable is at most n.

Algorithm A: Given polynomial p,
For all i = 1,…,k, choose ri randomly from {1,…,3n2}
If p(r1, …, rk) = 0 then output zero

else output nonzero

Observe A runs in polynomial time.
If p ≡ 0, then Pr[A(p) outputs zero] = 1
If p ≢ 0, then by the Schwartz-Zippel lemma,

Pr[A(p) outputs zero] = Prr[p(r) = 0] ≤ n2/3n2 ≤ 1/3

12

Theorem: ZERO-POLY BPP

ZERO-POLY = { p | p is an arithmetic formula
that is identically zero}

Checking Equivalence of Arithmetic Formulas

Corollary: EQUIV-POLY BPP

EQUIV-POLY = { (p,q) | p and q are arithmetic
formulas computing the same polynomial}

Proof: (p,q) in EQUIV-POLY ⇔ p-q in ZERO-POLY
Therefore EQUIV-POLY ≤𝑷 ZERO-POLY

and we get a BPP algorithm for EQUIV-POLY.

See Sipser 10.2 for an application to testing
equivalence of simple programs!

13

Equivalence of Arithmetic Formulas

Corollary: EQUIV-POLY BPP

EQUIV-POLY = { (p,q) | p and q are arithmetic
formulas computing the same polynomial}

There is a big contrast with Boolean formulas!

EQUIV = { (𝝓,𝝍) | 𝝓 and 𝝍 are Boolean formulas
computing the same function}

We showed EQUIV is in coNP. It’s also coNP-complete!
TAUTOLOGY ≤𝑷 EQUIV: map 𝝓 to (𝝓, T)

14

Theorem: ZERO-POLY BPP

ZERO-POLY = { p | p is an arithmetic formula
that is identically zero}

It is not known how to solve ZERO-POLY
efficiently without randomness!

Thm [KI’04, AvM’11] If ZERO-POLY P
then NEW LOWER BOUNDS FOLLOW
(not P ≠ NP, but still breakthroughs!)

15

Is BPP NP?

BPP = { L | L is recognized by a probabilistic
polynomial-time TM with error at most 1/3 }

THIS IS AN OPEN QUESTION!

16

Is BPP PSPACE?

Yes! Run through all possible sequences
of coin flips one at a time, and count the
number of branches that accept.

Known: BPP NPNP and BPP coNPNP,
but BPP PNP is still open!

17

Is NP BPP?

THIS IS AN OPEN QUESTION!

18

Is BPP = EXPTIME?

THIS IS AN OPEN QUESTION!?*!#!

It’s widely conjectured that P = BPP!
Certain lower bounds ⇒ P = BPP

19

Is BPP = EXPTIME?

THIS IS AN OPEN QUESTION!?*!#!

It’s widely conjectured that P = BPP!
Certain lower bounds ⇒ P = BPP

20

Definition: A language A is in RP (Randomized P) if
there is a nondeterministic polynomial time TM M
such that for all strings x:

x A ⇒ Pr[M(x) accepts] = 0

x A ⇒ Pr[M(x) accepts] > 2/3

NONZERO-POLY = { p | p is an arithmetic formula
that is not identically zero}

Theorem: NONZERO-POLY RP
(Our proof of ZERO-POLY in BPP
shows this)

21

Is RP NP?
Yes!

Being RP means that not only are there “nifty proofs”
but in fact most strings are nifty proofs!

22

Is RP BPP?
Yes!

RP has “one-sided error”
BPP has “two-sided error”

P

PSPACE

FACTORING

coNP

TAUT

NP

SAT
NPNP

coNPNP

MIN-FORMULA

PNP

EXPTIME

BPP

RP
NPNP

coNPNP

MIN-FORMULA

PNP

P

PSPACE=NPSPACE

FACTORING

coNP

TAUT

NP

SAT
NPNP

coNPNP

MIN-FORMULA

PNP

EXPTIME

BPP

25

Review

26

0
0,1

00

1

1

1

Deterministic Finite Automata

states

states

q0

q1

q2

q3
start state (q0)

accept states (F)

transition: for every state and alphabet symbol

27

Deterministic

Computation

Non-Deterministic

Computation

accept or reject accept

reject

Are these equally powerful???

