

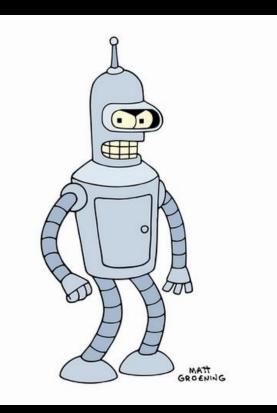
# Lecture 3: Nondeterminism and Regular Expressions

# 6.045

### **Announcements:**

- Pset 0 is out, due tomorrow 11:59pm
  - Latex source of hw on piazza
  - Pset 1 coming out tomorrow
- No class next Tuesday (...because next week Monday classes will be on Tuesday)

#### Deterministic Finite Automata



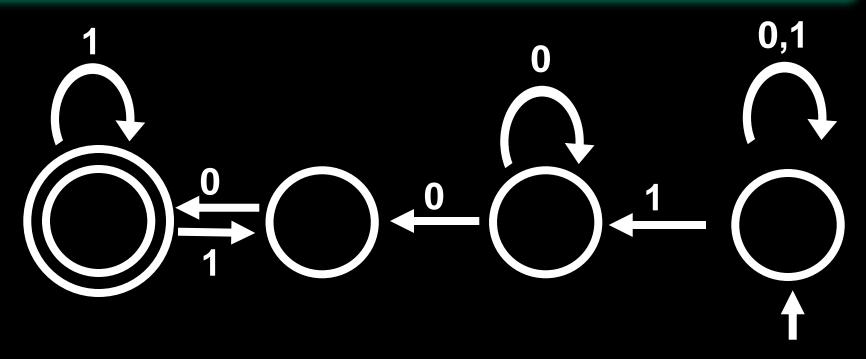
#### **Computation with finite memory**

#### Non-Deterministic Finite Automata



### Computation with finite memory and magical guessing

#### Non-deterministic Finite Antomata (NFA)



This NFA recognizes: {w | w contains 100}

An NFA accepts string x if there is some path reading in x that reaches some accept state from some start state

## Every NFA can be perfectly simulated by some DFA!

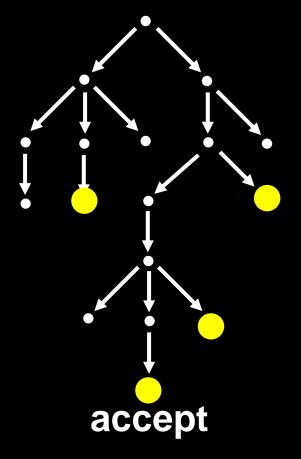
#### Theorem: For every NFA N, there is a DFA M such that L(M) = L(N)

**Corollary:** A language A is regular if and only if A is recognized by an NFA

**Corollary:** A is regular iff  $A^R$  is regular left-to-right DFAs  $\equiv$  right-to-left DFAs

#### **From NFAs to DFAs**

Input: NFA N = (Q,  $\Sigma$ ,  $\delta$ , Q<sub>0</sub>, F) Output: DFA M = (Q',  $\Sigma$ ,  $\delta'$ , q<sub>0</sub>', F')



To learn if NFA N accepts, we could do the computation of N *in parallel*, maintaining the set of *all* possible states that can be reached

Idea: Set  $Q' = 2^Q$ 

**From NFAs to DFAs: Subset Construction** Input: NFA N = (Q,  $\Sigma$ ,  $\delta$ ,  $\overline{Q}_0$ , F) Output: DFA M = (Q',  $\Sigma$ ,  $\delta'$ ,  $q_0'$ , F') **Q' = 2**<sup>Q</sup>  $\delta': \mathbf{Q}' \times \mathbf{\Sigma} \rightarrow \mathbf{Q}'$ For  $S \in Q', \sigma \in \Sigma$ :  $\delta'(S,\sigma) = \bigcup \varepsilon(\delta(q,\sigma)) *$ q∈S  $q_0' = \epsilon(Q_0)$  $F' = \{ S \in Q' \mid f \in S \text{ for } some f \in F \}$ For  $S \subset Q$ , the  $\epsilon$ -closure of S is  $\varepsilon(S) = \{r \in Q \text{ reachable from some } q \in S\}$ by taking zero or more *\varepsilon*-transitions}

