
Lecture 3:
Nondeterminism 

and Regular Expressions



Announcements:
- Pset 0 is out, due tomorrow 11:59pm

- Latex source of hw on piazza
- Pset 1 coming out tomorrow

- No class next Tuesday (…because next week 
Monday classes will be on Tuesday)



Deterministic Finite Automata

Computation with finite memory



Non-Deterministic Finite Automata

Computation with finite memory
and magical guessing
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This NFA recognizes: {w | w contains 100}

An NFA accepts string x 
if there is some path reading in x that 

reaches some accept state from some start state

Non-deterministic Finite Automata (NFA)



Theorem:  For every NFA N, there is a DFA M 
such that L(M) = L(N)

Corollary:   A language A is regular 
if and only if  A is recognized by an NFA

Corollary:  A is regular iff AR is regular
left-to-right DFAs right-to-left DFAs

Every NFA can be perfectly simulated 
by some DFA! 



From NFAs to DFAs
Input: NFA N = (Q, Σ, , Q0, F) 

Output: DFA M = (Q, Σ, , q0, F) 

accept

To learn if NFA N accepts, we 
could do the computation of 
N in parallel, maintaining the 
set of all possible states that 

can be reached

Set Q = 2Q
Idea:



Q = 2Q

 : Q  Σ → Q
(S,) =  [ ε( (q,) )

qS
q0 = ε(Q0)

F = { S  Q | f  S for some f  F }

*

For S  Q, the ε-closure of S is
ε(S) = {r Q reachable from some q S

by taking zero or more ε-transitions}

*

From NFAs to DFAs: Subset Construction
Input: NFA N = (Q, Σ, , Q0, F) 

Output: DFA M = (Q, Σ, , q0, F) 

For S  Q’,   Σ:



Reverse Theorem for Regular Languages

The reverse of a regular language 
is also a regular language

If a language can be recognized by a DFA that 
reads strings from right to left, 

then there is an “normal” DFA that accepts the 
same language

Proof Sketch?
Given a DFA for a language L, “reverse” its arrows, 
and flip its start and accept states, getting an NFA.

Convert that NFA back to a DFA!



Using NFAs in place of DFAs can 
make proofs about regular 

languages much easier!

Remember this on homework/exams!



Union Theorem using NFAs?
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Some Operations on Languages

Union: A  B = { w | w  A or w  B } 

Intersection: A  B = { w | w  A and w  B } 

Complement: A = { w  Σ* | w  A } 

Reverse: AR = { w1 …wk | wk …w1  A, wi  Σ}

Concatenation: A  B = { vw | v  A and w  B }

Star: A* = { s1 … sk | k ≥ 0 and each si  A }

A* = set of all strings over alphabet A



Regular Languages are closed under 
concatenation

Given DFAs M1 for A and M2 for B, connect 

the accept states of M1 to the start state of M2

Concatenation: A  B = { vw | v  A and w  B }
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L(N) = L(M1)  L(M2)

Regular Languages are closed under 
concatenation

Concatenation: A  B = { vw | v  A and w  B }
Given DFAs M1 for A and M2 for B, connect 

the accept states of M1 to the start state of M2

M1
M2



Regular Languages are closed under star

Let M be a DFA

We construct an NFA N that recognizes L(M)*
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A* = { s1 … sk | k ≥ 0 and each si  A }



Formally, the construction is:

Input: DFA M = (Q, Σ, , q1, F) 

Output: NFA N = (Q, Σ, , {q0}, F) 

Q = Q  {q0}
F = F  {q0}

(q,a) = 

{(q,a)}

{q1}

{q1}



if q  Q and a ≠ ε
if q  F and a = ε

if q = q0 and a = ε

if q = q0 and a ≠ ε

 else



How would we prove that the NFA 
construction works?

Want to show:   L(N) = L(M)*

1. L(N)  L(M)*

2. L(N)  L(M)*

Regular Languages are closed under star



1. L(N) L(M)*

Let w = w1 wk be in L(M)* where w1,…,wk  L(M)

We show: N accepts w by induction on k

Base Cases:
k = 0
k = 1

Inductive Step: Let k 1 be an integer
I.H. N accepts all strings v = v1 vk  L(M)*, viL(M)

N accepts u1 uk (by I.H.) and M accepts uk+1
imply that N also accepts u

(since N has -transitions from final states to start state of M!)




