6.045

Lecture 3:

Nondeterminism
and Regular Expressions

6.045

Announcements:

- Pset $\mathbf{0}$ is out, due tomorrow 11:59pm
- Latex source of hw on piazza
- Pset 1 coming out tomorrow
- No class next Tuesday (...because next week Monday classes will be on Tuesday)

Deterministic Finite Automata

Computation with finite memory

Non-Deterministic Finite Automata

Computation with finite memory and magical guessing

Non-deterministic Finite Antomata (NF,A)

This NFA recognizes: $\{w \mid$ w contains 100\}
An NFA accepts string x if there is some path reading in x that reaches some accept state from some start state

Every NFA can be perfectly simulated by some DFA!

Theorem: For every NFA \mathbf{N}, there is a DFA M such that $\mathrm{L}(\mathrm{M})=\mathrm{L}(\mathrm{N})$

Corollary: A language A is regular if and only if A is recognized by an NFA

Corollary: A is regular iff A^{R} is regular left-to-right DFAs = right-to-left DFAs

From NFAs to DFAs

Input: $N F A N=\left(Q, \Sigma, \delta, Q_{0}, F\right)$
Output: DFA M = $\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}{ }^{\prime}, F^{\prime}\right)$

To learn if NFA N accepts, we could do the computation of N in parallel, maintaining the set of all possible states that can be reached

Idea:

$$
\text { Set } Q^{\prime}=2^{Q}
$$

From NFAs to DFAs: Subset Construction

Input: NFA N = (Q, $\left.\Sigma, \delta, Q_{0}, F\right)$
Output: DFA M = (Q', $\left.\Sigma, \delta^{\prime}, \mathrm{q}^{\prime}{ }^{\prime}, \mathrm{F}^{\prime}\right)$

$$
\begin{aligned}
& Q^{\prime}=2^{Q} \\
& \delta^{\prime}: Q^{\prime} \times \Sigma \rightarrow Q^{\prime}
\end{aligned}
$$

For $S \in Q^{\prime}, \sigma \in \Sigma: \quad \delta^{\prime}(S, \sigma)=U \varepsilon(\delta(q, \sigma))$ * $\mathbf{q} \in \mathbf{S}$

$$
\begin{aligned}
& \mathbf{q}_{0^{\prime}}=\varepsilon\left(Q_{0}\right) \\
& F^{\prime}=\left\{S \in Q^{\prime} \mid f \in S \text { for some } f \in F\right\}
\end{aligned}
$$

For $\mathbf{S} \subseteq \mathbf{Q}$, the $\boldsymbol{\varepsilon}$-closure of \mathbf{S} is $\varepsilon(S)=\{r \in \mathbf{Q}$ reachable from some $\mathbf{q} \in \mathbf{S}$ by taking zero or more $\boldsymbol{\varepsilon}$-transitions\}

Reverse Theorem for Regular Languages

The reverse of a regular language is also a regular language

If a language can be recognized by a DFA that reads strings from right to left, then there is an "normal" DFA that accepts the same language

Proof Sketch?

Given a DFA for a language L, "reverse" its arrows, and flip its start and accept states, getting an NFA.

Convert that NFA back to a DFA!

Using NFAs in place of DFAs can make proofs about regular languages much easier!

Remember this on homework/exams!

Union Theorem using NFAs?

Some Operations on Languages

\Rightarrow Union: $\mathbf{A} \cup \mathbf{B}=\{\mathbf{w} \mid \mathbf{w} \in \mathbf{A}$ or $\mathbf{w} \in \mathbf{B}\}$
\rightarrow Intersection: $\mathbf{A} \cap \mathbf{B}=\{\mathbf{w} \mid \mathbf{w} \in \mathbf{A}$ and $\mathbf{w} \in \mathbf{B}\}$
\rightarrow Complement: $\neg \mathbf{A}=\left\{\mathbf{w} \in \mathbf{\Sigma}^{*} \mid \mathbf{w} \notin \mathbf{A}\right\}$
\Rightarrow Reverse: $A^{R}=\left\{w_{1} \ldots w_{k} \mid w_{k} \ldots w_{1} \in A, w_{i} \in \Sigma\right\}$
Concatenation: $\mathbf{A} \cdot \mathbf{B}=\{\mathbf{v w} \mid \mathbf{v} \in \mathbf{A}$ and $\mathbf{w} \in \mathbf{B}\}$
Star: $A^{*}=\left\{S_{1} \ldots S_{k} \mid k \geq 0\right.$ and each $\left.s_{i} \in A\right\}$
$\mathbf{A}^{*}=$ set of all strings over alphabet A (note: k can be 0)