**Reverse Theorem for Regular Languages** 

The reverse of a regular language is also a regular language

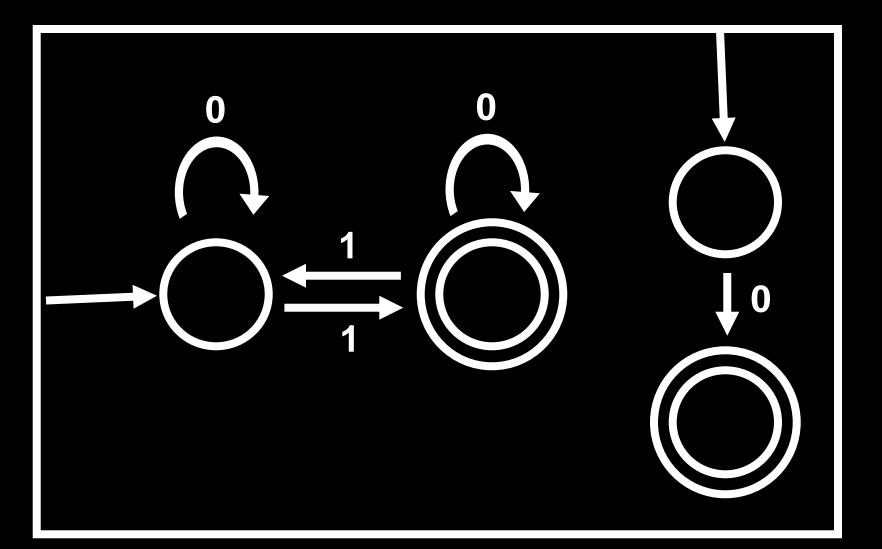
If a language can be recognized by a DFA that reads strings from right to left, then there is an "normal" DFA that accepts the same language

#### **Proof Sketch?**

Given a DFA for a language L, "reverse" its arrows, and flip its start and accept states, getting an NFA. Convert that NFA back to a DFA! Using NFAs in place of DFAs can make proofs about regular languages *much* easier!

Remember this on homework/exams!

#### **Union Theorem using NFAs?**



#### **Some Operations on Languages**

- $\rightarrow \quad \text{Union: } A \cup B = \{ w \mid w \in A \text{ or } w \in B \}$
- $\implies \text{Intersection: } A \cap B = \{ w \mid w \in A \text{ and } w \in B \}$
- $\bullet \quad Complement: \neg A = \{ w \in \Sigma^* \mid w \notin A \}$
- $\blacksquare Reverse: A^{R} = \{ W_{1} \dots W_{k} \mid W_{k} \dots W_{1} \in A, W_{i} \in \Sigma \}$

**Concatenation:**  $A \cdot B = \{ vw \mid v \in A \text{ and } w \in B \}$ 

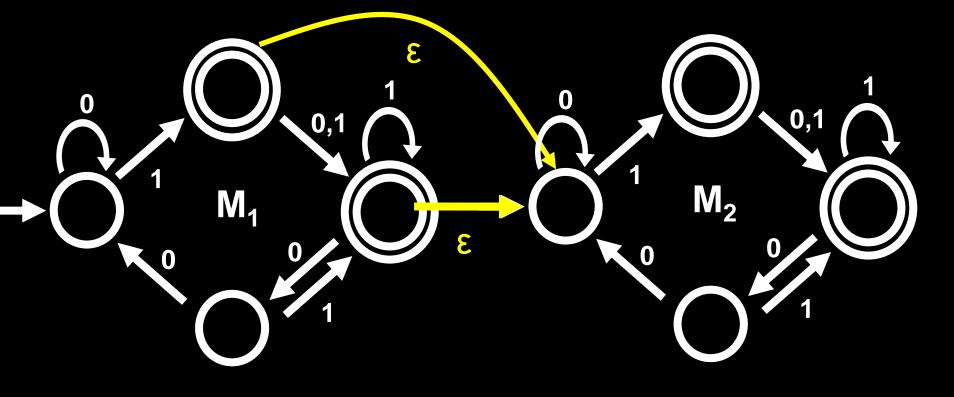
Star:  $A^* = \{ s_1 \dots s_k \mid k \ge 0 \text{ and each } s_i \in A \}$  $A^* = \text{set of all strings over alphabet } A$ 