(w = ε)
(w  L(M) and L(M) L(N))

Let u = u1 ukuk+1  L(M)* , ujL(M)



Let w be accepted by N; we want to show w  L(M)*
If w = ε, then w  L(M)*

I.H. N accepts u and 
takes  k  ε-transitions

 u  L(M)*

accept

ε

ε

uL(M)*

vL(M)

2. L(N)  L(M)*

By I.H.
u

v

w = uvL(M)*

N accepts u, so

Let w be accepted 
by N with k+1 
ε-transitions.

Write w as w=uv,
where v is the substring 

read after the last ε-
transition





Regular Languages are closed 
under all of the following operations:

Union: A  B = { w | w  A or w  B } 

Intersection: A  B = { w | w  A and w  B } 

Complement: A = { w  Σ* | w  A } 

Reverse: AR = { w1 …wk | wk …w1  A, wi  Σ}

Concatenation: A  B = { vw | v  A and w  B }

Star: A* = { s1 … sk | k ≥ 0 and each si  A }



Regular Expressions:
Computation as 

Description

A different way of thinking about computation:
What is the complexity of describing

the strings in the language?



Inductive Definition of Regexp

For all  Σ,   is a regexp
ε is a regexp
 is a regexp

If R1 and R2 are both regexps, then
(R1R2), (R1 + R2), and (R1)* are regexps

Let Σ be an alphabet. We define the regular 
expressions over Σ inductively:

Examples: ε, 0, (1)*, (0+1)*, ((((0)*1)*1) + (10)) 

Syntax



Precedence Order: *  
then  
then + 

· R2R1*(Example: R1*R2 + R3 = ( ) ) + R3



Definition: Regexps Describe Languages
The regexp  Σ represents the language {}

The regexp ε represents  {ε}
The regexp  represents   

If R1 and R2 are regular expressions 
representing L1 and L2 then:

(R1R2) represents  L1  L2

(R1 + R2) represents  L1  L2

(R1)* represents  L1*

Example: (10 + 0*1) represents {10}  {0k1 | k 0}

Semantics



Regexps Describe Languages

For every regexp R, 
define L(R) to be the language that R represents 

A string w Σ* is accepted by R
(or, w matches R) if w L(R)

Examples: 0, 010, and 01010 match (01)*0

110101110101100 matches (0+1)*0



{ w | w has exactly a single 1 } 

0*10*

Assume  Σ = {0,1}

{ w | w contains 001 } 

(0+1)*001(0+1)*



What language does 
the regexp * represent?

{ε}

Assume  Σ = {0,1}



{ w | w has length ≥ 3 and its 3rd symbol is 0 } 

(0+1)(0+1)0(0+1)*

Assume  Σ = {0,1}



{ w | w = ε or every odd position in w is a 1 }

(1(0 + 1))*(1 + ε)

Assume  Σ = {0,1}

How expressive are regular expressions?



During the “nerve net” hype in the 1950s…



L can be represented by some regexp
 L is regular

DFAs NFAs Regular Expressions!



L can be represented by some regexp
 L is regular



Induction Step: Suppose every regexp of length < k
represents some regular language. 

Three possibilities for R:

R = R1 + R2

R = R1 R2

R = (R1)*

Consider a regexp R of length k > 1



Induction Step: Suppose every regexp of length < k
represents some regular language. 

Three possibilities for R:

R = R1 + R2

R = R1 R2

R = (R1)*

Consider a regexp R of length k > 1

By induction, R1 and R2 represent
some regular languages, L1 and L2

But L(R) = L(R1 + R2) = L1 [ L2

so L(R) is regular, by the union theorem! 



Induction Step: Suppose every regexp of length < k
represents some regular language. 

