6.045

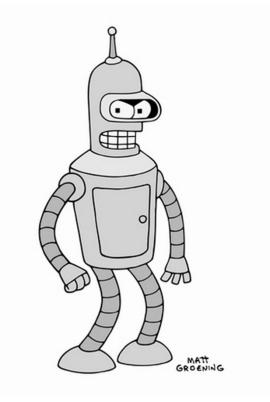
Lecture 3: Nondeterminism and Regular Expressions

6.045

Announcements:

- Pset 0 is out, due tomorrow 11:59pm
 - Latex source of hw on piazza
 - Pset 1 coming out tomorrow
- No class next Tuesday (...because next week Monday classes will be on Tuesday)

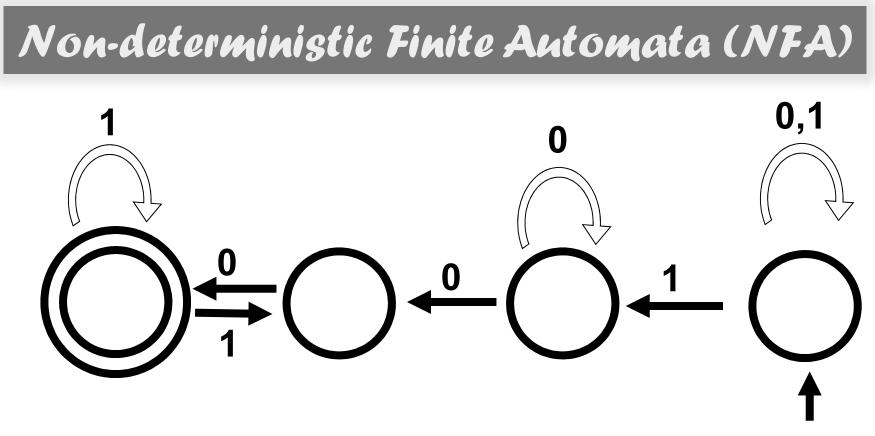
Deterministic Finite Automata



Computation with finite memory

Non-Deterministic Finite Automata

Computation with finite memory and magical guessing



This NFA recognizes: {w | w contains 100}

An NFA accepts string x if there is some path reading in x that reaches some accept state from some start state

Every NFA can be perfectly simulated by some DFA!

Theorem: For every NFA N, there is a DFA M such that L(M) = L(N)

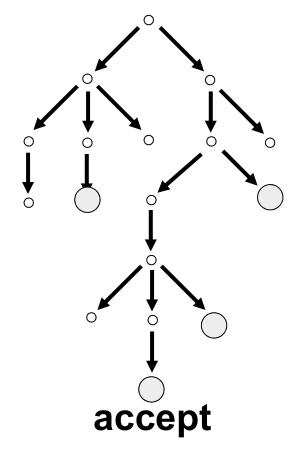
Corollary: A language A is regular if and only if A is recognized by an NFA

Corollary: A is regular iff A^R is regular left-to-right DFAs \equiv right-to-left DFAs

From NFAs to DFAs

Input: NFA N = (Q, Σ , δ , Q₀, F)

Output: DFA M = (Q', Σ , δ' , q_0' , F')



To learn if NFA N accepts, we could do the computation of N *in parallel*, maintaining the set of *all* possible states that can be reached

Idea: Set $Q' = 2^Q$

From NFAs to DFAs: Subset Construction Input: NFA N = (Q, Σ, δ, Q_∩, F) Output: DFA M = (Q', Σ , δ' , q_0' , F') **Q'** = 2^Q $\delta': \mathbf{Q}' \times \mathbf{\Sigma} \rightarrow \mathbf{Q}'$ For $S \in Q', \sigma \in \Sigma$: $\delta'(S,\sigma) = \bigcup \epsilon(\delta(q,\sigma)) *$ q∈S $\mathbf{q}_0' = \mathbf{\epsilon}(\mathbf{Q}_0)$ $F' = \{ S \in Q' \mid f \in S \text{ for some } f \in F \}$ For $S \subseteq Q$, the ϵ -closure of S is ¥ $\varepsilon(S) = \{r \in Q \text{ reachable from some } q \in S\}$ by taking zero or more *\varepsilon*-transitions}