# Regular Languages are closed under concatenation

**Concatenation:**  $A \cdot B = \{vw \mid v \in A \text{ and } w \in B \}$ 

Given DFAs M<sub>1</sub> for A and M<sub>2</sub> for B, connect

the accept states of  $M_1$  to the start state of  $M_2$ 

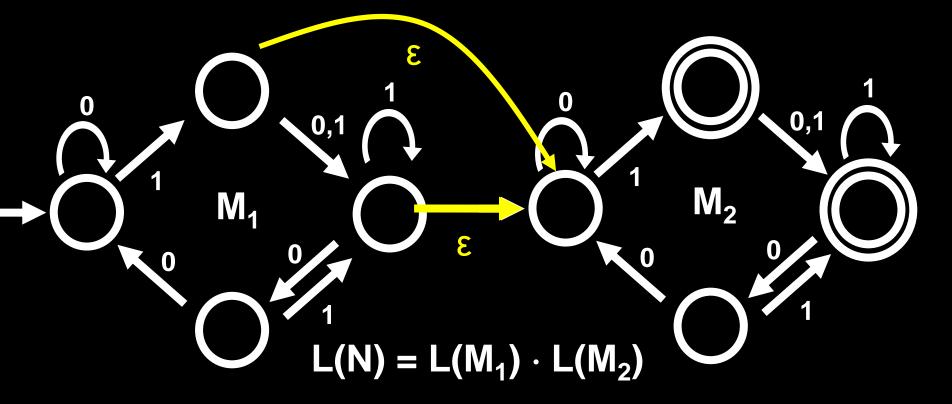


# Regular Languages are closed under concatenation

**Concatenation:**  $A \cdot B = \{vw \mid v \in A \text{ and } w \in B \}$ 

Given DFAs M<sub>1</sub> for A and M<sub>2</sub> for B, connect

the accept states of  $M_1$  to the start state of  $M_2$ 

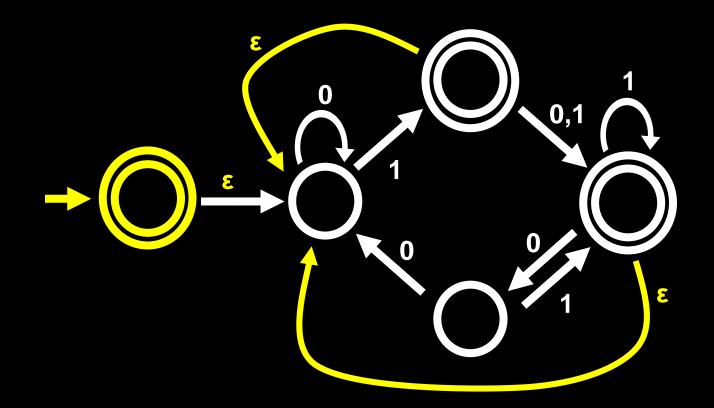


#### **Regular Languages are closed under star**

 $A^* = \{ s_1 \dots s_k \mid k \ge 0 \text{ and each } s_i \in A \}$ 

#### Let M be a DFA

We construct an NFA N that recognizes L(M)\*



Formally, the construction is: Input: DFA M = (Q,  $\Sigma$ ,  $\delta$ ,  $q_1$ , F) **Output:** NFA N = (Q',  $\Sigma$ ,  $\delta'$ , {q<sub>0</sub>}, F')  $\mathbf{Q'} = \mathbf{Q} \cup \{\mathbf{q}_0\}$  $F' = F \cup \{q_0\}$ {δ**(q**,a)} if  $q \in Q$  and  $a \neq \varepsilon$  ${q_1}$ if  $q \in F$  and  $a = \varepsilon$ if  $q = q_0$  and  $a = \varepsilon$  $\checkmark$  {q<sub>1</sub>} δ'**(q,a) =** if  $q = q_0$  and  $a \neq \epsilon$  $\varnothing$ else otin

