6.045

Lecture 3:
 Nondeterminism
 and Regular Expressions

6.045

Announcements:

- Pset 0 is out, due tomorrow 11:59pm
- Latex source of hw on piazza
- Pset 1 coming out tomorrow
- No class next Tuesday (...because next week Monday classes will be on Tuesday)

Deterministic Finite Automata

Computation with finite memory

Non-Deterministic Finite Automata

Computation with finite memory and magical guessing

Non-deterministic Finite Antomata (NF,A)

This NFA recognizes: $\{\mathbf{w} \mid \mathrm{w}$ contains 100\}
An NFA accepts string x
if there is some path reading in x that reaches some accept state from some start state

Every NFA can be perfectly simulated by some DFA!

Theorem: For every NFA N, there is a DFA M such that $\mathrm{L}(\mathrm{M})=\mathrm{L}(\mathrm{N})$

Corollary: A language A is regular if and only if A is recognized by an NFA

Corollary: A is regular iff A^{R} is regular left-to-right DFAs \equiv right-to-left DFAs

From NFAs to DFAs

Input: NFA $\mathbf{N}=\left(\mathbf{Q}, \Sigma, \delta, Q_{0}, F\right)$
Output: DFA M = ($\left.\mathbf{Q}^{\prime}, \Sigma, \delta^{\prime}, \mathbf{q}^{\prime}{ }^{\prime}, F^{\prime}\right)$

accept

To learn if NFA N accepts, we could do the computation of N in parallel, maintaining the set of all possible states that can be reached

Idea:
Set $\mathbf{Q}^{\prime}=\mathbf{2}^{\mathbf{Q}}$

From NFAs to DFAs: Subset Construction

 Input: NFA $N=\left(Q, \Sigma, \delta, Q_{0}, F\right)$Output: DFA M = ($\left.Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}{ }^{\prime}, F^{\prime}\right)$

$$
\begin{aligned}
& \mathbf{Q}^{\prime}=\mathbf{2}^{\mathbf{Q}} \\
& \delta^{\prime}: \mathbf{Q}^{\prime} \times \Sigma \rightarrow \mathbf{Q}^{\prime}
\end{aligned}
$$

For $\mathbf{S} \in \mathbf{Q}^{\prime}, \sigma \in \boldsymbol{\Sigma}: \quad \delta^{\prime}(\mathbf{S}, \sigma)=\cup \boldsymbol{\varepsilon}(\delta(\mathbf{q}, \sigma))$ * $\mathbf{q} \in \mathbf{S}$

$$
\begin{aligned}
& \mathbf{q}_{0}{ }^{\prime}=\varepsilon\left(\mathbf{Q}_{0}\right) \\
& F^{\prime}=\left\{S \in Q^{\prime} \mid f \in S \text { for some } f \in F\right\}
\end{aligned}
$$

Reverse Theorem for Regular Languages

The reverse of a regular language is also a regular language

If a language can be recognized by a DFA that reads strings from right to left, then there is an "normal" DFA that accepts the same language

Proof Sketch?

Given a DFA for a language L, "reverse" its arrows, and flip its start and accept states, getting an NFA.

Convert that NFA back to a DFA!

Using NFAs in place of DFAs can make proofs about regular languages much easier!

Remember this on homework/exams!

Union Theorem using NFAs?

Some Operations on Languages

\rightarrow Union: $A \cup B=\{w \mid w \in A$ or $w \in B\}$
\rightarrow Intersection: $A \cap B=\{\mathbf{w} \mid \mathbf{w} \in \mathbf{A}$ and $\mathbf{w} \in \mathbf{B}\}$
\rightarrow Complement: $\neg \mathbf{A}=\left\{\mathbf{w} \in \mathbf{\Sigma}^{*} \mid \mathbf{w} \notin \mathbf{A}\right\}$
\rightarrow Reverse: $A^{R}=\left\{w_{1} \ldots w_{k} \mid w_{k} \ldots w_{1} \in A, w_{i} \in \boldsymbol{\Sigma}\right\}$
Concatenation: $A \cdot B=\{v w \mid v \in A$ and $w \in B\}$
Star: $A^{*}=\left\{s_{1} \ldots s_{k} \mid k \geq 0\right.$ and each $\left.s_{i} \in A\right\}$
$A^{*}=$ set of all strings over alphabet A