Reverse Theorem for Regular Languages

The reverse of a regular language is also a regular language

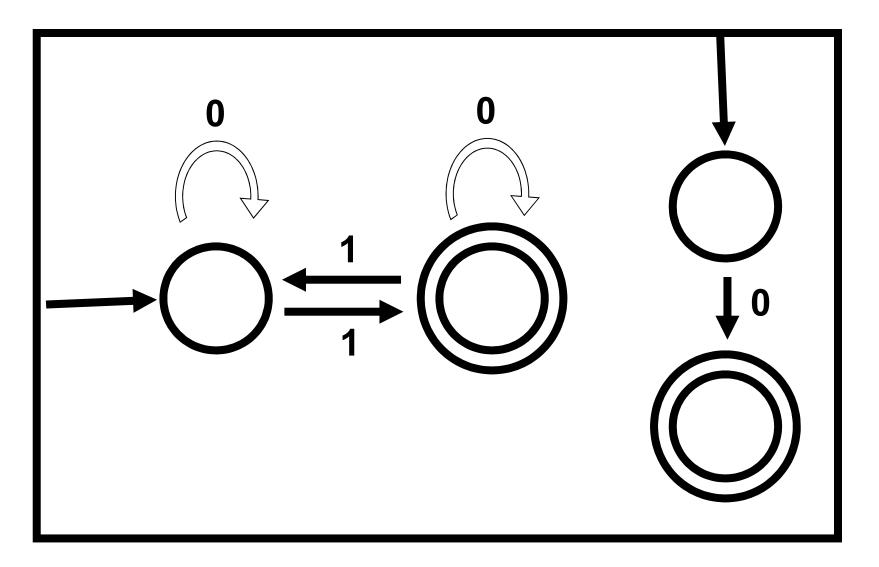
If a language can be recognized by a DFA that reads strings from *right* to *left*, *then* there is an "normal" DFA that accepts the same language

Proof Sketch?

Given a DFA for a language L, "reverse" its arrows, and flip its start and accept states, getting an NFA. Convert that NFA back to a DFA! Using NFAs in place of DFAs can make proofs about regular languages *much* easier!

Remember this on homework/exams!

Union Theorem using NFAs?



Some Operations on Languages

- $\rightarrow \quad \text{Union: } A \cup B = \{ w \mid w \in A \text{ or } w \in B \}$
- → Intersection: $A \cap B = \{ w \mid w \in A \text{ and } w \in B \}$
- → Complement: $\neg A = \{ w \in \Sigma^* \mid w \notin A \}$
- $\implies \text{Reverse: } A^{\mathsf{R}} = \{ w_1 \dots w_k \mid w_k \dots w_1 \in \mathsf{A}, w_i \in \mathsf{\Sigma} \}$

Concatenation: $A \cdot B = \{ vw \mid v \in A \text{ and } w \in B \}$

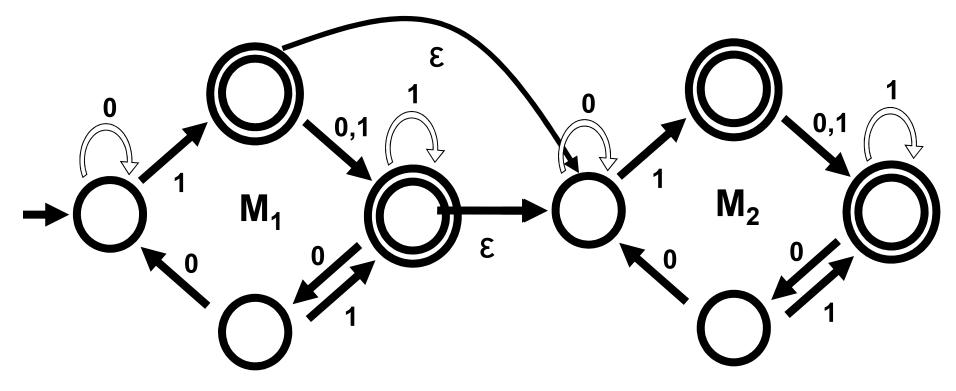
Star: $A^* = \{ s_1 \dots s_k \mid k \ge 0 \text{ and each } s_i \in A \}$ $A^* = \text{set of all strings over alphabet } A$