YES for finite automata

DFAs

NFAs

DFAs NFAs

Regular
Languages

Regular
Expressions

DEFINITION GNFAs

29

Regular Languages are closed
under all of the following operations:

Union: A B = { w | w A or w B }

Intersection: A B = { w | w A and w B }

Complement: A = { w Σ* | w A }

Reverse: AR = { w1 …wk | wk …w1 A }

Concatenation: A B = { vw | v A and w B }

Star: A* = { w1 …wk | k ≥ 0 and each wi A }

L is regular
if and only if

(∃ DFA M)(∀ strings 𝒙)[M acc. x x ∈ L]
“M gives the correct output on all strings”

L is NOT regular
if and only if

(∀ DFA M)(∃ string 𝒙𝑴)[M acc. 𝒙𝑴 x ∉ L]
“M gives the wrong output on 𝒙𝑴”

30

So the problem of proving L is NOT regular can be
viewed as a problem about designing “bad inputs”

Want to show: Language L is not regular

Proof: By contradiction. Assume L is regular.
So L has a DFA M with Q states, for some Q > 0.

YOU: Cleverly pick strings x, y where |y| > Q

Therefore, M is in state q after reading xy’, and
is in q after reading xy’’, for distinct prefixes y’ and y’’ of y

But M will give the same output on both! Contradiction!

How to Confuse DFAs

Run M on xy. Pigeons tell us: Some state q of M is
visited more than once, while reading in y.

YOU: Cleverly pick string z so that
exactly one of xy’z and xy’’z is in L

32

DFA Minimization:

There is an efficient algorithm which,
given any DFA M, will output the unique
minimum-state DFA M* equivalent to M.

32

If this were true for more general models
of computation, that would be an

engineering breakthrough!!
(Would imply P=NP, for example)

Table-Filling Algorithm
to find “distinguishable” pairs of states

The Myhill-Nerode Theorem:
A language L is regular if and only if

the number of equivalence classes of ≡L is finite.

Let L Σ* and x, y 2 Σ*
x ≡L y iff for all z 2 Σ*, [xz 2 L yz 2 L]

33

Regular = “easy”

Not Regular = “hard”

The Myhill-Nerode Theorem gives us a (universal)
way to prove that a given language is not regular:

L is not regular
if and only if

there are infinitely many equiv. classes of ≡L

L is not regular
if and only if
There are infinitely many strings w1, w2, … so that
for all wi wj, wi and wj are distinguishable to L:

there is a z 2 Σ* such that

exactly one of wi z and wj z is in L

Distinguishing set for L

34

Initialize:
<variables and their assignments>

When next symbol seen is 𝝈:
<pseudocode using 𝝈 and vars>

When stream stops (end of string):
<accept/reject condition on vars>

(or: <pseudocode for output>)

Streaming Algorithms
Have three components:

Algorithm A computes L ⊆ 𝚺⋆ if
A accepts the strings in L, rejects strings not in L

L = {x | x has more 1’s than 0’s}

Has streaming algorithms using O(log n) space,
no streaming algorithm uses much less

36

L = {x | x has odd number of 1’s}
Has streaming algorithms using O(1) space
(that is, it has a DFA)

L = {x | x is a palindrome}

Has streaming algorithms using O(n) space,
no streaming algorithm uses much less

“very easy”

“easy”

“hard”

A streaming distinguisher for Ln is a subset Dn of Σ*:
for all distinct x, y ∈ Dn , there is a z in Σ* such that
|xz| ≤ n, |yz| ≤ n, and exactly one of xz, yz is in L.

37

Idea: Use the set Dn to show that every streaming

algorithm for L must enter at least 𝟐𝑺 𝒏 different
memory states, over all inputs of length at most n.

Streaming Theorem: Suppose for all n, there is a streaming

distinguisher Dn for Ln with |Dn| ≥ 𝟐𝑺 𝒏 .
Then all streaming algs for L must use at least 𝑺(𝒏) space!

For any L µ Σ* define Ln = {x ∈ L | |x|≤ n}

But if there are at least 𝟐𝑺 𝒏 distinct memory states,
Then the alg must be using at least 𝑺(𝒏) bits of space!

38

Communication Complexity

A theoretical model of distributed computing
• Function f : {0,1}*£ {0,1}*! {0,1}

– Two inputs, 𝑥 ∈ {0,1}* and 𝑦 ∈ {0,1}*

– We assume |𝒙|=|𝒚|=𝒏. Think of 𝒏 as HUGE

• Two computers: Alice and Bob

– Alice only knows 𝑥, Bob only knows 𝑦

• Goal: Compute f(𝒙, 𝒚) by communicating as
few bits as possible between Alice and Bob

We do not count computation cost. We only care
about the number of bits communicated.

39

Theorem: If 𝑳 has a streaming algorithm using ≤ 𝒔 space,
then cc(𝒇𝑳) is at most 2𝒔 + 1.

