6.045

Lecture 5:
Minimizing DFAs

6.045

Announcements:

- Pset 2 is up (as of last night)
- Dylan says: “It’'s fire.”

- How was Pset 1?

DFAs e——2 NFAs

DEFINITION

Regular Regular
Languages Expressions

Some Languages Are Not Regular:

Limitations on DFAs/NFAs

a.k.a.
“Lower Bounds” on DFAs/NFAs

"ﬁ“ How to Make a DFA Lose Its Mind

DFAS

inimizing

\

Does this DFA have a
minimal number of states?

Is this minimal?

A N
~-O=Q

How can we tell in general?

DFA Minimization Theorem:

For every regular language A, there is a
unique (up to re-labeling of the states)
minimal-state DFA M* such that A = L(M¥).

Furthermore, there is an efficient
algorithm which, given any DFA M, will
output this unique M*.

If such algorithms existed for more

general models of computation, that
would be an engineering breakthrough!!

In general, there isn’t a uniquely minimal NFA
O

40_©
-5—0

10

Distinguishing states with strings

ForaDFAM=(Q, 2,9, q,, F),and g € Q,
let M, be the DFA equal to (Q, 2, 9, q, F)

Def. w € 2* distinguishes states p and q if:
M accepts w <& M, rejects w

11

Distinguishing states with strings

ForaDFAM=(Q, 2,9, q,, F),and g € Q,
let M, be the DFA equal to (Q, 2, 9, q, F)

Def. w € 2* distinguishes states p and q if:
M, and M_ have different outputs on input w

12

Distinguishing two states

Def. w € Z* distinguishes states p and q iff
M, and M_ have different outputs on w

I'm in p or q, but which?

How | Ok, I’'m accepting!

Here... read this =« Must have been p

Ok, I'm rejecting!
Must have been g

13

FixM=(Q, Z,0,q, F)and let p, q € Q
Let M, =(Q, 2,9, p,F)and M, =(Q, £, 5, q, F)

Definition(s):

State p is distinguishable from state g
iff thereis aw e Z* that distinguishes p and g
iff thereisaw € Z* so that

M, accepts w < M, rejects w

State p is indistinguishable from state g
iff pis not distinguishable from q
iff forallw € 2*, M jaccepts w <& M, accepts w

Big Idea: Pairs of indistinguishable states are redundant!
From p or q, M has exactly the same output behavior

14

Which pairs of states
are distinguishable?

Are q,and q,
distinguishable?

15

Are q,and q,
distinguishable?

16

Are q,and q,
distinguishable?

17

FixM=(Q, %,0,qy,F)andletp,q,r e Q

Define a binary relation ~ on the states of M:

p ~ q iff pisindistinguishable from q
p + q iff pis distinguishable from ¢

Proposition: ~ is an equivalence relation
p~p (reflexive)
P~q = q~p (symmetric)
p~qand g~r = p~r (transitive)

Proof? Just look at the definition! p ~ q means
for allw, M accepts w < M accepts w

18

FixM=(Q, %,0,qy,F)andletp,q,r e Q

Therefore, the relation ~ partitions Q into
disjoint equivalence classes

Proposition: ~ is an equivalence relation

[al:={p|pP~q}

L

19

20

Algorithm: MINIMIZE-DFA
Input: DFA M
Output: DFA M, such that:

1. L(M) = L(My) unreachable from start state

4
2. M,,,, has no inaccessible states

3. M, is irreducible

for all states p # q of M, p and q are distinguishable

Theorem: Every M, satisfying 1,2,3
is the unique minimal DFA equivalent to M

21

Intuition:
States of M, = Equivalence classes
of states of M

We’ll discover the equivalent states with
a dynamic programming algorithm

22

The Table-Filling Algorithm
Input: DFAM =(Q, %, 9, q,, F)
Output: (1) Dy, ={(p,a) I p,a€Qandp +q}
(2) EQUIV,, = {[a] | a € Q}

Idea:

 We know how to find those pairs of states
that the string € distinguishes...

e Use this and iteration to find those pairs
distinguishable with Jonger strings

* The pairs of states left over will be
indistinguishable

23

The Table-Filling Algorithm
Input: DFAM =(Q, %, 9, q,, F)
Output: (1) Dy, ={(p,a) I p,a€Qandp +q}
(2) EQUIV\,, ={[dl | g € Q}

Suppose |Q|=n+1.