Regular Languages are closed under concatenation

Concatenation: $A \cdot B = \{vw \mid v \in A \text{ and } w \in B\}$

Given DFAs M₁ for A and M₂ for B, connect

the accept states of M_1 to the start state of M_2

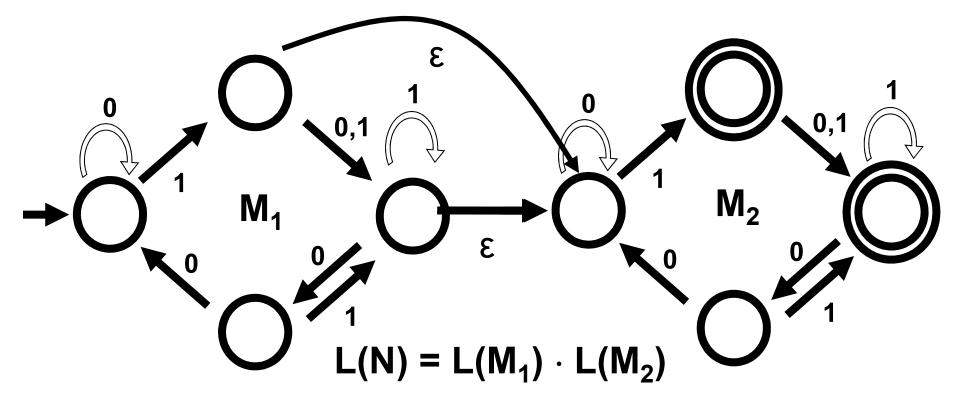


Regular Languages are closed under concatenation

Concatenation: $A \cdot B = \{vw \mid v \in A \text{ and } w \in B\}$

Given DFAs M₁ for A and M₂ for B, connect

the accept states of M_1 to the start state of M_2

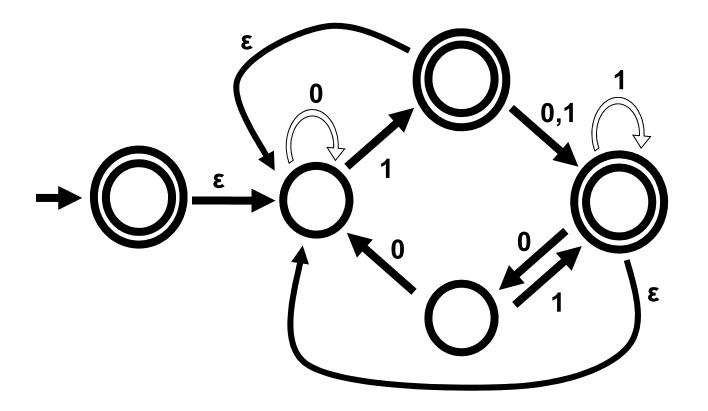


Regular Languages are closed under star

 $A^* = \{ s_1 \dots s_k \mid k \ge 0 \text{ and each } s_i \in A \}$

Let M be a DFA

We construct an NFA N that recognizes L(M)*



Formally, the construction is:

Input: DFA M = (Q, Σ , δ , q_1 , F)

Output: NFA N = (Q', Σ, \delta', {q₀}, F')

$$\begin{split} & \iota_{q_0} \} \\ \delta'(\mathbf{q}, \mathbf{a}) = \begin{cases} \{\delta(\mathbf{q}, \mathbf{a})\} & \text{if } \mathbf{q} \in \mathbf{Q} \text{ and } \mathbf{a} \neq \varepsilon \\ \{q_1\} & \text{if } \mathbf{q} \in \mathbf{F} \text{ and } \mathbf{a} = \varepsilon \\ \{q_1\} & \text{if } \mathbf{q} = q_0 \text{ and } \uparrow \\ \emptyset & \text{if } \uparrow - \\ \emptyset & \text{if } \uparrow - \end{cases} \end{split}$$

if
$$q = q_0$$
 and $a = \varepsilon$

if
$$q = q_0$$
 and $a \neq \epsilon$

Regular Languages are closed under star

How would we *prove* that the NFA construction works?

