
Lecture 4:
More on Regexps, 

Non-Regular Languages

6.045



Announcements:
- Pset 1 is on piazza (as of last night)
- No class next Tuesday
- Come to office hours?

6.045



Deterministic Finite Automata

Computation with finite memory



Non-Deterministic Finite Automata

Computation with finite memory

and magical guessing



Regular Languages are closed 
under all of the following operations:

Union: A  B = { w | w  A or w  B } 

Intersection: A  B = { w | w  A and w  B } 

Complement: A = { w  Σ* | w  A } 

Reverse: AR = { w1 …wk | wk …w1  A, wi  Σ}

Concatenation: A  B = { vw | v  A and w  B }

Star: A* = { s1 … sk | k ≥ 0 and each si  A }



Regular Expressions:
Computation as 

Description

A different way of thinking about computation:
What is the complexity of describing

the strings in the language?

DFAs find “patterns” in strings; how to describe them?



Inductive Definition of Regexp

For all  ∊ Σ,   is a regexp

ε is a regexp

 is a regexp

If R1 and R2 are both regexps, then

(R1R2), (R1 + R2), and (R1)* are regexps

Let Σ be an alphabet. We define the regular 
expressions over Σ inductively:

Examples: ε, 0, (1)*, (0+1)*, ((((0)*1)*1) + (10)) 

Syntax



Definition: Regexps Represent Languages

The regexp  ∊ Σ represents the language {}

The regexp ε represents  {ε}

The regexp  represents   

If R1 and R2 are regular expressions 
representing L1 and L2 then:

(R1R2) represents  L1  L2

(R1 + R2) represents  L1  L2

(R1)* represents  L1*

Example: (10 + 0*1) represents {10}  {0k1 | k ≥ 0}

Semantics



Regexps Represent Languages

For every regexp R, 
define L(R) to be the language that R represents 

A string w ∊ Σ* is accepted by R

(or, w matches R) if w ∊ L(R)

Examples: 0, 010, and 01010 match (01)*0

110101110101100 matches (0+1)*0

L((0+1)*0) = {w in {0,1}* | w ends in a 0}



L can be represented by some regexp
 L is regular

DFAs ≡ NFAs ≡ Regular Expressions!

We saw: L can be represented by some regexp
 L is regular

Now we’ll show: L is regular
 L can be represented by some regexp

Every regexp can be converted into an NFA

Every DFA can be converted into a regexp



Idea: Transform an DFA for L into a regular 
expression by removing states and 

re-labeling the arcs connected to those states 
with regular expressions 

Generalized NFAs (GNFA)

Rather than reading in just 0 or 1 letters from the 
string on an arc, we can read in entire substrings



q1

cb

aa*b
q0 q2

This GNFA recognizes L(a*b(cb)*a),
the set of strings matched by a*b(cb)*a

Accept string 𝒙 there is some path of regexps 𝑹𝟏, … , 𝑹𝒌

from start state to final such that 𝒙 matches 𝑹𝟏 ⋯ 𝑹𝒌

Generalized NFA (GNFA)



DFA
ε

ε

ε

ε

ε

Add unique start and accept states

Goal: Replace with a single regexp 𝑹DFA

Then, L(𝑹) = L(DFA)



DFA
ε

ε

ε

ε

ε

While the machine has more than 2 states:

Pick an internal state, rip it out and 
re-label the arrows with regexps, 

to account for paths through the missing state

a

c

b



DFA
ε

ε

ε

ε

ε

While the machine has more than 2 states:

Pick an internal state, rip it out and 
re-label the arrows with regexps, 

to account for paths through the missing state

ab*c



NFA
ε

ε

ε

ε

ε

In general:

R(q1,q2)

R(q2,q2)

R(q2,q3)
q1

q2 q3

G

R(q1,q3)

While the machine has more than 2 states:



NFA
ε

ε

ε

ε

ε

In general:

R(q1,q2)R(q2,q2)*R(q2,q3) + R(q1,q3)

q1
q3

G

While the machine has more than 2 states:



q1

b

a

ε
q2

a,b

ε
q0 q3

R(q0,q3) = (a*b)(a+b)*

represents L(N)



Formally: Given a DFA M, add qstart and qacc to create G

CONVERT(G):    (Takes a GNFA, outputs a regexp)

If #states = 2 return R(qstart, qacc)

If #states > 2

pick  qripQ different from qstart and qacc

define Q = Q – {qrip} defines a 
new GNFA Gdefine R on Q’-{qacc} x Q’-{qstart} as:

R(qi,qj) = R(qi,qrip)R(qrip,qrip)*R(qrip,qj) + R(qi,qj)

For all q, q’, define R(q,q’) = σ1++ σk s.t. δ(q,σi) = q’

return CONVERT(G) Claim:
L(G’) = L(G)

[Sipser, p.73-74]
Theorem: Let R = CONVERT(G). 

Then L(R) = L(M).



q3

q2

b

a

b

q1

b

a

a

ε

ε

ε

bb

Convert to a regular expression



DFAs NFAs

Regular
Languages

Regular
Expressions

DEFINITION GNFAs



Many Languages Are Not Regular:

Limitations on DFAs/NFAs

a.k.a.
“Lower Bounds” on DFAs/NFAs



Regular or Not?

C  = { w | w has equal number of 1s and 0s}

D  = { w | w has equal number of
occurrences of 01 and 10}

Σ = {0,1}



Theorem: A = {0n1n | n ≥ 0} is not regular 

Big Idea:
No DFA can “remember” the number of 0’s, 

if it reads more 0’s than its number of states.

A Language With No DFA

In that case, the DFA can’t accurately 
compare the number of 0’s to the 

number of 1s!



Theorem: A = {0n1n | n ≥ 0} is not regular 

Proof: By contradiction. Assume A is regular. 
Then A has a DFA M with Q states, for some Q > 0. 

Suppose we run M on the input w = 0Q+1.

Therefore, M is in state q after reading 0S, 
and M is in state q after reading 0R, for some R < S ≤ Q+1.

What happens when M reads 1S starting from state q?

M must accept, because 0S 1S in A. Contradiction!

A Language With No DFA

AND M must reject, because 0R 1S is not in A.

By the pigeonhole principle, some state q of M 
is visited more than once while reading in w.



Thm: EQ = {w | w has an equal number of 0s and 1s} 
is not regular 

Proof: By contradiction. Assume EQ is regular. 

Observation: EQ ∩ L(0*1*) = {0n1n | n ≥ 0}

If EQ is regular and L(0*1*) is regular 
then EQ ∩ L(0*1*) is regular.

(Regular Languages are closed under intersection!)

But {0n1n | n ≥ 0} is not regular!

Contradiction!

Counting: Hard With Finite Brain



Theorem: PAL = {w | w = wR} is not regular 

Proof: By contradiction. Assume PAL is regular. 
Then PAL has a DFA M with Q states, for some Q > 0. 

Run M on the input w = 10Q+1

Therefore, M is in state q after reading 10S, 
and is also in q after reading 10R, for some R < S ≤ Q+1.

What happens when M reads 10S1 starting from state q?

M must accept, because 10S10S1 is in PAL. Contradiction!

Palindromes: Hard With Finite Brain

AND M must reject, because 10R10S1 is not…

By the pigeonhole principle, some state q of M is 
visited more than once, while reading in the 0’s of w.



Want to show: Language L is not regular 

Proof: By contradiction. Assume L is regular. 
So L has a DFA M with Q states, for some Q > 0. 

YOU: Cleverly pick strings x, y where |y| > Q 

Therefore, M is in state q after reading xy’, and 
is in q after reading xy’’, for distinct prefixes y’ and y’’ of y

But M will give the same output on both! Contradiction!

How to Make a DFA Lose Its Mind

Run M on xy. Pigeons tell us: Some state q of M is 
visited more than once, while reading in y. 