Start by making a table of cells,
with % of all possible state pairs.
We want to fill in which pairs are
distinguishable.

QO CI1 Qi qn

24

The Table-Filling Algorithm
Input: DFAM =(Q, %, 9, q,, F)
Output: (1)Dy={(p,q) | p,aeQandp +q}
(2) EQUIV, ={[a]l g € Q}

Jo
a1

Base Case: For all (p, q) such that
p accepts and g rejects = mark p + g

oF

Un

QO CI1 Qi qn

25

The Table-Filling Algorithm
Input: DFAM =(Q, %, 9, q,, F)
Output: (1)Dy={(p,q) | p,aeQandp +q}
(2) EQUIV, ={[a]l g € Q}

Base Case: For all (p, q) such that
p accepts and g rejects = mark p + g

Iterate rule: If there are states p, g
and a symbol o € 2 satisfying:

6 (p,o)=p’ mark
* = ~
6(9,0)=0' b

Repeat until the rule doesn’t apply 26

Are q,and q,
distinguishable?

Are q,and q,
distinguishable?

Are q,and q,
distinguishable?

0,1

Uo
4,

d,
ds

Jo

d,

op

ds

Recognizes
{w | w ends in 0}

28

Claim: If (p, q) is marked D by the algorithm, then p + q

Proof: Induction on the number of iterations n in the
algorithm when (p, q) is marked D

n = 0: If (p, gq) is marked D in the base case, then
exactly one of them is final, so € distinguishes p and ¢

I.H. For all (p’, q’) marked D in the first n iterations, p’ + ¢’
Suppose (p, q) is marked D in the (n + 1)th iteration.

To be marked, there must be states p’, g’ such that:
1. p’ = 9d(p,0) and q' = 0(q,0), for some o € 2
2.(p’,q')ismarked D = p’'+ g’ (byinduction)

So there’s a w s.t. w distinguishes p’ and g’

Then, the string ow distinguishes p and ¢!

29

Claim: If (p, q) is not marked D by the algorithm, then p ~ q

Proof (by contradiction):

Suppose there is a pair (p, gq) not marked D by the
algorithm, yet p + q (call this a “bad pair”)

Then there is a string w such that |w| > 0 and:

M, and M_ have different outputsonw (Whyis |[w]| >0?)

Of all such bad pairs, let (p, g) be a pair with a
minimum-length distinguishing string w

30

Claim: If (p, q) is not marked D by the algorithm, then p ~ q

Proof (by contradiction):

Suppose there is a pair (p, gq) not marked D by the
algorithm, yet p + q (call this a “bad pair”)

Of all such bad pairs, let (p, q) be a pair with a
minimum-length distinguishing string w
M, and M_ have different outputsonw (Whyis |[w]| >0?)

We have w = ow/’, for some string w’ and some c € 2
Let p’ = 8(p,o0) and q' = 8(q,5). (p’,d’) distinguished by w’
Then (p’, q') is also a bad pair! (It must be not marked D)

But then (p’, q') has a SHORTER distinguishing string, w'
Contradiction! .

Algorithm MINIMIZE

Input: DFA M

Output: Equivalent minimal-state DFA M,
1. Remove all inaccessible states from M

2. Run Table-Filling algorithm on M to get:
EQUIV,, ={[q] | qis an accessible state of M }

3. Define: My, = (Quuns 25 Opins Ao mine Fvin)
Qun = EQUIV, dopin = [qo]r Fon = {[dl | g € F}

6|v||N([q],cr)=[8(q,cr)]

Claim: L(M,,) = L(m) (Well-defined??]