Lower bounds on cc
➔ Lower bounds on streaming

(even with multiple passes)

Connection to Streaming and DFAs

x y

Let 𝑳 ⊆ {0,1}*
Def. 𝒇𝑳: {0,1}*×{0,1}*→ {0,1}
for 𝒙, 𝒚 with |𝒙|=|𝒚| as:

𝒇𝑳 𝒙, 𝒚 = 𝟏 ⇔ 𝒙𝒚 ∈ 𝑳

40

x y

Examples:
𝑳 = { x | x has an odd number of 1s}
⇒ 𝒇𝑳 𝒙, 𝒚 = PARITY(x,y) has 𝚯(1) comm. compl.
𝑳 = { x | x has more 1s than 0s}
⇒ 𝒇𝑳 𝒙, 𝒚 = MAJORITY(x,y) has 𝚯(log n) comm. compl.
𝑳 = { xx | x ∈ {0,1}*}
⇒ 𝒇𝑳 𝒙, 𝒚 = EQUALS(x,y) has 𝚯(n) comm. compl.

Connection to Streaming and DFAs

Let 𝑳 ⊆ {0,1}*
Def. 𝒇𝑳: {0,1}*×{0,1}*→ {0,1}
for 𝒙, 𝒚 with |𝒙|=|𝒚| as:

𝒇𝑳 𝒙, 𝒚 = 𝟏 ⇔ 𝒙𝒚 ∈ 𝑳

41

w L ?

accept reject

TM

yes no

w Σ*

L is decidable

w L ?

accept reject or loop

TM

yes no

w Σ*

L is recognizable

Theorem: L is decidable
iff both L and L are recognizable

“easy” “not so easy”

42

Decidable

Computation

Recognizable

Computation

accept or reject accept

reject

Theorem: L is recognizable There is a TM V halting
on all inputs such that

L = { x | y ϵ Σ* [V(x,y) accepts] }

43

Decidable

Computation

Recognizable

Computation

accept or reject accept

reject

Are these equally powerful???

NO for Turing Machines

recognizable

co
-re

co
gn

izab
le

decidable

HALT

ATM

EMPTY

¬ATM

Regular

Rice’s Theorem

Recursion Theorem

PROVABILITY

Gödel’s Theorems

Diagonalization

Mapping
Reductions
and Oracle
Reductions

NARCISSIST:

{<M> | L(M) = {<M>}}

Decidable = Recognizable ∩ Co-recognizable

Church-Turing Thesis

45

ATM = { ⟨M,w⟩ | M is a TM that accepts string w }

Thm. ATM is undecidable: (proof by contradiction)

Assume H is a machine that decides ATM

H(⟨M,w⟩) =
Accept if M accepts w

Reject if M does not accept w

Define a new TM D with the following spec:

D(⟨M⟩) =
Reject if M accepts ⟨M⟩

Accept if M does not accept ⟨M⟩

⟨D⟩
D ⟨D⟩

D ⟨D⟩
Set M=D?

D(⟨M⟩): Run H on ⟨M,M⟩ and output the opposite of H

46

ATM = { ⟨M,w⟩ | M is a TM that accepts string w }

Thm. ATM is undecidable: (proof by contradiction)

Assume H is a machine that decides ATM

H(⟨M,w⟩) =
Accept if M accepts w

Reject if M does not accept w

Define a new TM D with the following spec:

D(⟨M⟩) =
Reject if M accepts ⟨M⟩

Accept if M does not accept ⟨M⟩

⟨D⟩
D ⟨D⟩

D ⟨D⟩
Set M=D?

D(⟨M⟩): Run H on ⟨M,M⟩ and output the opposite of H

47

Mapping Reductions

f : Σ* → Σ* is a computable function if
there is a Turing machine M that halts with
just f(w) written on its tape, for every input w

A language A is mapping reducible to language B,
written as A ≤m B, if there is a computable
f : Σ* → Σ* such that for every w ∈ Σ*,

w A f(w) B

f is called a mapping reduction
(or many-one reduction) from A to B

48

Recursion Thm: For every computable t, there is a
computable r such that r(w) = t(R,w) where R is a

description of a TM computing r

Moral: Suppose we can design a TM T of the form
“On input (x,w), do bla bla with x,

do bla bla bla with w, etc. etc.”
We can always find a TM R with the behavior:
“On input w, do bla bla with code of R,

do bla bla bla with w, etc. etc.”

We can use the operation:
“Obtain your own description”
in Turing machine pseudocode!

49

For every consistent and interesting F,

Theorem 1. (Gödel 1931) F is incomplete:
There are mathematical statements in F that are
true but cannot be proved in F.