**Regular Languages are closed under star** 

# How would we *prove* that the NFA construction works?

#### Want to show: $L(N) = L(M)^*$

# 1. L(N) ⊇ L(M)\*

2. L(N) ⊆ L(M)\*

# 1. $L(N) \supseteq L(M)^*$

Let  $\mathbf{w} = \mathbf{w}_1 \cdots \mathbf{w}_k$  be in  $L(\mathbf{M})^*$  where  $\mathbf{w}_1, \dots, \mathbf{w}_k \in L(\mathbf{M})$ We show: N accepts w by induction on k **Base Cases:**  $\checkmark$  k = 0 (w =  $\varepsilon$ ) ✓ k = 1 (w ∈ L(M) and L(M) ⊆ L(N)) **Inductive Step:** Let  $k \ge 1$  be an integer I.H. N accepts all strings  $v = v_1 \cdots v_k \in L(M)^*$ ,  $v_i \in L(M)$ Let  $u = u_1 \cdots u_k u_{k+1} \in L(M)^*$ ,  $u_i \in L(M)$ N accepts  $u_1 \cdots u_k$  (by I.H.) and M accepts  $u_{k+1}$ imply that N also accepts u (since N has  $\varepsilon$ -transitions from final states to start state of M!)

# **2. L(N) ⊆ L(M)\***

Let w be accepted by N; we want to show  $w \in L(M)^*$ If  $w = \varepsilon$ , then  $w \in L(M)^*$ I.H. N accepts u and N accepts u, so takes k *ɛ-transitions* u∈L(M)\*  $\Rightarrow$  u  $\in$  L(M)\* Let w be accepted By I.H. by N with k+1  $w = uv \in L(M)^*$ *e*-transitions. Write w as w=uv, v∈L(M) where v is the substring read after the last *e*transition accept

**Regular Languages are closed** under all of the following operations: Union:  $A \cup B = \{ w \mid w \in A \text{ or } w \in B \}$ **Intersection:**  $A \cap B = \{ w \mid w \in A \text{ and } w \in B \}$ Complement:  $\neg A = \{ w \in \Sigma^* \mid w \notin A \}$ **Reverse:**  $A^{R} = \{ W_{1} ... W_{k} \mid W_{k} ... W_{1} \in A, W_{i} \in \Sigma \}$ **Concatenation:**  $A \cdot B = \{vw \mid v \in A \text{ and } w \in B\}$ Star:  $A^* = \{ s_1 \dots s_k \mid k \ge 0 \text{ and each } s_i \in A \}$ 

Regular Expressions: Computation as Description

A different way of thinking about computation: What is the complexity of describing the strings in the language?

#### **Inductive Definition of Regexp**

# Let $\Sigma$ be an alphabet. We define the regular expressions over $\Sigma$ inductively:

## For all $\sigma \in \Sigma$ , $\sigma$ is a regexp

#### is a regexp

#### Ø is a regexp

If R<sub>1</sub> and R<sub>2</sub> are both regexps, then (R<sub>1</sub>R<sub>2</sub>), (R<sub>1</sub> + R<sub>2</sub>), and (R<sub>1</sub>)\* are regexps

Examples: ε, 0, (1)\*, (0+1)\*, ((((0)\*1)\*1) + (10))

#### **Precedence Order:**



# then • then +

**Example:**  $R_1^*R_2 + R_3 = ((R_1^*) \cdot R_2) + R_3$ 

**Definition: Regexps Describe Languages** The regexp  $\sigma \in \Sigma$  represents the language  $\{\sigma\}$ The regexp  $\varepsilon$  represents  $\{\varepsilon\}$ The regexp  $\varnothing$  represents  $\checkmark$ If R<sub>1</sub> and R<sub>2</sub> are regular expressions representing L<sub>1</sub> and L<sub>2</sub> then:  $(R_1R_2)$  represents  $L_1 \cdot L_2$  $(R_1 + R_2)$  represents  $L_1 \cup L_2$  $(R_1)^*$  represents  $L_1^*$ 

Example: (10 + 0\*1) represents  $\{10\} \cup \{0^{k}1 \mid k \ge 0\}$ 

#### **Regexps Describe Languages**

For every regexp R, define L(R) to be the language that R represents

> A string  $w \in \Sigma^*$  is accepted by R (or, w matches R) if  $w \in L(R)$

