6.045

Lecture 4:

More on Regexps,
Non-Regular Languages

6.045

Announcements:

- Pset 1 is on piazza (as of last night)
- No class next Tuesday
- Come to office hours?

Deterministic Finite Automata

Computation with finite memory

Non-Deterministic Finite Automata

Computation with finite memory and magical guessing

Regular Languages are closed under all of the following operations:

Union: $\mathbf{A} \cup \mathbf{B}=\{\mathbf{w} \mid \mathbf{w} \in \mathbf{A}$ or $\mathbf{w} \in \mathbf{B}\}$
Intersection: $\mathbf{A} \cap \mathbf{B}=\{\mathbf{w} \mid \mathbf{w} \in \mathbf{A}$ and $\mathbf{w} \in \mathbf{B}\}$
Complement: $\neg \mathbf{A}=\left\{\mathbf{w} \in \mathbf{\Sigma}^{*} \mid \mathbf{w} \notin \mathbf{A}\right\}$
Reverse: $A^{\mathrm{R}}=\left\{\mathrm{w}_{1} \ldots \mathrm{w}_{\mathrm{k}} \mid \mathrm{w}_{\mathrm{k}} \ldots \mathrm{w}_{1} \in \mathrm{~A}, \mathrm{w}_{\mathrm{i}} \in \Sigma \mathrm{K}\right\}$
Concatenation: $\mathbf{A} \cdot \mathbf{B}=\{\mathbf{v w} \mid \mathbf{v} \in \mathbf{A}$ and $\mathbf{w} \in \mathbf{B}\}$
Star: $A^{*}=\left\{\mathrm{s}_{1} \ldots \mathrm{~s}_{\mathrm{k}} \mid \mathrm{k} \geq 0\right.$ and each $\left.\mathrm{s}_{\mathrm{i}} \in \mathrm{A}\right\}$

Regular Expressions: Computation as Description

A different way of thinking about computation:
What is the complexity of describing the strings in the language?

DFAs find "patterns" in strings; how to describe them?

Inductive Definition of Regexp

Let Σ be an alphabet. We define the regular

 expressions over Σ inductively:For all $\sigma \in \Sigma$, σ is a regexp

$$
\begin{aligned}
& \varepsilon \text { is a regexp } \\
& \varnothing \text { is a regexp }
\end{aligned}
$$

If R_{1} and R_{2} are both regexps, then $\left(R_{1} R_{2}\right),\left(R_{1}+R_{2}\right)$, and $\left(R_{1}\right)^{*}$ are regexps

Examples: $\left.\varepsilon, 0,(1)^{*},(0+1)^{*},\left(\left((0)^{*} 1\right)^{*} 1\right)+(10)\right)$

Semantics

Definition: Regexps Represent Languages

The regexp $\sigma \in \Sigma$ represents the language $\{\sigma\}$ The regexp ε represents $\{\varepsilon\}$ The regexp \varnothing represents \varnothing

If R_{1} and R_{2} are regular expressions representing L_{1} and L_{2} then:
$\left(R_{1} R_{2}\right)$ represents $L_{1} \cdot L_{2}$
$\left(R_{1}+R_{2}\right)$ represents $L_{1} \cup L_{2}$
$\left(\mathrm{R}_{1}\right)$ * represents $\mathrm{L}_{1}{ }^{*}$
Example: $(10+0 * 1)$ represents $\{10\} \cup\left\{0^{k} 1 \mid k \geq 0\right\}$

Regexps Represent Languages

For every regexp R, define $L(R)$ to be the language that R represents

A string $\mathbf{w} \in \mathbf{\Sigma}^{*}$ is accepted by R
(or, w matches R) if $w \in L(R)$

Examples: 0, 010, and 01010 match (01)*0
110101110101100 matches ($0+1$)*0
$L((0+1) * 0)=\left\{w\right.$ in $\{0,1\}^{*} \mid w$ ends in a 0$\}$

DFAs \equiv NFAs \equiv Regular Expressions!

L can be represented by some regexp $\Leftrightarrow \mathrm{L}$ is regular

We saw: L can be represented by some regexp \Rightarrow Lis regular

Every regexp can be converted into an NFA
Now we'll show: L is regular
\Rightarrow L can be represented by some regexp
Every DFA can be converted into a regexp

Generalized NFAs (GNFA)

Idea: Transform an DFA for Linto a regular expression by removing states and re-labeling the arcs connected to those states with regular expressions

Rather than reading in just 0 or 1 letters from the string on an arc, we can read in entire substrings

Generalized NFA (GNFA)

Accept string $x \Leftrightarrow$ there is some path of regexps $\boldsymbol{R}_{1}, \ldots, \boldsymbol{R}_{k}$ from start state to final such that \boldsymbol{x} matches $\boldsymbol{R}_{\mathbf{1}} \cdots \boldsymbol{R}_{\boldsymbol{k}}$

This GNFA recognizes $\mathrm{L}\left(\mathrm{a} * \mathrm{~b}(\mathrm{cb})^{*} \mathrm{a}\right)$, the set of strings matched by $a * b(c b) * a$