Regular Languages are closed under

 concatenationConcatenation: $\mathbf{A} \cdot \mathbf{B}=\{\mathbf{v w} \mid \mathbf{v} \in \mathbf{A}$ and $\mathbf{w} \in \mathbf{B}\}$
Given DFAs \mathbf{M}_{1} for \mathbf{A} and $\mathbf{M}_{\mathbf{2}}$ for B , connect the accept states of $\mathbf{M}_{\mathbf{1}}$ to the start state of $\mathbf{M}_{\mathbf{2}}$

Regular Languages are closed under star

$$
\begin{gathered}
A^{*}=\left\{s_{1} \ldots s_{k} \mid k \geq 0 \text { and each } s_{i} \in A\right\} \\
\text { Let } M \text { be a DFA }
\end{gathered}
$$

We construct an NFA N that recognizes L(M)*

Formally, the construction is:
Input: DFA M = (Q, $\left.\Sigma, \delta, \mathbf{q}_{1}, F\right)$
Output: $N F A N=\left(Q^{\prime}, \Sigma, \delta^{\prime},\left\{q_{0}\right\}, F^{\prime}\right)$

$$
\begin{aligned}
Q^{\prime} & =Q \cup\left\{q_{0}\right\} \\
F^{\prime} & =F \cup\left\{q_{0}\right\} \\
\delta^{\prime}(q, a) & = \begin{cases}\{\delta(q, a)\} & \text { if } q \in Q \text { and } a \neq \varepsilon \\
\left\{q_{1}\right\} & \text { if } q \in F \text { and } a=\varepsilon \\
\left\{q_{1}\right\} & \text { if } q=q_{0} \text { and } a=\varepsilon \\
\varnothing & \text { if } q=q_{0} \text { and } a \neq \varepsilon \\
\varnothing & \text { else }\end{cases}
\end{aligned}
$$

Regular Languages are closed under star

How would we prove that the NFA construction works?

Want to show: $\mathbf{L}(\mathbb{N})=\mathrm{L}(\mathrm{M})^{*}$

$$
\text { 1. } L(N) \supseteq L(M)^{*}
$$

2. $\mathrm{L}(\mathrm{N}) \subseteq \mathrm{L}(\mathrm{M})^{*}$

1. $L(N) \supseteq L(M)^{*}$

Let $w=w_{1} \cdots w_{k}$ be in $L(M)^{*}$ where $w_{1}, \ldots, w_{k} \in L(M)$
We show: N accepts \mathbf{w} by induction on k
Base Cases:

$$
\begin{array}{lll}
\checkmark k=0 & (w=\varepsilon) \\
\checkmark & k=1 & (w \in L(M) \text { and } L(M) \subseteq L(N))
\end{array}
$$

Inductive Step: Let $\mathrm{k} \geq 1$ be an integer
I.H. \mathbf{N} accepts all strings $v=v_{1} \cdots v_{k} \in L(M)^{*}, v_{i} \in L(M)$

Let $\mathrm{u}=\mathrm{u}_{1} \cdots \mathrm{u}_{\mathrm{k}} \mathrm{u}_{\mathrm{k}+1} \in \mathrm{~L}(\mathrm{M})^{*}, \mathrm{u}_{\mathrm{j}} \in \mathrm{L}(\mathrm{M})$
N accepts $u_{1} \cdots u_{k}$ (by I.H.) and M accepts u_{k+1} imply that \mathbf{N} also accepts \mathbf{u}
(since N has ε-transitions from final states to start state of $\mathrm{M}!$)

2. $L(N) \subseteq L(M)^{*}$

Let w be accepted by N; we want to show $w \in L(M) *$
If $\mathbf{w}=\varepsilon$, then $\mathbf{w} \in \mathbf{L (M)}{ }_{\checkmark}$
I.H. N accepts u and takes $k \boldsymbol{\varepsilon}$-transitions

$$
\Rightarrow u \in L(M)^{*}
$$

Let w be accepted by \mathbf{N} with $\mathrm{k}+1$ ε-transitions.