Examples: 0, 010, and 01010 match (01)\*0 110101110101100 matches (0+1)\*0



### 

{ w | w contains 001 }

(0+1)\*001(0+1)\*



#### What language does the regexp Ø\* represent? {ε}

Assume  $\Sigma = \{0, 1\}$ 

#### $\{ w \mid w \text{ has length} \ge 3 \text{ and its } 3rd \text{ symbol is } 0 \}$

### (0+1)(0+1)0(0+1)\*



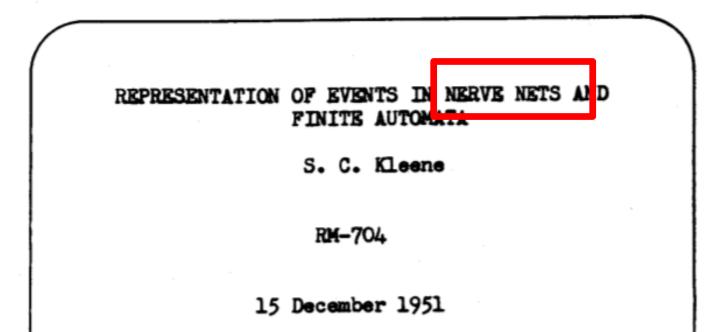
### { w | w = $\epsilon$ or every odd position in w is a 1 } (1(0 + 1))\*(1 + $\epsilon$ )

#### How expressive are regular expressions?

#### During the "nerve net" hype in the 1950s...

U. S. AIR FORCE PROJECT RAND

#### RESEARCH MEMORANDUM





#### **DFAs** $\equiv$ **NFAs** $\equiv$ **Regular Expressions!**

#### L can be represented by some regexp ⇔ L is regular

#### L can be represented by some regexp ⇒ L is regular

Induction Step: Suppose every regexp of length < k represents some regular language.

Consider a regexp R of length k > 1

**Three possibilities for R:** 

 $R = R_1 + R_2$  $R = R_1 R_2$  $R = (R_1)^*$ 

**Induction Step:** Suppose every regexp of length < k represents some regular language.

Consider a regexp R of length k > 1

**Three possibilities for R:** 

 $R = R_1 + R_2$ By induction,  $R_1$  and  $R_2$  represent<br/>some regular languages,  $L_1$  and  $L_2$  $R = R_1 R_2$ But  $L(R) = L(R_1 + R_2) = L_1 \cup L_2$  $R = (R_1)^*$ So L(R) is regular, by the union theorem!

**Induction Step:** Suppose every regexp of length < k represents some regular language.

Consider a regexp R of length k > 1

**Three possibilities for R:** 

 $R = R_1 + R_2$ By induction,  $R_1$  and  $R_2$  represent<br/>some regular languages,  $L_1$  and  $L_2$  $R = R_1 R_2$ But  $L(R) = L(R_1 \cdot R_2) = L_1 \cdot L_2$  $R = (R_1)^*$ Thus L(R) is regular because regular<br/>languages are closed under concatenation

Induction Step: Suppose every regexp of length < k represents some regular language.

Consider a regexp R of length k > 1

**Three possibilities for R:** 

 $R = R_1 + R_2$ By induction,  $R_1$  represents<br/>a regular language  $L_1$  $R = R_1 R_2$ But  $L(R) = L(R_1^*) = L_1^*$  $R = (R_1)^*$ Thus L(R) is regular because regular<br/>languages are closed under star

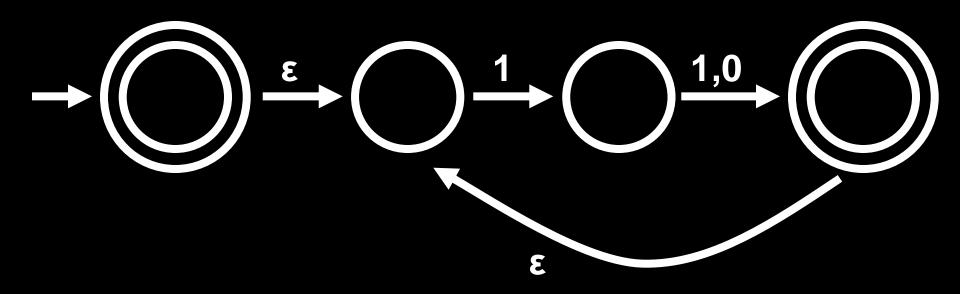
Induction Step: Suppose every regexp of length < k represents some regular language.