32

The MINIMIZE Algorithm in Pictures

1. Remove all inaccessible states

33

The MINIMIZE Algorithm in Pictures

2. Run Table-Filling to get equiv classes

[al :={p|lP~q}

aa

34

The MINIMIZE Algorithm in Pictures

4V)
" 3. Define M, With states = equiv classes

States of M, = Equivalence classes
of states of M

35

MINIMIZE

36

1) O o) o1
-~ =) N

N\
0,11 0 o
ol

Distinguish q,
fromq;and q,

Jo

d;

ds

44

Distinguish q,,
from q;and q,

Js

o 91 Q3 (s Qs

Thm: My, is the unique minimal DFA equivalent to M

Claim: Let M’ be any DFA where L(M')=L(M,,,) and

M’ has no inaccessible states and M’ is irreducible.
Then there is an isomorphism between M’ and M,

Suppose we have proved the Claim is true.
Assuming the Claim we can prove the Thm:

Proof of Thm: Let M’ be any minimal DFA for M.
Since M’ is minimal, M’ has no inaccessible states and is
irreducible (otherwise, we could make M’ smaller!)
By the Claim, there is an isomorphism between M’ and
the DFA M, that is output by MINIMIZE(M).
That is, M, is isomorphic to every minimal M’.

40

Thm: My, is the unique minimal DFA equivalent to M

Claim: Let M’ be any DFA where L(M')=L(M,,,) and

M’ has no inaccessible states and M’ is irreducible.
Then there is an isomorphism between M’ and M,

Proof: We recursively construct a map from
the states of M, to the states of M’

Base Case: q, \yn > 9o’
Recursive Step: If p > p’

lG lG Theng q’
qa dq

41

Base Case: d, \n— Yo’

Recursive Step:

Iif p— p’

(s

qa dq

Theng q’

42

Base Case: d, v Yo’

Recursive Step: If pi—> p’

lG lG Thengq— ¢’
qa dq

Claim: Map is an isomorphism. Need to prove:

The map is defined everywhere

The map is well defined

The map is a bijection (one-to-one and onto)
The map preserves all transitions:

If p > p' then o,,,(p, o) — d'(p’, 0)
(this follows from the definition of the map!)

43

Base Case: g,y > 9o’
Recursive Step: If pi—> p’

lG lG Thengq— ¢’
qa dq

The map is defined everywhere

That is, for all states q of M,
there is a state g’ of M’ such that g~ ¢’

If g € My, there is a string w such that
M, is in state q after reading in w

Let g’ be the state of M’ after reading in w.
Claim:q— ¢’ (proof by induction on [w])

44

Base Case: g,y > 9o’
Recursive Step: If pi—> p’
lG lG Thenqg q’
qa Jq
The map is onto: Vq’ 3 q such thatqi— ¢’

Want to show: For all states g’ of M’ there is a
state q of M, such that q— ¢’

For every ' in M’ there is a string w such that
M’ reaches state q' after reading in w

Let q be the state of M, after reading in w.
Claim: q—~ q' (proof by induction on [w])

45

Base Case: d, v Yo’

Recursive Step: If pi—> p’

lG lG Thengq— ¢’

qa q
The map is well defined: Vq 3! g’ such thatq— ¢’
Suppose there are states g’ and '’ such that

g—q andq— q”’

We show that q' and q'’ are indistinguishable,
so it must be that g’ = g’ (why?)

46

Suppose there are states g’ and '’ such that
g—~q'andq— q"

Assume for contradiction q' and q'’ are distinguishable

MI

u W

do’ q’

1daooy

\Y W

O —ep @ =P @ =P @ =P @ =P @

qo’ q"

108[8Y

47

Mapis 1-to-1: Vp#q,p—~q'andq—~q”" = q + q"

Proof by contradiction. Suppose there are
statesp#qsuchthatp—~q'and g~ ¢

If p # q, then p and g are distinguishable

'
I\/Il\/llN M

> >

u W O u W ®)

0 =P @ mn @)y @ = @ == @ 8 0 == @ =) @ =) @ = @ =) @ 8

4

Qo MmN p =t do’ g =l

Y W T v W Py

) > 0@ > @ >0 —p 0 —p 0 (D 0—>0—>0—>0’—>0—>0LD.
o ’

o miN 4 3 Yo . a

48

How can we prove that two regular
expressions are equivalent?

49

50