Write w as w=uv, where v is the substring read after the last ε transition

Regular Languages are closed under all of the following operations:

Union: $\mathbf{A} \cup \mathbf{B}=\{\mathbf{w} \mid \mathbf{w} \in \mathbf{A}$ or $\mathbf{w} \in \mathbf{B}\}$
Intersection: $\mathbf{A} \cap \mathbf{B}=\{\mathbf{w} \mid \mathbf{w} \in \mathbf{A}$ and $\mathbf{w} \in \mathbf{B}\}$
Complement: $\neg \mathbf{A}=\left\{\mathbf{w} \in \mathbf{\Sigma}^{*} \mid \mathbf{w} \notin \mathbf{A}\right\}$
Reverse: $A^{\mathrm{R}}=\left\{\mathrm{w}_{1} \ldots \mathrm{w}_{\mathrm{k}} \mid \mathrm{w}_{\mathrm{k}} \ldots \mathrm{w}_{1} \in \mathrm{~A}, \mathrm{w}_{\mathrm{i}} \in \boldsymbol{\Sigma}\right\}$
Concatenation: $\mathbf{A} \cdot \mathbf{B}=\{\mathbf{v w} \mid \mathbf{v} \in \mathbf{A}$ and $\mathbf{w} \in \mathbf{B}\}$
Star: $A^{*}=\left\{S_{1} \ldots s_{k} \mid k \geq 0\right.$ and each $\left.s_{i} \in A\right\}$

Regular Expressions: Computation as Description

A different way of thinking about computation:
What is the complexity of describing the strings in the language?

Inductive Definition of Regexp

Let Σ be an alphabet. We define the regular

 expressions over Σ inductively:For all $\sigma \in \Sigma$, σ is a regexp

$$
\begin{aligned}
& \varepsilon \text { is a regexp } \\
& \varnothing \text { is a regexp }
\end{aligned}
$$

If R_{1} and R_{2} are both regexps, then $\left(R_{1} R_{2}\right),\left(R_{1}+R_{2}\right)$, and $\left(R_{1}\right)^{*}$ are regexps

Examples: $\left.\varepsilon, 0,(1)^{*},(0+1)^{*},\left(\left((0)^{*} 1\right)^{*} 1\right)+(10)\right)$

Precedence Order:
 *

then

then +

Example: $\quad R_{1}{ }^{*} \mathrm{R}_{\mathbf{2}}+\mathrm{R}_{\mathbf{3}}=\left(\left(\mathrm{R}_{1}{ }^{*}\right) \cdot \mathrm{R}_{\mathbf{2}}\right)+\mathrm{R}_{\mathbf{3}}$

Semantics

Definition: Regexps Describe Languages

The regexp $\sigma \in \Sigma$ represents the language $\{\sigma\}$ The regexp ε represents $\{\varepsilon\}$ The regexp \varnothing represents \varnothing

If R_{1} and R_{2} are regular expressions representing L_{1} and L_{2} then:
$\left(R_{1} R_{2}\right)$ represents $L_{1} \cdot L_{2}$
$\left(R_{1}+R_{2}\right)$ represents $L_{1} \cup L_{2}$
$\left(R_{1}\right)$ * represents $L_{1}{ }^{*}$
Example: $(10+0 * 1)$ represents $\{10\} \cup\left\{0^{\mathrm{k}} 1 \mid k \geq 0\right\}$

Regexps Describe Languages

For every regexp R , define $L(R)$ to be the language that R represents

A string $\mathbf{w} \in \mathbf{\Sigma}^{*}$ is accepted by R
(or, w matches R) if $w \in(R)$

Examples: 0, 010, and 01010 match (01)*0
110101110101100 matches $(0+1) * 0$

Assume $\Sigma=\{0,1\}$

\{ w | w has exactly a single 1 \}

\{ w | w contains 001 \}

Assume $\Sigma=\{0,1\}$

What language does

the regexp \varnothing^{*} represent?