Add unique start and accept states

DFA with a single regexp R

Then, $\mathrm{L}(\mathrm{R})=\mathrm{L}(\mathrm{DFA})$

While the machine has more than 2 states:
Pick an internal state, rip it out and re-label the arrows with regexps, to account for paths through the missing state

While the machine has more than 2 states:
Pick an internal state, rip it out and re-label the arrows with regexps, to account for paths through the missing state

While the machine has more than $\mathbf{2}$ states:

In general:

While the machine has more than $\mathbf{2}$ states:

In general:

$R\left(q_{0}, q_{3}\right)=(a * b)(a+b)^{*}$
 represents $L(N)$

Formally: Given a DFA M, add $\mathrm{q}_{\text {start }}$ and $\mathrm{q}_{\text {acc }}$ to create \mathbf{G}
For all q, q^{\prime}, define $R\left(q, q^{\prime}\right)=\sigma_{1}+\cdots+\sigma_{k}$ s.t. $\delta\left(q, \sigma_{i}\right)=q^{\prime}$ CONVERT(G): (Takes a GNFA, outputs a regexp)

If \#states = 2 return $R\left(q_{\text {start }}, q_{\text {acc }}\right)$
If \#states > $\mathbf{2}$
pick $\mathbf{q}_{\text {rip }} \in \mathbf{Q}$ different from $\mathbf{q}_{\text {start }}$ and $\mathbf{q}_{\text {acc }}$ define $\mathbf{Q}^{\prime}=\mathbf{Q}-\left\{\mathrm{q}_{\mathrm{rip}}\right\}$ define R^{\prime} on $Q^{\prime}-\left\{q_{\text {acc }}\right\} \times Q^{\prime}-\left\{q_{\text {start }}\right\}$ as: new GNFA G'

$$
R^{\prime}\left(q_{i} ; q_{j}\right)=R\left(q_{i}, q_{r i p}\right) R\left(q_{r i p}, q_{r i p}\right) * R\left(q_{r i p}, q_{j}\right)+R\left(q_{i} ; q_{j}\right)
$$

return CONVERT(G')
Theorem: Let R = CONVERT(G).
Then $L(R)=L(M)$.

Claim:

$$
L\left(G^{\prime}\right)=L(G)
$$

[Sipser, p.73-74]

Theorem: Let $\mathrm{R}=\operatorname{CONVERT}(\mathrm{G})$. Then $\mathrm{L}(\mathrm{R})=\mathrm{L}(\mathrm{G})$.
Proof by induction on k, the number of states in \mathbf{G}
Base Case: k=2 CONVERT outputs $\mathbf{R}\left(\mathrm{q}_{\text {start }}, \mathrm{q}_{\text {acc }}\right)$ Inductive Step:

Assume theorem is true for k-1 state GNFAs
Let \mathbf{G} have k states. Let \mathbf{G}^{\prime} be the $\mathrm{k}-1$ state GNFA.
First show that $\mathrm{L}(\mathrm{G})=\mathrm{L}\left(\mathrm{G}^{\prime}\right)$ [Sipser, p.73--74]
\mathbf{G}^{\prime} has $\mathrm{k}-1$ states, so by induction,
L(\mathbf{G}^{\prime}) $=\mathrm{L}\left(\operatorname{CONVERT}\left(\mathrm{G}^{\prime}\right)\right)=\mathrm{L}(\operatorname{CONVERT}(\mathrm{G}))=\mathrm{L}(\mathrm{R})$
by I.H.
Therefore $L(R)=L(G)$.

Convert to a regular expression

b + (a + ba) b*

$(b b+(a+b a) b * a)^{*}\left(b+(a+b a) b^{*}\right)$

Convert the NFA to a regular expression

Convert the NFA to a regular expression

Convert the NFA to a regular expression

Convert the NFA to a regular expression

$\left((a+b) b^{*} b\left(b b^{*} b\right)^{*} a\right)^{*}\left(\varepsilon+(a+b) b^{*} b\left(b b^{*} b\right)^{*}\right)$

Many Languages Are Not Regular:

 Limitations on DFAs/NFAs a.k.a."Lower Bounds" on DFAs/NFAs

$$
\Sigma=\{0,1\}
$$

Regular or Not?

$C=\{w \mid w h a s ~ e q u a l ~ n u m b e r ~ o f ~ 1 s ~ a n d ~ 0 s\} ~$ NOT REGULAR!

$$
\begin{gathered}
D=\{w \mid w \text { has equal number of } \\
\text { occurrences of } 01 \text { and } 10\} \\
\text { REGULAR! }
\end{gathered}
$$

$\Sigma=\{0,1\}$

occurrences of 01 and 10\}

$=\{w \mid w=1, w=0$, or $w=\varepsilon$, or
w starts with a 0 and ends with a 0 , or w starts with a 1 and ends with a 1 \}

$$
1+0+\varepsilon+0(0+1)^{*} 0+1(0+1)^{*} 1
$$

Claim:
A string whas equal occurrences of 01 and 10 $\Leftrightarrow \mathbf{w}$ starts and ends with the same bit!