Regular Languages are closed under concatenation

Concatenation: $A \cdot B=\{v w \mid v \in A$ and $w \in B\}$ Given DFAs M_{1} for A and M_{2} for B, connect the accept states of M_{1} to the start state of M_{2}

Regular Languages are closed under concatenation

Concatenation: $A \cdot B=\{v w \mid v \in A$ and $w \in B\}$ Given DFAs \mathbf{M}_{1} for A and $\mathbf{M}_{\mathbf{2}}$ for B, connect the accept states of M_{1} to the start state of M_{2}

Regular Languages are closed under star

$$
A^{*}=\left\{s_{1} \ldots s_{k} \mid k \geq 0 \text { and each } s_{i} \in A\right\}
$$ Let M be a DFA

We construct an NFA N that recognizes $L(M)^{*}$

Formally, the construction is:
Input: DFA M = $\left(\mathbf{Q}, \Sigma, \delta, q_{1}, F\right)$
Output: NFA $\mathbf{N}=\left(Q^{\prime}, \Sigma, \delta^{\prime},\left\{q_{0}\right\}, F^{\prime}\right)$

$$
\begin{aligned}
Q^{\prime} & =Q \cup\left\{q_{0}\right\} \\
F^{\prime} & =F \cup\left\{q_{0}\right\} \\
\delta^{\prime}(q, a) & = \begin{cases}\{\delta(q, a)\} & \text { if } q \in Q \text { and } a \neq \varepsilon \\
\left\{q_{1}\right\} & \text { if } q \in F \text { and } a=\varepsilon \\
\left\{q_{1}\right\} & \text { if } q=q_{0} \text { and } a=\varepsilon \\
\varnothing & \text { if } q=q_{0} \text { and } a \neq \varepsilon \\
\varnothing & \text { else }\end{cases}
\end{aligned}
$$

Regular Languages are closed under star

 How would we prove that the NFA construction works?Want to show: $\mathrm{L}(\mathrm{N})=\mathrm{L}(\mathrm{M})^{*}$

$$
\text { 1. } \mathrm{L}(\mathrm{~N}) \supseteq \mathrm{L}(\mathrm{M})^{*}
$$

$$
\text { 2. } \mathrm{L}(\mathrm{~N}) \subseteq \mathrm{L}(\mathrm{M})^{*}
$$

1. $\mathrm{L}(\mathrm{N}) \supseteq \mathrm{L}(\mathrm{M})^{*}$

Let $w=w_{1} \cdots w_{k}$ be in $L(M)^{*}$ where $w_{1}, \ldots, w_{k} \in L(M)$
We show: \mathbf{N} accepts \mathbf{w} by induction on k
Base Cases:

$$
\begin{array}{lll}
\checkmark & k=0 & (w=\varepsilon) \\
\checkmark & k=1 & (w \in L(M) \text { and } L(M) \subseteq L(N))
\end{array}
$$

Inductive Step: Let $\mathbf{k} \geq 1$ be an integer
I.H. N accepts all strings $v=v_{1} \cdots v_{k} \in L(M)^{*}, v_{i} \in L(M)$

Let $u=u_{1} \cdots u_{k} u_{k+1} \in L(M)^{*}, u_{j} \in L(M)$
N accepts $u_{1} \cdots u_{k}$ (by I.H.) and M accepts u_{k+1} imply that \mathbf{N} also accepts \mathbf{u}
(since N has ε-transitions from final states to start state of M !)