Consider a regexp R of length k > 1

**Three possibilities for R:** 

| $\mathbf{R} = \mathbf{R}_1 + \mathbf{R}_2$ | By induction, R <sub>1</sub> represents |
|--------------------------------------------|-----------------------------------------|
|                                            | a regular language L <sub>1</sub>       |
| $\mathbf{R} = \mathbf{R}_1  \mathbf{R}_2$  | But $L(R) = L(R_1^*) = L_1^*$           |
| R = (R <sub>1</sub> )*                     | Thus L(R) is regular because regular    |
|                                            | languages are closed under star         |
| <b>Therefore:</b>                          | If L is represented by a regexp,        |
|                                            | then L is regular!                      |

### Give an NFA that accepts the language represented by (1(0 + 1))\*



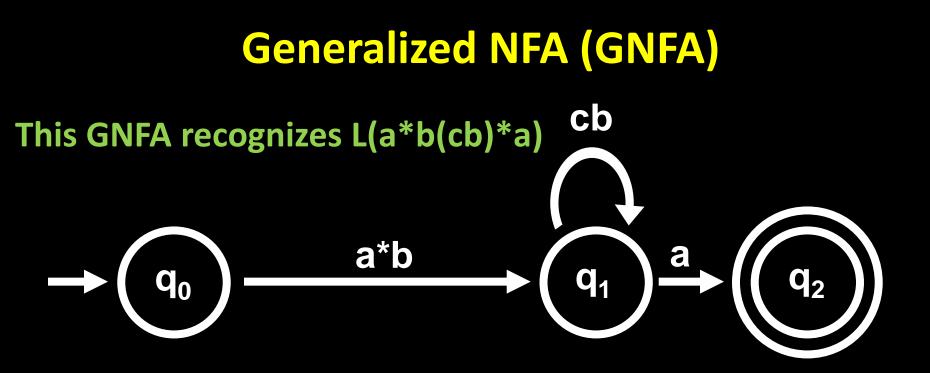
Regular expression: (1(0+1))\*

## **Generalized NFAs (GNFA)**

L can be represented by a regexp L is a regular language

Idea: Transform a DFA for L into a regular expression by *removing states* and re-labeling the arcs with *regular expressions* 

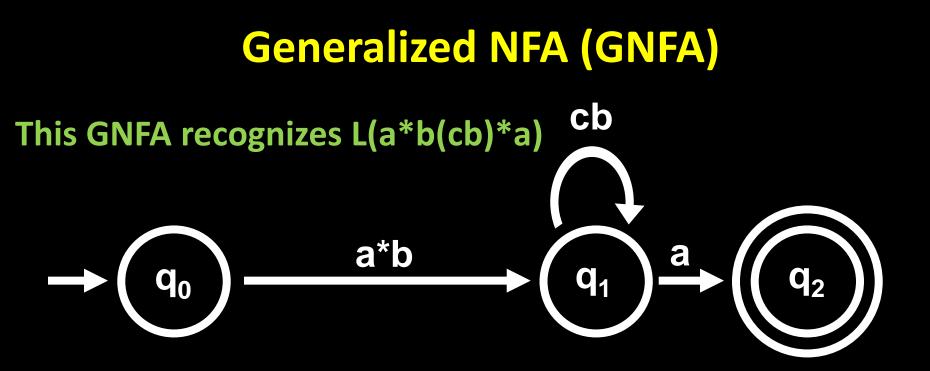
Rather than reading in just 0 or 1 letters from the string on an arc, we can read in *entire substrings* 



Accept string  $x \Leftrightarrow$  there is *some path* of regexps  $R_1, ..., R_k$ from start state to final state such that x matches  $R_1 \cdots R_k$ 

> Is aaabcbcba accepted or rejected? Is bba accepted or rejected?

Is bcba accepted or rejected?



Accept string  $x \Leftrightarrow$  there is *some path* of regexps  $R_1, ..., R_k$ from start state to final state such that x matches  $R_1 \cdots R_k$ 

> Every NFA is also a GNFA. Every regexp can be converted into a GNFA with just two states!



#### Add unique start and accept states

Goal: Replace

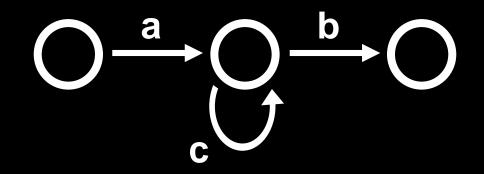


#### with a single regexp R

## Then, L(*R*) = L(DFA)



#### Pick an internal state, rip it out and re-label the arrows with regexps, to account for paths through the missing state