Want to show: $L(N) = L(M)^*$

1. L(N) ⊇ L(M)*

2. L(N) ⊆ L(M)*

1. L(N) ⊇ **L(M)***

Let $w = w_1 \cdots w_k$ be in L(M)* where $w_1, \dots, w_k \in L(M)$ We show: N accepts w by induction on k Base Cases:

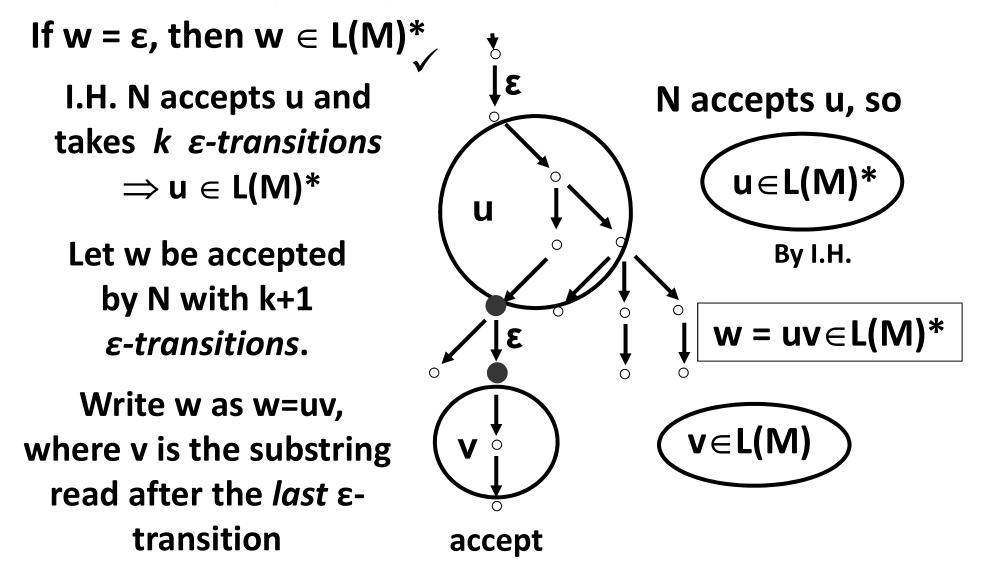
$$\begin{array}{ll} \checkmark & k=0 & (w=\epsilon) \\ \checkmark & k=1 & (w\in L(M) \text{ and } L(M)\subseteq L(N)) \end{array}$$

Inductive Step: Let $k \ge 1$ be an integer

I.H. N accepts all strings $v = v_1 \cdots v_k \in L(M)^*$, $v_i \in L(M)$ Let $u = u_1 \cdots u_k u_{k+1} \in L(M)^*$, $u_j \in L(M)$ N accepts $u_1 \cdots u_k$ (by I.H.) and M accepts u_{k+1} imply that N also accepts u

(since N has ε -transitions from final states to start state of M!)

Let w be accepted by N; we want to show $w \in L(M)^*$



Regular Languages are closed under all of the following operations: Union: $A \cup B = \{ w \mid w \in A \text{ or } w \in B \}$ Intersection: $A \cap B = \{ w \mid w \in A \text{ and } w \in B \}$ Complement: $\neg A = \{ w \in \Sigma^* \mid w \notin A \}$ Reverse: $A^{R} = \{ w_{1} ... w_{k} \mid w_{k} ... w_{1} \in A, w_{i} \in \Sigma \}$ Concatenation: $A \cdot B = \{vw \mid v \in A \text{ and } w \in B\}$ Star: $A^* = \{ s_1 \dots s_k \mid k \ge 0 \text{ and each } s_i \in A \}$

Regular Expressions: Computation as Description

A different way of thinking about computation: What is the complexity of describing the strings in the language?