2. $\mathrm{L}(\mathrm{N}) \subseteq \mathrm{L}(\mathrm{M})^{*}$

Let \mathbf{w} be accepted by N ; we want to show $\mathbf{w} \in \mathrm{L}(\mathrm{M})^{*}$ If $w=\varepsilon$, then $w \in L(M)^{*}$
I.H. N accepts u and takes $k \varepsilon$-transitions $\Rightarrow \mathbf{u} \in \mathrm{L}(\mathrm{M})^{*}$

Let w be accepted by \mathbf{N} with $\mathbf{k + 1}$ ε-transitions.

Write w as w=uv, where v is the substring read after the last ε transition

Regular Languages are closed under all of the following operations:

Union: $A \cup B=\{w \mid w \in A$ or $w \in B\}$
Intersection: $\mathbf{A} \cap \mathbf{B}=\{\mathbf{w} \mid \mathbf{w} \in \mathbf{A}$ and $\mathbf{w} \in \mathbf{B}\}$
Complement: $\neg \mathbf{A}=\left\{\mathbf{w} \in \mathbf{\Sigma}^{*} \mid \mathbf{w} \notin \mathbf{A}\right\}$
Reverse: $A^{R}=\left\{w_{1} \ldots w_{k} \mid w_{k} \ldots w_{1} \in A, w_{i} \in \boldsymbol{\Sigma}\right\}$
Concatenation: $A \cdot B=\{v w \mid v \in A$ and $w \in B\}$
Star: $A^{*}=\left\{s_{1} \ldots s_{k} \mid k \geq 0\right.$ and each $\left.s_{i} \in A\right\}$

Regular Expressions: Computation as Description

A different way of thinking about computation: What is the complexity of describing the strings in the language?

Syntax

Inductive Definition of Regexp

Let Σ be an alphabet. We define the regular expressions over Σ inductively:

For all $\sigma \in \Sigma, \sigma$ is a regexp

$$
\begin{aligned}
& \varepsilon \text { is a regexp } \\
& \varnothing \text { is a regexp }
\end{aligned}
$$

If R_{1} and R_{2} are both regexps, then

$$
\left(R_{1} R_{2}\right),\left(R_{1}+R_{2}\right) \text {, and }\left(R_{1}\right) * \text { are regexps }
$$

Examples: $\left.\varepsilon, 0,(1)^{*},(0+1)^{*},\left(\left((0)^{*} 1\right)^{*} 1\right)+(10)\right)$

Precedence Order:

*

then

then +

Example: $\mathrm{R}_{1}{ }^{*} \mathrm{R}_{\mathbf{2}}+\mathrm{R}_{\mathbf{3}}=\left(\left(\mathrm{R}_{1}{ }^{*}\right) \cdot \mathrm{R}_{\mathbf{2}}\right)+\mathrm{R}_{\mathbf{3}}$

Semantics

Definition: Regexps Describe Languages

The regexp $\sigma \in \Sigma$ represents the language $\{\sigma\}$ The regexp ε represents $\{\varepsilon\}$
The regexp \varnothing represents \varnothing
If R_{1} and $R_{\mathbf{2}}$ are regular expressions representing L_{1} and L_{2} then:
$\left(R_{1} R_{2}\right)$ represents $L_{1} \cdot L_{2}$
$\left(R_{1}+R_{2}\right)$ represents $L_{1} \cup L_{2}$
$\left(R_{1}\right)^{*}$ represents L_{1}^{*}

Example: $(10+0 * 1)$ represents $\{10\} \cup\left\{0^{k} 1 \mid k \geq 0\right\}$

Regexps Describe Languages

For every regexp R , define $L(R)$ to be the language that R represents

A string $w \in \Sigma^{*}$ is accepted by R
(or, w matches R) if $w \in L(R)$

Examples: 0, 010, and 01010 match (01)*0
110101110101100 matches (0+1)*0

Assume $\Sigma=\{0,1\}$

\{ w | w has exactly a single 1 \}
 0*10*

\{ w | w contains 001 \}
$(0+1)^{*} 001(0+1)^{*}$

```
Assume \(\Sigma=\{0,1\}\)
```


What language does the regexp \varnothing^{*} represent?
 $\{\varepsilon\}$

Assume $\Sigma=\{0,1\}$

$\{\mathbf{w} \mid \mathbf{w}$ has length $\geq \mathbf{3}$ and its 3 rd symbol is $\mathbf{0}$ \}

$(0+1)(0+1) 0(0+1)^{*}$

Assume $\Sigma=\{0,1\}$
$\{\mathbf{w} \mid \mathbf{w}=\boldsymbol{\varepsilon}$ or every odd position in \mathbf{w} is a 1 \}

$$
(1(0+1))^{*}(1+\varepsilon)
$$

How expressive are regular expressions?