Theorem 2. (Gödel 1931) The consistency of F
cannot be proved in F.

Theorem 3. (Church-Turing 1936) The problem
of checking whether a given statement in F has
a proof is undecidable.

Limitations on Mathematics

50

For every consistent and interesting F,

Theorem 1. (Gödel 1931) F is incomplete:
There are mathematical statements in F that are
true but cannot be proved in F.

Theorem 2. (Gödel 1931) The consistency of F
cannot be proved in F.

Theorem 3. (Church-Turing 1936) The problem
of checking whether a given statement in F has
a proof is undecidable.

Limitations on Mathematics

51

Definition:
TIME(t(n)) = { L’ | there is a Turing machine M

with time complexity O(t(n)) so that L’ = L(M) }
= { L’ | L’ is a language decided by a Turing

machine with ≤ c t(n) + c running time }

Time Complexity

Intuition: The more computing time you have,
the more problems you can solve.

Theorem: For all “reasonable” f, g : ℕ ! ℕ where

for all n, g(n) > n2 f(n)2 ,

The Time Hierarchy Theorem

TIME(f(n)) ⊊ TIME(g(n))

52

Deterministic
Poly-Time Computation

Non-Deterministic
Poly-Time Computation

accept or reject accept

reject

Are these equally powerful???

P = NP ????

“easy” “probably not easy”

53

Theorem: L NP There is a constant k and
polynomial-time TM V such that

L = { x | y ϵ Σ* [|y| ≤ |x|k and V(x,y) accepts] }

Moral: A language L is in NP
if and only if

there are polynomial-length (“nifty”) proofs
for membership in L

Theorem: L is recognizable
There is a TM V that halts on all inputs such that

L = { x | y ϵ Σ* [V(x,y) accepts] }

54

Definition: A language B is NP-complete if:

1. B NP

2. Every A in NP is poly-time reducible to B
That is, A ≤P B
When this is true, we say “B is NP-hard”

NP-complete problems:
3SAT, SAT, CLIQUE, IS, VC, SUBSET-SUM, KNAPSACK,
PARTITION, BIN-PACKING, …

“very likely hard”

55

Definition: coNP = { L | L NP }

The instances 𝒏𝒐𝒕 in L have nifty proofs.
Any NP problem L can be written in the form:
L = {x | ∃y of poly(|x|) length so that V(x,y) accepts}

L = {x | ∃y of poly(|x|) length so that V(x,y) accepts}
= {x | ∀y of poly(|x|) length, V(x,y) rejects}

Instead of using an “existentially guessing”
(nondeterministic) machine,
we can define a “universally verifying” machine!

What does a coNP problem L look like?

56

Complexity Classes With Oracles

PB = { L | L can be decided by some
polynomial-time TM with an oracle for B }

PNP = the class of languages decidable by
some polynomial-time oracle TM with an
oracle for some B in NP

Let B be a language.

P

B

NPNP = the class of languages decidable by
some nondeterministic polynomial-time
oracle TM with an oracle for some B in NP

57

NP-complete problems:

NHALT, SAT, 3SAT, CLIQUE, VC, SUBSET-SUM, …

coNP-complete problems:

UNSAT, TAUTOLOGY, NOHAMPATH, …

PSPACE-complete problems:

SPACE-HALT, TQBF, GG

There are also NPNP-complete and coNPNP

problems
(but you don’t need to know them for the final!)

P

FACTORING

coNP

TAUT

NP

SAT
NPNP

coNPNP

MIN-FORMULA

PNP

EXPTIME

NPNP

coNPNP

MIN-FORMULA

PNP

Time
Hierarchy

Poly-time
Reductions

NP
Completeness

Oracles:
PNP, NPNP, coNPNP

coNP

P

PSPACE = NPSPACE

FACTORING

coNP

TAUT

NP

SAT
NPNP

coNPNP

MIN-FORMULA

PNP

EXPTIME

BPP

NPNP

coNPNP

MIN-FORMULA

PNP

GG

TQBF

60

What’s next?

6.841/18.405 – Advanced Complexity Theory

18.408 – Topics in Theoretical Computer Science

Many more! There’s a big theory group at MIT!
Time to let the credits roll…

A few possibilities…

6.046 – Design and Analysis of Algorithms

18.416 – Randomized Algorithms

6.875 – Cryptography and Cryptanalysis

You have been watching:

6.045

Filmed at the
MASSACHVSETTS INSTITVTE OF TECHNOLOGY

in front of
absolutely nobody

Starring:
Ryan Williams

as “the professor”

A Large Hand Sanitizer Station
as itself

a