YOU: Cleverly pick string z so that
exactly one of xy’z and xy’’z is in L



Minimizing DFAs



Does this DFA have a 
minimal number of states?

11

1

1

0

0

0
0

30



Is this minimal?

0

1

0
1

31

How can we tell in general?



DFA Minimization Theorem:

For every regular language A, there is a 
unique (up to re-labeling of the states) 

minimal-state DFA M* such that A = L(M*).

Furthermore, there is an efficient 
algorithm which, given any DFA M, will 

output this unique M*.

32

If such algorithms existed for more 
general models of computation, that 

would be an engineering breakthrough!! 



In general, there isn’t a uniquely minimal NFA

0

0

0

0

33



Distinguishing states with strings

For a DFA M = (Q, Σ, , q0, F), and q ∈ Q,
let Mq be the DFA equal to (Q, Σ, , q, F)

34

Def. w  Σ* distinguishes states p and q if:
Mp accepts wMq rejects w

M
w

w

p

q

accept

reject

M
w

w

p

q
accept

rejectOR



Distinguishing states with strings

For a DFA M = (Q, Σ, , q0, F), and q ∈ Q,
let Mq be the DFA equal to (Q, Σ, , q, F)

35

Def. w  Σ* distinguishes states p and q if:
Mp and Mq have different outputs on input w

M
w

w

p

q

accept

reject

M
w

w

p

q
accept

rejectOR



Distinguishing two states

Def. w  Σ* distinguishes states p and q  iff

Mp and Mq have different outputs on w

I’m in p or q, but which?
How can I tell? 

W

Here… read this
Ok, I’m accepting!
Must have been p

36

Ok, I’m rejecting!
Must have been q



Fix M = (Q, Σ, , q0, F) and let p, q  Q 

Definition(s):

State p is distinguishable from state q  
iff there is a w  Σ* that distinguishes p and q
iff there is a w  Σ* so that 

Mp accepts w Mq rejects w

State p is indistinguishable from state q  
iff p is not distinguishable from q
iff for all w  Σ*, Mp accepts wMq accepts w

37

Big Idea: Pairs of indistinguishable states are redundant!
From p or q, M has exactly the same output behavior

Let Mp = (Q, Σ, , p, F) and Mq = (Q, Σ, , q, F)



0
0,1

00

1

1

1

q0

q1

q2

q3

38

Which pairs of states 
are distinguishable? 

Are q0 and q1 

distinguishable?



0
0,1

00

1

1

1

q0

q1

q2

q3

39

Are q0 and q3 

distinguishable?



0
0,1

00

1

1

1

q0

q1

q2

q3

40

Are q1 and q2 

distinguishable?



Fix M = (Q, Σ, , q0, F) and let p, q, r  Q 

Define a binary relation ∼ on the states of M:

p ∼ q iff p is indistinguishable from q 

p ≁ q  iff p is distinguishable from q 

Proposition: ∼ is an equivalence relation

p ∼ p   (reflexive)

p ∼ q   q ∼ p (symmetric)

p ∼ q  and  q ∼ r   p ∼ r  (transitive)

Proof?

41

Just look at the definition! p ∼ q means 
for all w,  Mp accepts w Mq accepts w



Fix M = (Q, Σ, , q0, F) and let p, q, r  Q 

Proposition: ∼ is an equivalence relation

Therefore, the relation ∼ partitions Q into 
disjoint equivalence classes

q0

Q

q

[q] := { p | p ∼ q }

42



11

1

1

0

0

0
0

43



Algorithm: MINIMIZE-DFA

Input:  DFA M

Output:  DFA MMIN such that:

1. L(M) = L(MMIN)

2. MMIN has no inaccessible states

3. MMIN is irreducible

for all states p  q of MMIN, p and q are distinguishable

||

Theorem: Every MMIN satisfying 1,2,3 
is the unique minimal DFA equivalent to M

44

not reachable from start



Intuition:
States of MMIN =    Equivalence classes

of states of M

We’ll uncover these equivalent states with
a dynamic programming algorithm

45