During the "nerve net" hype in the 1950s...
U. S. AIR FORCE

PROJECT RAND

RESEARCH MEMORANDUM

$$
\begin{aligned}
& \begin{array}{l}
\text { RISPRESENTATION OF EVIENTS D NBRVE NETS A! D } \\
\text { FINITB AUTO }
\end{array} \\
& \text { S. C. Kleene } \\
& \text { RM-704 }
\end{aligned}
$$

15 December 1951

DFAs \equiv NFAs \equiv Regular Expressions!

L can be represented by some regexp
$\Leftrightarrow \quad L$ is regular

L can be represented by some regexp
 $\Rightarrow \mathrm{L}$ is regular

Induction Step: Suppose every regexp of length < k represents some regular language.

Consider a regexp R of length $k>1$

Three possibilities for R:

$$
\begin{aligned}
& \mathrm{R}=\mathrm{R}_{1}+\mathrm{R}_{2} \\
& \mathrm{R}=\mathrm{R}_{1} \mathrm{R}_{2} \\
& \mathrm{R}=\left(\mathrm{R}_{1}\right)^{*}
\end{aligned}
$$

Induction Step: Suppose every regexp of length < k represents some regular language.

Consider a regexp R of length $k>1$

Three possibilities for R:

$$
\begin{array}{lr}
R=R_{1}+R_{2} & \begin{array}{c}
\text { By induction, } R_{1} \text { and } R_{2} \text { represent } \\
\text { some regular languages, } L_{1} \text { and } L_{2}
\end{array} \\
R=R_{1} R_{2} & \text { But } L(R)=L\left(R_{1}+R_{2}\right)=L_{1} \cup L_{2} \\
R=\left(R_{1}\right)^{*} & \text { so } L(R) \text { is regular, by the union theor }
\end{array}
$$

Induction Step: Suppose every regexp of length < k represents some regular language.

Consider a regexp R of length $\mathrm{k}>1$

Three possibilities for R:

$$
\left.\begin{array}{cc}
R=R_{1}+R_{2} & \begin{array}{c}
\text { By induction, } R_{1} \text { and } R_{2} \text { represent } \\
\text { some regular languages, } L_{1} \text { and } L_{2}
\end{array} \\
R=R_{1} R_{2} & B u t L(R)=L\left(R_{1} \cdot R_{2}\right)=L_{1} \cdot L_{2}
\end{array} \quad \begin{array}{lc}
\text { Thus } L(R) \text { is regular because regular }
\end{array} R_{1}\right)^{*} \quad \begin{gathered}
\text { languages are closed under concatenation }
\end{gathered}
$$

Induction Step: Suppose every regexp of length < k represents some regular language.

Consider a regexp R of length $\mathrm{k}>1$

Three possibilities for R:

$$
\begin{aligned}
& \mathrm{R}=\mathrm{R}_{1}+\mathrm{R}_{2} \\
& \mathrm{R}=\mathrm{R}_{1} \mathrm{R}_{2} \\
& \mathrm{R}=\left(\mathrm{R}_{1}\right)^{*}
\end{aligned}
$$

By induction, R_{1} represents
a regular language L_{1}

$$
\text { But } L(R)=L\left(R_{1}{ }^{*}\right)=L_{1}{ }^{*}
$$

Thus $L(R)$ is regular because regular languages are closed under star

Induction Step: Suppose every regexp of length < k represents some regular language.