Assume $\Sigma=\{0,1\}$

$\{\mathbf{w} \mid w$ has length ≥ 3 and its 3 rd symbol is $\mathbf{0}\}$

Assume $\Sigma=\{0,1\}$

$\{\mathbf{w} \mid \mathbf{w}=\boldsymbol{\varepsilon}$ or every odd position in \mathbf{w} is a 1 \}

How expressive are regular expressions?

During the "neural net craze" of the 1950s...

U. S. AIR FORCE

PROJECT RAND

RESEARCH MEMORANDUM

RRPRRSENTATION OF EVIENTS IN NRRVE NETS AI D FINITE AUTOAG2

> S. C. Kleene

RM-704

15 December 1951

DFAs \equiv NFAs \equiv Regular Expressions!

L can be represented by some regexp
 \Leftrightarrow L is regular

L can be represented by some regexp $\Rightarrow L$ is regular

Induction Step: Suppose every regexp of length < k represents some regular language.

Consider a regexp R of length $\mathrm{k}>1$
Three possibilities for R:

$$
\begin{aligned}
& R=R_{1}+R_{2} \\
& R=R_{1} R_{2} \\
& R=\left(R_{1}\right)^{*}
\end{aligned}
$$

Induction Step: Suppose every regexp of length < k represents some regular language.

Consider a regexp R of length $\mathrm{k}>1$
Three possibilities for R:

$$
\begin{array}{cc}
R=R_{1}+R_{2} & \begin{array}{c}
\text { By induction, } R_{1} \text { and } R_{2} \text { represent } \\
\text { some regular languages, } L_{1} \text { and } L_{2}
\end{array} \\
R=R_{1} R_{2} & \text { But } L(R)=L\left(R_{1}+R_{2}\right)=L_{1} \cup L_{2} \\
R=\left(R_{1}\right)^{*} & \text { so } L(R) \text { is regular, by the union theorem! }
\end{array}
$$

Induction Step: Suppose every regexp of length < k represents some regular language.

Consider a regexp R of length $\mathrm{k}>1$
Three possibilities for R:

$$
\begin{array}{cc}
R=R_{1}+R_{2} & \text { By induction, } R_{1} \text { and } R_{2} \text { represent } \\
\text { some regular languages, } L_{1} \text { and } L_{2} \\
R=R_{1} R_{2} & B \text { ut } L(R)=L\left(R_{1} \cdot R_{2}\right)=L_{1} \cdot L_{2} \\
R=\left(R_{1}\right)^{*} & \text { Thus } L(R) \text { is regular because regular }
\end{array}
$$

Induction Step: Suppose every regexp of length < k represents some regular language.

Consider a regexp R of length $\mathrm{k}>1$
Three possibilities for R:

$$
\begin{aligned}
& R=R_{1}+R_{2} \\
& R=R_{1} R_{2} \\
& R=\left(R_{1}\right)^{*}
\end{aligned}
$$

By induction, R_{1} represents a regular language L_{1}

$$
\text { But } L(R)=L\left(R_{1}^{*}\right)=L_{1}^{*}
$$

Thus $L(R)$ is regular because regular languages are closed under star

Induction Step: Suppose every regexp of length < k represents some regular language.

Consider a regexp R of length $\mathrm{k}>1$
Three possibilities for R:

$$
\begin{aligned}
& R=R_{1}+R_{2} \\
& R=R_{1} R_{2} \\
& R=\left(R_{1}\right)^{*}
\end{aligned}
$$

By induction, $\mathrm{R}_{\mathbf{1}}$ represents a regular language L_{1}

$$
\text { But } L(R)=L\left(R_{1}^{*}\right)=L_{1}^{*}
$$

Thus $L(R)$ is regular because regular languages are closed under star
Therefore: If L is represented by a regexp, then L is regular!