Inductive Definition of Regexp

Let Σ be an alphabet. We define the regular expressions over Σ inductively:

For all $\sigma \in \Sigma$, σ is a regexp ε is a regexp \emptyset is a regexp

If R₁ and R₂ are both regexps, then (R₁R₂), (R₁ + R₂), and (R₁)* are regexps

Examples: ε, 0, (1)*, (0+1)*, ((((0)*1)*1) + (10))

Precedence Order: * then • then +

Example: $R_1^*R_2 + R_3 = ((R_1^*) \cdot R_2) + R_3$

Definition: Regexps Describe Languages The regexp $\sigma \in \Sigma$ represents the language $\{\sigma\}$ The regexp ε represents { ε } The regexp \varnothing represents \varnothing If R₁ and R₂ are regular expressions representing L₁ and L₂ then: (R_1R_2) represents $L_1 \cdot L_2$ $(R_1 + R_2)$ represents $L_1 \cup L_2$ $(R_1)^*$ represents L_1^*

Example: (10 + 0*1) represents {10} \cup {0^k1 | k \ge 0}

Regexps Describe Languages

For every regexp R, define L(R) to be the language that R represents

> A string $w \in \Sigma^*$ is accepted by R (or, w matches R) if $w \in L(R)$

Examples: 0, 010, and 01010 match (01)*0 110101110101100 matches (0+1)*0 Assume $\Sigma = \{0, 1\}$

{ w | w contains 001 }
(0+1)*001(0+1)*

Assume $\Sigma = \{0, 1\}$

What language does the regexp \varnothing^* represent? { ϵ }

Assume $\Sigma = \{0, 1\}$

$\{ w \mid w \text{ has length} \geq 3 \text{ and its } 3rd \text{ symbol is } 0 \}$

(0+1)(0+1)0(0+1)*

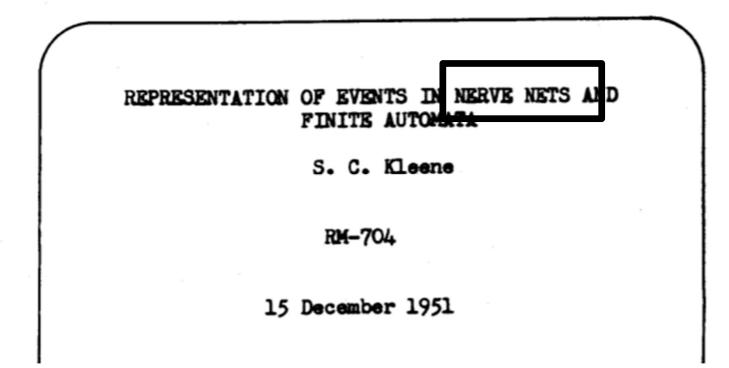
Assume
$$\Sigma = \{0,1\}$$

{ w | w = ε or every odd position in w is a 1 } (1(0 + 1))*(1 + ε)

How expressive are regular expressions?

During the "nerve net" hype in the 1950s...

RESEARCH MEMORANDUM



DFAs \equiv **NFAs** \equiv **Regular Expressions!**

L can be represented by some regexp ⇔ L is regular

L can be represented by some regexp \Rightarrow L is regular

Consider a regexp R of length k > 1

Three possibilities for R:

 $R = R_1 + R_2$ $R = R_1 R_2$ $R = (R_1)^*$

Consider a regexp R of length k > 1

Three possibilities for R:

 $R = R_1 + R_2$ By induction, R_1 and R_2 represent
some regular languages, L_1 and L_2 $R = R_1 R_2$ But $L(R) = L(R_1 + R_2) = L_1 \cup L_2$ $R = (R_1)^*$ so L(R) is regular, by the union theorem!