Consider a regexp R of length $\mathrm{k}>1$
Three possibilities for R :

$$
\begin{array}{cc}
R=R_{1}+R_{2} & \text { By induction, } R_{1} \text { represents } \\
R=R_{1} R_{2} & \text { a regular language } L_{1} \\
R=\left(R_{1}\right)^{*} & \text { But } L(R)=L\left(R_{1}{ }^{*}\right)=L_{1}{ }^{*} \\
\text { Thus } L(R) \text { is regular because regular } \\
\text { languages are closed under star }
\end{array}
$$

Give an NFA that accepts the language represented by (1(0 + 1))*

Regular expression: ($1(0+1))^{*}$

Generalized NFAs (GNFA)

L can be represented by a regexp
L is a regular language
Idea: Transform a DFA for Linto a regular expression by removing states and re-labeling the arcs with regular expressions

Rather than reading in just 0 or 1 letters from the string on an arc, we can read in entire substrings

Generalized NFA (GNFA)

This GNFA recognizes $L(a * b(c b) * a) \quad c b$

Accept string $x \Leftrightarrow$ there is some path of regexps R_{1}, \ldots, R_{k} from start state to final state such that x matches $\boldsymbol{R}_{1} \cdots \boldsymbol{R}_{\boldsymbol{k}}$

Is aaabcbcba accepted or rejected?
Is bba accepted or rejected?
Is bcba accepted or rejected?

Generalized NFA (GNFA)

This GNFA recognizes $L(a * b(c b) * a) \quad c b$

Accept string $x \Leftrightarrow$ there is some path of regexps R_{1}, \ldots, R_{k} from start state to final state such that x matches $\boldsymbol{R}_{1} \cdots \boldsymbol{R}_{\boldsymbol{k}}$

Every NFA is also a GNFA.
Every regexp can be converted into
a GNFA with just two states!

Add unique start and accept states

Goal: Replace
DFA
with a single regexp R

Then, $\mathrm{L}(\boldsymbol{R})=\mathrm{L}(\mathrm{DFA})$

While the machine has more than $\mathbf{2}$ states:
Pick an internal state, rip it out and re-label the arrows with regexps, to account for paths through the missing state

While the machine has more than $\mathbf{2}$ states:
Pick an internal state, rip it out and re-label the arrows with regexps, to account for paths through the missing state

While the machine has more than $\mathbf{2}$ states:

In general:

While the machine has more than $\mathbf{2}$ states:

In general:

Formally: Given a DFA M, add $\mathrm{q}_{\text {start }}$ and $\mathrm{q}_{\text {acc }}$ to create G For all $q, q^{\prime} \in Q$, define $R\left(q, q^{\prime}\right)=\sigma_{1}+\cdots+\sigma_{k}$ s.t. $\delta\left(q, \sigma_{i}\right)=q^{\prime}$ CONVERT(G): (Takes a GNFA, outputs a regexp)

If \#states = $\mathbf{2}$ return $R\left(q_{\text {start }}, q_{\text {acc }}\right)$
If \#states > $\mathbf{2}$
pick $\mathbf{q}_{\text {rip }} \in \mathbf{Q}$ different from $\mathbf{q}_{\text {start }}$ and $\mathbf{q}_{\text {acc }}$
define $Q^{\prime}=Q-\left\{q_{\text {rip }}\right\}$ defines a define R^{\prime} on $Q^{\prime}-\left\{q_{\text {acc }}\right\} \times Q^{\prime}-\left\{q_{\text {start }}\right\}$ as: new GNFA G'

$$
R^{\prime}\left(q_{i}, q_{j}\right)=R\left(q_{i} ; q_{r i p}\right) R\left(q_{r i p}, q_{r i p}\right) * R\left(q_{r i p}, q_{j}\right)+R\left(q_{i}, q_{j}\right)
$$ return CONVERT(G')

Theorem: Let $\mathrm{R}=\mathrm{CONVERT}(\mathrm{G})$. Then $L(R)=L(M)$.

Claim:
$\mathrm{L}\left(\mathrm{G}^{\prime}\right)=\mathrm{L}(\mathrm{G})$
[Sipser, p.73-74]

