6.045

Lecture 4.
More on Regexps,
Non-Regular Languages

6.045

Announcements:

- Pset 1 is on piazza (as of last night)
- No class next Tuesday
- Come to office hours?

Deterministic Finite Automata

Computation with finite memory

Non-Deterministic Finite Automata

*
=

-

Computation with finite memory
and magical guessing

Regular Languages are closed
under all of the following operations:

UniontAuB={w|weAorweB}
IntersectiontAnB={w|weAandw e B}
Complement: -A={w e 2*|wegA}

Reverse: AR={w,..w, |w,..w, e A,w, € 2}
Concatenation: A-B={vw|veAandw e B}

Star: A*={s;...s,|k20and eachs, e A}

Regular Expressions:
Computation as
Description

A different way of thinking about computation:
What is the complexity of describing
the strings in the language?

DFAs find “patterns” in strings; how to describe them?

Inductive Definition of Regexp

Let 2 be an alphabet. We define the regular
expressions over 2 inductively:

Forallc € 2, ois aregexp
€ Is aregexp
& is a regexp

If R, and R, are both regexps, then
(R{R,), (R;+R,), and (R,)* are regexps

Examples: €, 0, (1)*, (0+1)*, ((((0)*1)*1) + (10))

Definition: Regexps Represent Languages

The regexp o € Z represents the language {c}
The regexp < represents {€}

The regexp < represents &

If R, and R, are regular expressions
representing L, and L, then:
(R{R,) represents L, L,
(R, +R,) represents L, UL,

(R,)* represents L,*

Example: (10 + 0*1) represents {10} U {01 | k > 0}

Regexps Represent Languages

For every regexp R,
define L(R) to be the language that R represents

A string w € 2* is accepted by R
(or, w matches R) if w € L(R)

Examples: 0, 010, and 01010 match (01)*0
110101110101100 matches (0+1)*0

L((0+1)*0) ={w in {0,1}* | w ends in a 0}

DFAs = NFAs = Regular Expressions!

L can be represented by some regexp
< Lisregular

We saw: L can be represented by some regexp
—> Lis regular

Every regexp can be converted into an NFA

Now we’ll show: L is regular
—> L can be represented by some regexp

Every DFA can be converted into a regexp

Generalized NFAs (GNFA)

Idea: Transform an DFA for L into a regular
expression by removing states and
re-labeling the arcs connected to those states
with regular expressions

Rather than reading in just 0 or 1 letters from the
string on an arc, we can read in entire substrings

Generalized NFA (GNFA)
cb

Accept string x <> there is some path of regexps R4, ...
from start state to final such that x matches R, - Rk

This GNFA recognizes L(a*b(cb)*a),
the set of strings matched by a*b(cb)*a

&
:8 \
— <

Add unique start and accept states

Goal: Replace with a single regexp R

Then, L(R) = L(DFA)

&
& \
— <

While the machine has more than 2 states:

Pick an internal state, rip it out and
re-label the arrows with regexps,
to account for paths through the missing state

O—>8—>O

C

&
& \
~O QO
— <

While the machine has more than 2 states:

Pick an internal state, rip it out and
re-label the arrows with regexps,
to account for paths through the missing state

O ab*c

&
E \
—VO{ GNFA |
- <

While the machine has more than 2 states:

In general:

R(d,,d3)

R(erqug

&
& \
— ()X [orea >©
— <

While the machine has more than 2 states:

In general:

R(q,,9,)R(0,,9,)*R(0,,03) + R(q4,9

a a,b

— — — —

R(d,a5) = (a*b)(a+b)*
represents L(N)

Formally: Given a DFA M, add q.,,. and g to create G
For all q, q’, define R(q,q9’) = 6,+:--+ o, s.t. §(q,0.) =’
CONVERT(G): (Takes a GNFA, outputs a regexp)
If #states =2 return R(q,..., q..c)

If #states > 2
pick g,,€Q different from g, and q,

define Q' =Q—-{q,;,} defines a
define R’ on Q’-{q...} x Q’-{q.,...} as: | new GNFA G’

R'(a;,9;) = R(9;,9,;,)R(4;;p,91ip) *R(a,,9;) + R(0;,0;)

return CONVERT(G’) Claim:

Theorem: Let R = CONVERT(G). L(G’) = L(G)
Then L(R) = L(M). [Sipser, p.73-74]

Convert to aregular expression

DFAS —

DEFINITION

Regular
Languages

Ex

NFAs

~

GNFAs

Regular

oressions

Many Languages Are Not Regular:

Limitations on DFAs/NFAs
a.k.a.

“Lower Bounds” on DFAs/NFAs

2 ={0,1}

Regular or Not? 6

C = {w | w has equal number of 1s and Os}

D = {w | whas equal number of
occurrences of 01 and 10}

A Language With No DFA

Theorem: A ={0"1" | n 2 0} is not regular

Big Idea:
No DFA can “remember” the number of 0’s,
if it reads more 0’s than its number of states.

In that case, the DFA can’t accurately
compare the number of 0’s to the
number of 1s!

A Language With No DFA

Theorem: A ={0"1" | n 2 0} is not regular

Proof: By contradiction. Assume A is regular.
Then A has a DFA M with Q states, for some Q > 0.