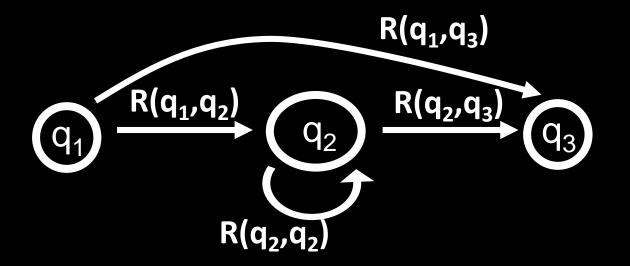


#### Pick an internal state, rip it out and re-label the arrows with regexps, to account for paths through the missing state



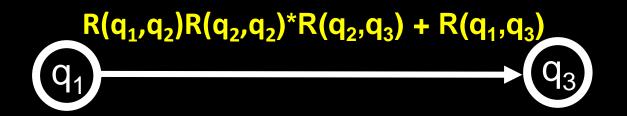


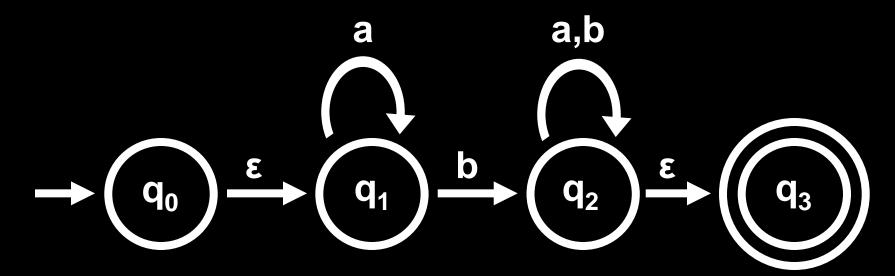
In general:





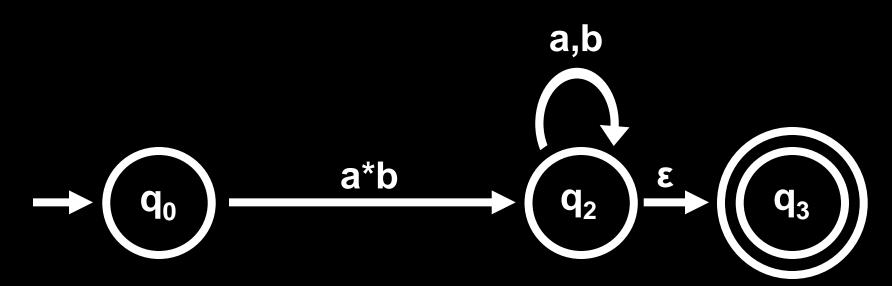
#### In general:





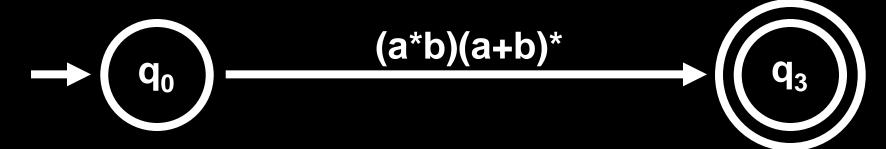
## $R(q_0,q_3) = (a*b)(a+b)*$

represents L(N)



# $R(q_0, q_3) = (a*b)(a+b)*$

represents L(N)



## R(q<sub>0</sub>,q<sub>3</sub>) = (a\*b)(a+b)\* represents L(N)

Formally: Given a DFA M, add q<sub>start</sub> and q<sub>acc</sub> to create G For all q, q'  $\in$  Q, define R(q,q') =  $\sigma_1 + \cdots + \sigma_k$  s.t.  $\delta(q,\sigma_i) = q'$ **CONVERT(G):** (Takes a GNFA, outputs a regexp) If #states = 2 return R(q<sub>start</sub>, q<sub>acc</sub>) If #states > 2 pick  $q_{rip} \in Q$  different from  $q_{start}$  and  $q_{acc}$ define  $\mathbf{Q'} = \mathbf{Q} - {\mathbf{q}_{rip}}$ defines a define R' on Q'-{q<sub>acc</sub>} x Q'-{q<sub>start</sub>} as: new GNFA G'  $R'(q_i,q_j) = R(q_i,q_{rip})R(q_{rip},q_{rip})*R(q_{rip},q_j) + R(q_i,q_j)$ return CONVERT(G') **Claim: Theorem:** Let R = CONVERT(G). L(G') = L(G)Then L(R) = L(M). [Sipser, p.73-74]