Three possibilities for R:

R = R1 + R2

R = R1 R2

R = (R1)*

Consider a regexp R of length k > 1

By induction, R1 and R2 represent
some regular languages, L1 and L2

But L(R) = L(R1 R2) = L1 L2

Thus L(R) is regular because regular 
languages are closed under concatenation



Induction Step: Suppose every regexp of length < k
represents some regular language. 

Three possibilities for R:

R = R1 + R2

R = R1 R2

R = (R1)*

Consider a regexp R of length k > 1

By induction, R1 represents
a regular language L1

But L(R) = L(R1*) = L1*
Thus L(R) is regular because regular 

languages are closed under star



Induction Step: Suppose every regexp of length < k
represents some regular language. 

Three possibilities for R:

R = R1 + R2

R = R1 R2

R = (R1)*

Consider a regexp R of length k > 1

By induction, R1 represents
a regular language L1

But L(R) = L(R1*) = L1*
Thus L(R) is regular because regular 

languages are closed under star

Therefore:  If L is represented by a regexp,
then L is regular!



Give an NFA that accepts the language 
represented by (1(0 + 1))*

1ε 1,0

ε

1 (0+1)(             )*Regular expression:



L can be represented by a regexp


L is a regular language


Idea: Transform a DFA for L into a regular 
expression by removing states and 

re-labeling the arcs with regular expressions 

Generalized NFAs (GNFA)

Rather than reading in just 0 or 1 letters from the 
string on an arc, we can read in entire substrings



q1

cb

aa*b
q0 q2

This GNFA recognizes L(a*b(cb)*a)

Accept string  there is some path of regexps
from start state to final state such that matches 

Is bba accepted or rejected?

Is bcba accepted or rejected?

Generalized NFA (GNFA)

Is aaabcbcba accepted or rejected?



q1

cb

aa*b
q0 q2

This GNFA recognizes L(a*b(cb)*a)

Every NFA is also a GNFA.
Every regexp can be converted into 

a GNFA with just two states! 

Generalized NFA (GNFA)

Accept string  there is some path of regexps
from start state to final state such that matches 



DFA
ε

ε

ε

ε

ε

Add unique start and accept states

Goal: Replace with a single regexpDFA

Then, L( ) = L(DFA)



DFA
ε

ε

ε

ε

ε

While the machine has more than 2 states:

Pick an internal state, rip it out and 
re-label the arrows with regexps, 

to account for paths through the missing state

a

c

b



DFA
ε

ε

ε

ε

ε

While the machine has more than 2 states:

Pick an internal state, rip it out and 
re-label the arrows with regexps, 

to account for paths through the missing state

ab*c



NFA
ε

ε

ε

ε

ε

In general:

R(q1,q2)

R(q2,q2)

R(q2,q3)
q1 q2 q3

G

R(q1,q3)

While the machine has more than 2 states:



NFA
ε

ε

ε

ε

ε

In general:

R(q1,q2)R(q2,q2)*R(q2,q3) + R(q1,q3)

q1 q3

G

While the machine has more than 2 states:



q1
b

a

ε
q2

a,b

ε
q0 q3

R(q0,q3) = (a*b)(a+b)*

represents L(N)



q2

a,b

εa*b
q0 q3

R(q0,q3) = (a*b)(a+b)*

represents L(N)



(a*b)(a+b)*
q0 q3

R(q0,q3) = (a*b)(a+b)*

represents L(N)



Formally: Given a DFA M, add qstart and qacc to create G

CONVERT(G):    (Takes a GNFA, outputs a regexp)

If #states = 2 return R(qstart, qacc)

If #states > 2

pick  qripQ different from qstart and qacc

define Q = Q – {qrip} defines a 
new GNFA Gdefine R on Q’-{qacc} x Q’-{qstart} as:

R(qi,qj) = R(qi,qrip)R(qrip,qrip)*R(qrip,qj) + R(qi,qj)

For all q, q’Q, define R(q,q’) = σ1++ σk s.t. δ(q,σi) = q’

return CONVERT(G) Claim:
L(G’) = L(G)

[Sipser, p.73-74]
Theorem: Let R = CONVERT(G). 

Then L(R) = L(M).