Suppose we run M on the input w = 09+,
By the pigeonhole principle, some state q of M
is visited more than once while reading in w.

Therefore, M is in state q after reading 0°,
and M is in state g after reading OF, for some R< S < Q+1.

What happens when M reads 15 starting from state q?

M must accept, because 0° 1> inA. ~ . diction!

AND M must reject, because OR 15 is not in A.

Counting: Hard With Finite Brain

Thm: EQ = {w | w has an equal nhumber of 0Os and 1s}
is not regular

Proof: By contradiction. Assume EQ, is regular.
Observation: EQ N L(0*1*) ={0"1" | n = 0}

If EQ is regular and L(0*1%) is regular
then EQ N L(0*1%) is regular.
(Regular Languages are closed under intersection!)

But {0"1" | n =2 0} is not regular!

Contradiction!

Palindromes: Hard With Finite Brain

Theorem: PAL = {w | w = wR} is not regular

Proof: By contradiction. Assume PAL is regular.
Then PAL has a DFA M with Q states, for some Q > 0.

Run M on the input w = 109!
By the pigeonhole principle, some state g of M is
visited more than once, while reading in the 0’s of w.

Therefore, M is in state q after reading 10°,

and is also in g after reading 10%, for some R< S < Q+1.

What happens when M reads 10°1 starting from state g?

M must accept, because 10°10°1isin PAL. ~ ¢ - diction
AND M must reject, because 10R710°1 is not...

"ﬁ‘ How to Make a DFA Lose Its Mind

Want to show: Language L is not regular

Proof: By contradiction. Assume L is regular.
So L has a DFA M with Q states, for some Q > 0.

YOU: Cleverly pick strings x, y where |y| > Q

Run M on xy. Pigeons tell us: Some state g of M is ?
visited more than once, while reading in y.
Therefore, M is in state q after reading xy’, and
is in g after reading xy”’, for distinct prefixes y’ and y’’ of y

YOU: Cleverly pick string z so that
exactly one of xy’z and xy”’zisinL

But M will give the same output on both! Contradiction!

DFAS

inimizing

\

Does this DFA have a
minimal number of states?

30

Is this minimal?

A N
~-O=Q

How can we tell in general?

31

DFA Minimization Theorem:

For every regular language A, there is a
unique (up to re-labeling of the states)
minimal-state DFA M* such that A = L(M¥).

Furthermore, there is an efficient
algorithm which, given any DFA M, will
output this unique M*.

If such algorithms existed for more

general models of computation, that
would be an engineering breakthrough!!

32

In general, there isn’t a uniquely minimal NFA
O

40_©
-5—0

33

Distinguishing states with strings

ForaDFAM=(Q, 2,9, q,, F),and g € Q,
let M, be the DFA equal to (Q, 2, 9, q, F)

Def. w € 2* distinguishes states p and q if:
M accepts w <& M, rejects w

34

Distinguishing states with strings

ForaDFAM=(Q, 2,9, q,, F),and g € Q,
let M, be the DFA equal to (Q, 2, 9, q, F)

Def. w € 2* distinguishes states p and q if:
M, and M_ have different outputs on input w

35

Distinguishing two states

Def. w € 2* distinguishes states p and q iff
M, and M_ have different outputs on w

I'm in p or q, but which?

How | Ok, I’'m accepting!

Here... read this =« Must have been p

Ok, I'm rejecting!
Must have been g

36

FixM=(Q, Z,0,q, F)and let p, q € Q
Let M, =(Q, 2,9, p,F)and M, =(Q, £, 5, q, F)

Definition(s):

State p is distinguishable from state g
iff thereis aw e Z* that distinguishes p and g
iff thereisaw € Z* so that

M, accepts w < M, rejects w

State p is indistinguishable from state g
iff pis not distinguishable from q
iff forallw € 2*, M jaccepts w <& M, accepts w

Big Idea: Pairs of indistinguishable states are redundant!
From p or q, M has exactly the same output behavior

37

Which pairs of states
are distinguishable?

Are q,and q,
distinguishable?

38

Are q,and q,
distinguishable?

39

Are q,and q,
distinguishable?

40

FixM=(Q, %,0,qy,F)andletp,q,r e Q

Define a binary relation ~ on the states of M:

p ~ q iff pisindistinguishable from q
p + q iff pis distinguishable from g

Proposition: ~ is an equivalence relation
p~p (reflexive)
P~q = q~p (symmetric)
p~qand g~r = p~r (transitive)

Proof? Just look at the definition! p ~ q means
for allw, M accepts w < M accepts w

41

FixM=(Q, %,0,qy,F)andletp,q,r e Q

Therefore, the relation ~ partitions Q into
disjoint equivalence classes

Proposition: ~ is an equwalence relation
[al:=={p|pP~q}

L

42

43

Algorithm: MINIMIZE-DFA
Input: DFA M

Output: DFA M, such that:

1. L(M) = L(M,,,) not//reachable from start

2. M,,,, has no inaccessible states

3. M, is irreducible

for all states p # q of M, p and q are distinguishable

Theorem: Every M, satisfying 1,2,3
is the unique minimal DFA equivalent to M

44

Intuition:
States of M, = Equivalence classes
of states of M

We’ll uncover these equivalent states with
a dynamic programming algorithm

45