A Language With No DFA

Theorem: $A=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is not regular

Big Idea:
No DFA can "remember" the number of 0's,
if it reads more 0 's than its number of states.

In that case, the DFA can't accurately compare the number of 0's to the number of 1s!

A Language With No DFA

Theorem: $A=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is not regular
Proof: By contradiction. Assume A is regular.
Then A has a DFA M with Q states, for some $\mathrm{Q}>0$.
Suppose we run M on the input $w=0^{\mathrm{Q}+1}$.
By the pigeonhole principle, some state q of M is visited more than once while reading in w.

Therefore, \mathbf{M} is in state q after reading 0^{s},
and \mathbf{M} is in state q after reading 0^{R}, for some $R<S \leq Q+1$.
What happens when \mathbf{M} reads 1^{s} starting from state q ?
M must accept, because $0^{S} 1^{S}$ in A.
AND M must reject, because $0^{R} 1^{S}$ is not in A.

Counting: Hard With Finite Brain

Thm: $E Q=\{w \mid w h a s ~ a n ~ e q u a l ~ n u m b e r ~ o f ~ 0 s ~ a n d ~ 1 s\} ~$ is not regular

Proof: By contradiction. Assume EQ is regular.
Observation: $\mathrm{EQ} \cap \mathrm{L}\left(0^{*} 1^{*}\right)=\left\{0^{\mathrm{n}} 1^{\mathrm{n}} \mid \mathrm{n} \geq 0\right\}$
If $E Q$ is regular and $L\left(0^{*} 1^{*}\right)$ is regular then $E Q \cap L\left(0^{*} 1^{*}\right)$ is regular.
(Regular Languages are closed under intersection!)

$$
\text { But }\left\{0^{n} 1^{n} \mid n \geq 0\right\} \text { is not regular! }
$$

Contradiction!

Palindromes: Hard With Finite Brain

Theorem: PAL = $\left\{\mathbf{w} \mid \mathbf{w}=\mathbf{w}^{\mathrm{R}}\right\}$ is not regular

Proof: By contradiction. Assume PAL is regular.
Then PAL has a DFA M with Q states, for some $\mathrm{Q}>0$.
Run M on the input $\mathrm{w}=10^{\mathrm{Q}+1}$
By the pigeonhole principle, some state q of M is visited more than once, while reading in the 0's of w.

Therefore, M is in state q after reading 10^{5}, and is also in q after reading 10^{R}, for some $\mathrm{R}<\mathrm{S} \leq \mathrm{Q}+1$.

What happens when M reads $10^{\mathrm{s}} 1$ starting from state q ? M must accept, because $10^{5} 10^{5} 1$ is in PAL. Contradiction! AND M must reject, because $10^{\mathrm{R}} 10^{\mathrm{S}} 1$ is not...

How to Make a DFA Lose Its Mind

Want to show: Language L is not regular
Proof: By contradiction. Assume Lis regular. So L has a DFA M with Q states, for some Q > 0 .

YOU: Cleverly pick strings x, y where $|y|>Q$
Run M on xy. Pigeons tell us: Some state q of M is visited more than once, while reading in y.

Therefore, M is in state q after reading xy^{\prime}, and is in q after reading $x y^{\prime \prime}$, for two prefixes y^{\prime} and $y^{\prime \prime}$ of y

YOU: Cleverly pick string z so that exactly one of $x y^{\prime} z$ and $x y^{\prime \prime} z$ is in L

But M will give the same output on both! Contradiction!

Minimizing DFAs

Does this DFA have a minimal number of states?

NO

Is this minimal?

How can we tell in general?

DFA Minimization Theorem:

For every regular language A , there is a unique (up to re-labeling of the states) minimal-state DFA \mathbf{M}^{*} such that $\mathrm{A}=\mathrm{L}\left(\mathbf{M}^{*}\right)$.

Furthermore, there is an efficient algorithm which, given any DFA M, will output this unique \mathbf{M}^{*}.

If such algorithms existed for more general models of computation, that would be an engineering breakthrough!!

In general, there isn't a uniquely minimal NFA

Distinguishing states with strings

For a DFA $M=\left(\mathbf{Q}, \Sigma, \delta, q_{0}, F\right)$, and $q \in \mathbf{Q}$, let M_{q} be the DFA equal to $(Q, \Sigma, \delta, q, F)$

Def. $\mathbf{w} \in \Sigma^{*}$ distinguishes states p and q if: M_{p} accepts $w \Leftrightarrow M_{q}$ rejects w

Distinguishing states with strings

For a DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$, and $q \in Q$, let M_{q} be the DFA equal to $(Q, \Sigma, \delta, q, F)$

Def. $w \in \Sigma^{*}$ distinguishes states p and q if: \mathbf{M}_{p} and \mathbf{M}_{q} have different outputs on input w

Distinguishing two states

Def. $\mathbf{w} \in \mathbf{\Sigma}^{*}$ distinguishes states \mathbf{p} and \mathbf{q} iff \mathbf{M}_{p} and \mathbf{M}_{q} have different outputs on \mathbf{w}

I'm in p or q, but which?
How Ok, I'm accepting!
Must have been p

Ok, I'm rejecting!
Must have been q