Give an NFA that accepts the language represented by $(\mathbf{1}(0+1))^{*}$

Regular expression: (1(0+1))*

Generalized NFAs (GNFA)

L can be represented by a regexp

L is a regular language
Idea: Transform a DFA for L into a regular expression by removing states and re-labeling the arcs with regular expressions

Rather than reading in just 0 or 1 letters from the string on an arc, we can read in entire substrings

Generalized NFA (GNFA)

cb

Accept string $x \Leftrightarrow$ there is some path of regexps R_{1}, \ldots, R_{k} from start state to final state such that x matches $R_{1} \cdots \boldsymbol{R}_{\boldsymbol{k}}$

Is aaabcbcba accepted or rejected?
Is bba accepted or rejected?
Is bcba accepted or rejected?

Generalized NFA (GNFA)

This GNFA recognizes $\mathrm{L}(\mathrm{a} * \mathrm{~b}(\mathrm{cb}) * \mathrm{a}) \quad$ cb

Accept string $x \Leftrightarrow$ there is some path of regexps R_{1}, \ldots, R_{k} from start state to final state such that x matches $R_{1} \cdots R_{k}$

Every NFA is also a GNFA.
Every regexp can be converted into
a GNFA with just two states!

Add unique start and accept states

DFA with a single regexp R

Then, $\mathrm{L}(\mathrm{R})=\mathrm{L}(\mathrm{DFA})$

While the machine has more than 2 states:
Pick an internal state, rip it out and re-label the arrows with regexps, to account for paths through the missing state

While the machine has more than 2 states:
Pick an internal state, rip it out and re-label the arrows with regexps, to account for paths through the missing state

While the machine has more than $\mathbf{2}$ states:

In general:

While the machine has more than $\mathbf{2}$ states:

In general:

Formally: Given a DFA M, add $\mathrm{q}_{\text {start }}$ and $\mathrm{q}_{\text {acc }}$ to create \mathbf{G} For all $q, q^{\prime} \in Q$, define $R\left(q, q^{\prime}\right)=\sigma_{1}+\cdots+\sigma_{k} s . t . \delta\left(q, \sigma_{i}\right)=q^{\prime}$ CONVERT(G): (Takes a GNFA, outputs a regexp)

If \#states = $\mathbf{2}$ return $R\left(q_{\text {start }}, q_{a c c}\right)$
If \#states > $\mathbf{2}$
pick $\mathbf{q}_{\text {rip }} \in \mathbf{Q}$ different from $\mathbf{q}_{\text {start }}$ and $\mathbf{q}_{\text {acc }}$ define $\mathbf{Q}^{\prime}=\mathbf{Q}-\left\{\mathbf{q}_{\mathrm{rip}}\right\}$ define R^{\prime} on $Q^{\prime}-\left\{q_{\text {acc }}\right\} \times Q^{\prime}-\left\{q_{\text {start }}\right\}$ as: defines a

$$
R^{\prime}\left(q_{i} ; q_{j}\right)=R\left(q_{i}, q_{r i p}\right) R\left(q_{r i p}, q_{r i p}\right) * R\left(q_{r i p}, q_{j}\right)+R\left(q_{i} ; q_{j}\right)
$$

return CONVERT(G')
Theorem: Let R = CONVERT(G).
Then $L(R)=L(M)$.

Claim:

$$
\mathrm{L}\left(\mathrm{G}^{\prime}\right)=\mathrm{L}(\mathrm{G})
$$

[Sipser, p.73-74]

Many Languages Are Not Regular:

 Limitations on DFAs/NFAs a.k.a."Lower Bounds" on DFAs/NFAs

$\Sigma=\{0,1\}$

Regular or Not?

$C=\{w \mid w h a s ~ e q u a l ~ n u m b e r ~ o f ~ 1 s ~ a n d ~ 0 s\} ~$

\author{
 occurrences of 01 and 10$\}$

}