Consider a regexp R of length k > 1

Three possibilities for R:

 $R = R_1 + R_2$ By induction, R_1 and R_2 represent
some regular languages, L_1 and L_2 $R = R_1 R_2$ But $L(R) = L(R_1 \cdot R_2) = L_1 \cdot L_2$ $R = (R_1)^*$ Thus L(R) is regular because regular
languages are closed under concatenation

Consider a regexp R of length k > 1

Three possibilities for R:

$R = R_1 + R_2$	By induction, R ₁ represents
	a regular language L ₁
$\mathbf{R} = \mathbf{R}_1 \mathbf{R}_2$	But L(R) = L(R ₁ *) = L ₁ *
R = (R ₁)*	Thus L(R) is regular because regular
	languages are closed under star

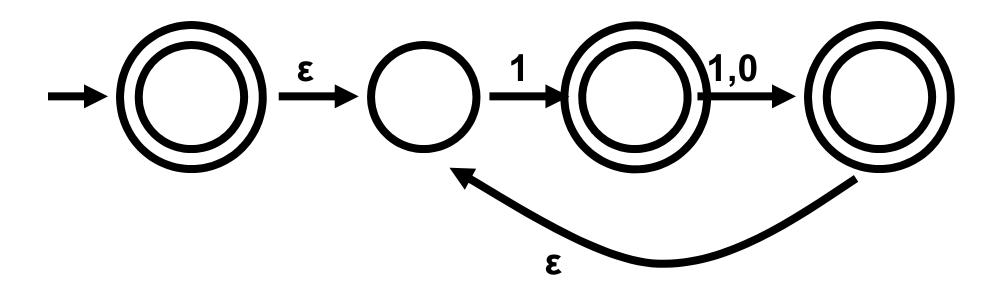
Induction Step: Suppose every regexp of length < k represents some regular language.

Consider a regexp R of length k > 1

Three possibilities for R:

 $R = R_1 + R_2$ By induction, R_1 represents
a regular language L_1 $R = R_1 R_2$ But $L(R) = L(R_1^*) = L_1^*$ $R = (R_1)^*$ Thus L(R) is regular because regular
languages are closed under starTherefore:If L is represented by a regexp,
then L is regular!

Give an NFA that accepts the language represented by (1(0 + 1))*



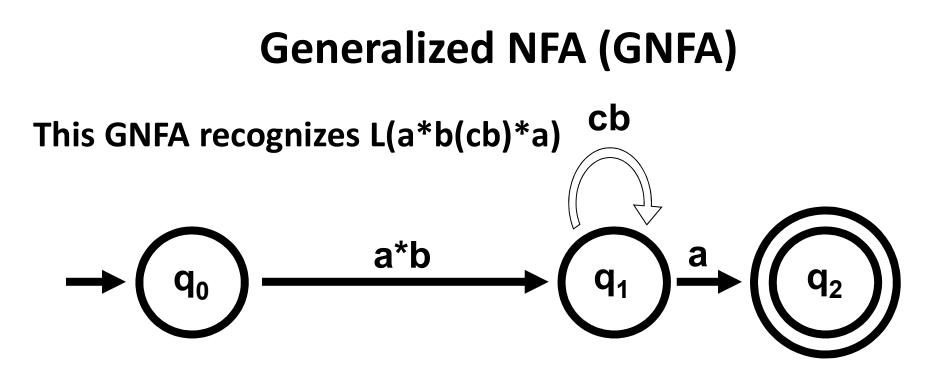
Regular expression: (1(0+1))*

Generalized NFAs (GNFA)

L can be represented by a regexp L is a regular language

Idea: Transform a DFA for L into a regular expression by *removing states* and re-labeling the arcs with *regular expressions*

Rather than reading in just 0 or 1 letters from the string on an arc, we can read in *entire substrings*

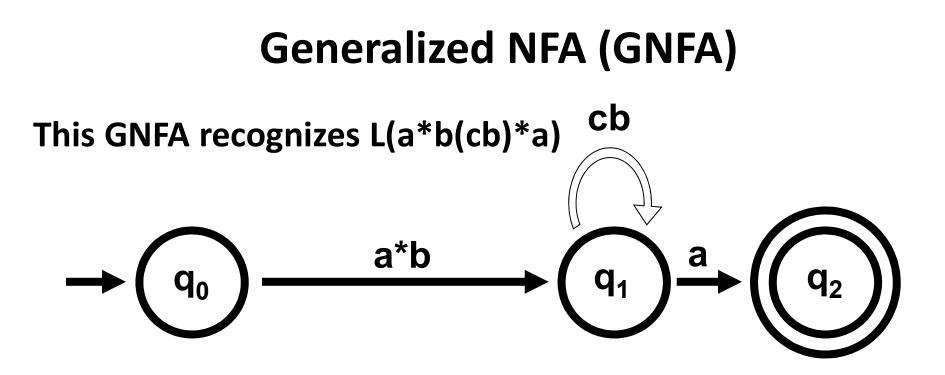


Accept string $x \Leftrightarrow$ there is *some path* of regexps $R_1, ..., R_k$ from start state to final state such that x matches $R_1 \cdots R_k$

Is aaabcbcba accepted or rejected?

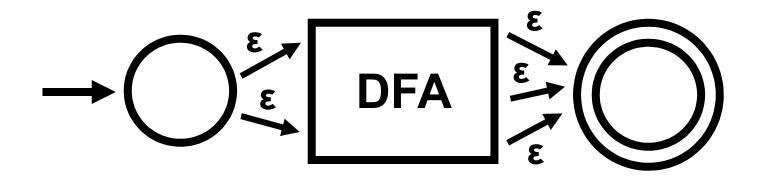
Is bba accepted or rejected?

Is bcba accepted or rejected?



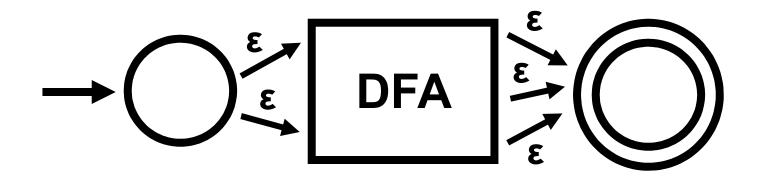
Accept string $x \Leftrightarrow$ there is *some path* of regexps R_1, \dots, R_k from start state to final state such that x matches $R_1 \cdots R_k$

> Every NFA is also a GNFA. Every regexp can be converted into a GNFA with just two states!



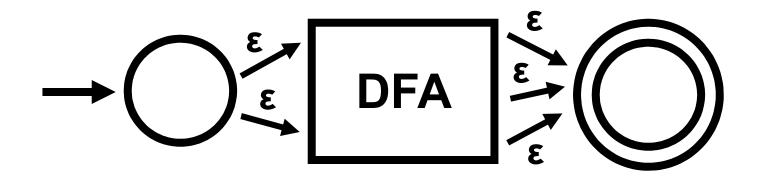
Add unique start and accept states

Then, L(R) = L(DFA)



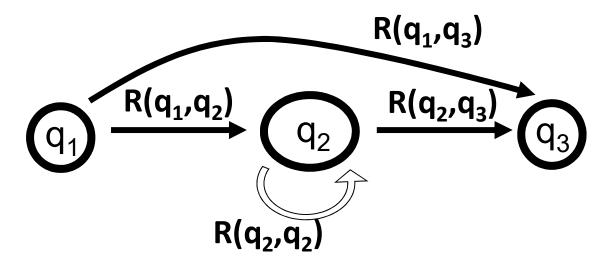
Pick an internal state, rip it out and re-label the arrows with regexps, to account for paths through the missing state

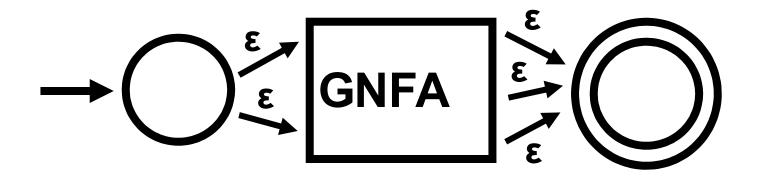
$$O \xrightarrow{a} O \xrightarrow{b} O$$



Pick an internal state, rip it out and re-label the arrows with regexps, to account for paths through the missing state

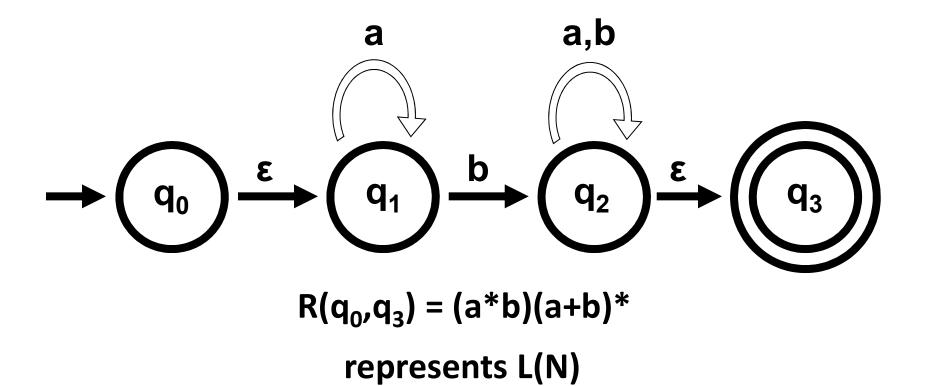
$$O \xrightarrow{ab^*c} O$$

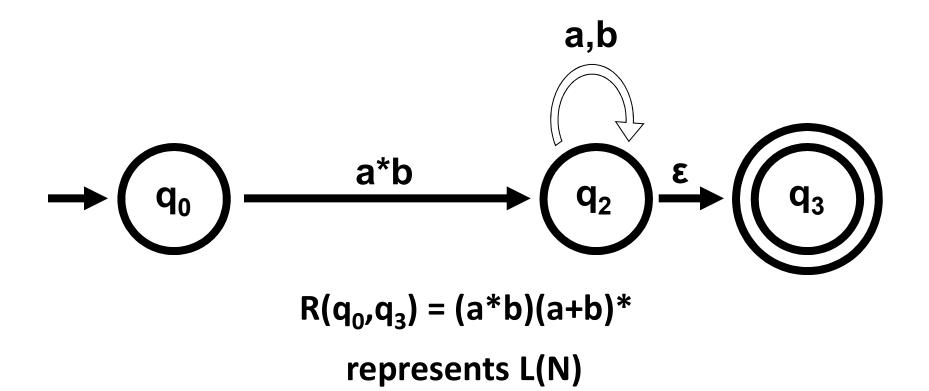


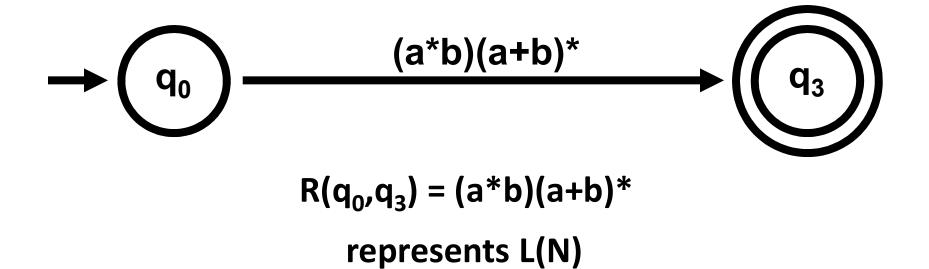


In general:

$$R(q_{1},q_{2})R(q_{2},q_{2})^{*}R(q_{2},q_{3}) + R(q_{1},q_{3})$$







Formally: Given a DFA M, add q_{start} and q_{acc} to create G For all q, q' \in Q, define R(q,q') = $\sigma_1 + \cdots + \sigma_k$ s.t. $\delta(q,\sigma_i) = q'$ **CONVERT(G):** (Takes a GNFA, outputs a regexp) If #states = 2 return R(q_{start}, q_{acc}) If #states > 2 pick $q_{rip} \in Q$ different from q_{start} and q_{acc} define $\mathbf{Q}' = \mathbf{Q} - {\mathbf{q}_{rip}}$ defines a define R' on Q'- $\{q_{acc}\} \times Q'-\{q_{start}\}$ as: | new GNFA G' $R'(q_i,q_i) = R(q_i,q_{rip})R(q_{rip},q_{rip})*R(q_{rip},q_i) + R(q_i,q_i)$ return CONVERT(G') Claim: Theorem: Let R = CONVERT(G). L(G') = L(G)[Sipser, p.73-74] Then L(R) = L(M).