6.045

Lecture 5: Minimizing DFAs

6.045

Announcements:

- Pset $\mathbf{2}$ is up (as of last night)
- Dylan says: "It's fire."
- How was Pset 1?

Some Languages Are Not Regular:

Limitations on DFAs/NFAs a.k.a.

"Lower Bounds" on DFAs/NFAs

How to Make a DFA Lose Its Mind

Minimizing DFAs

Does this DFA have a minimal number of states?

Is this minimal?

How can we tell in general?

DFA Minimization Theorem:

For every regular language A , there is a unique (up to re-labeling of the states) minimal-state DFA \mathbf{M}^{*} such that $\mathrm{A}=\mathrm{L}\left(\mathbf{M}^{*}\right)$.

Furthermore, there is an efficient algorithm which, given any DFA M, will output this unique \mathbf{M}^{*}.

If such algorithms existed for more general models of computation, that would be an engineering breakthrough!!

In general, there isn't a uniquely minimal NFA

Distinguishing states with strings

For a DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$, and $q \in Q$, let M_{q} be the DFA equal to ($\left.\mathbf{Q}, \Sigma, \delta, q, F\right)$

Def. $w \in \sum^{*}$ distinguishes states p and q if: \mathbf{M}_{p} accepts $\mathbf{w} \Leftrightarrow \mathbf{M}_{\mathrm{q}}$ rejects w

Distinguishing states with strings

For a DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$, and $q \in Q$, let M_{q} be the DFA equal to $(Q, \Sigma, \delta, q, F)$

Def. $w \in \Sigma^{*}$ distinguishes states p and q if: \mathbf{M}_{p} and \mathbf{M}_{q} have different outputs on input w

Distinguishing two states

Def. $\mathbf{w} \in \mathbf{\Sigma}^{*}$ distinguishes states \mathbf{p} and \mathbf{q} iff \mathbf{M}_{p} and \mathbf{M}_{q} have different outputs on \mathbf{w}

I'm in p or q, but which?
How Ok, I'm accepting!
Must have been p

Ok, I'm rejecting!
Must have been q

$$
\begin{gathered}
\text { Fix } M=\left(Q, \Sigma, \delta, q_{0}, F\right) \text { and let } p, q \in Q \\
\text { Let } M_{p}=(Q, \Sigma, \delta, p, F) \text { and } M_{q}=(Q, \Sigma, \delta, q, F)
\end{gathered}
$$

Definition(s):
State \mathbf{p} is distinguishable from state \mathbf{q}
iff there is a w $\in \mathbf{\Sigma}^{*}$ that distinguishes p and q
iff there is a w $\in \Sigma^{*}$ so that M_{p} accepts $w \Leftrightarrow M_{q}$ rejects w
State p is indistinguishable from state q iff p is not distinguishable from q iff for all $w \in \Sigma^{*}, M_{p}$ accepts $w \Leftrightarrow M_{q}$ accepts w

Big Idea: Pairs of indistinguishable states are redundant! From p or q, M has exactly the same output behavior

Which pairs of states are distinguishable?

Fix $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ and let $p, q, r \in \mathbf{Q}$
Define a binary relation \sim on the states of M :

$$
\begin{aligned}
& p \sim q \text { iff } p \text { is indistinguishable from } q \\
& p \nsim \text { iff } p \text { is distinguishable from } q
\end{aligned}
$$

Proposition: ~ is an equivalence relation

$$
\begin{aligned}
& p \sim p \text { (reflexive) } \\
& p \sim q \Rightarrow q \sim p \quad \text { (symmetric) } \\
& p \sim q \text { and } q \sim r \Rightarrow p \sim r \quad \text { (transitive) }
\end{aligned}
$$

Proof? Just look at the definition! $\mathbf{p} \sim \mathrm{q}$ means for all $\mathbf{w}, \mathbf{M}_{\mathrm{p}}$ accepts $\mathbf{w} \Leftrightarrow \mathbf{M}_{\mathbf{q}}$ accepts \mathbf{w}

Fix $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ and let $p, q, r \in \mathbf{Q}$

Therefore, the relation ~ partitions \mathbf{Q} into disjoint equivalence classes

Proposition: \sim is an equivalence relation

$$
[q]:=\{p \mid p \sim q\}
$$

Algorithm: MINIMIZE-DFA

Input: DFA M

Output: DFA M $_{\text {MIN }}$ such that:

$$
\text { 1. } L(M)=L\left(M_{\text {MIN }}\right) \text { unreachable from start state }
$$

2. $\mathrm{M}_{\text {MIN }}$ has no inaccessible states
3. $\mathrm{M}_{\mathrm{MIN}}$ is irreducible
||
for all states $\mathrm{p} \neq \mathrm{q}$ of $\mathrm{M}_{\mathrm{MIN}}, \mathrm{p}$ and q are distinguishable
Theorem: Every $\mathrm{M}_{\text {min }}$ satisfying 1,2,3 is the unique minimal DFA equivalent to \mathbf{M}

Intuition:

States of $\mathbf{M}_{\mathrm{MIN}}=$ Equivalence classes of states of M

We'll discover the equivalent states with a dynamic programming algorithm

The Table-Filling Algorithm

Input: DFA M = (Q, $\left.\Sigma, \delta, q_{0}, F\right)$
Output: (1) $D_{M}=\{(p, q) \mid p, q \in Q$ and $p \nsim q\}$ (2) $E Q U V_{M}=\{[q] \mid q \in Q\}$

Idea:

- We know how to find those pairs of states that the string ε distinguishes...
- Use this and iteration to find those pairs distinguishable with longer strings
- The pairs of states left over will be indistinguishable

The Table-Filling Algorithm

Input: DFA M = (Q, $\left.\Sigma, \delta, \mathbf{q}_{\mathbf{0}}, F\right)$
Output: (1) $D_{M}=\{(p, q) \mid p, q \in Q$ and $p \nsim q\}$
(2) $E Q U V_{M}=\{[q] \mid q \in Q\}$

Suppose |Q|=n+1. Start by making a table of cells, with $1 / 2$ of all possible state pairs. We want to fill in which pairs are distinguishable.

The Table-Filling Algorithm

Input: DFA M = (Q, $\left.\Sigma, \delta, \mathbf{q}_{\mathbf{0}}, F\right)$
Output: (1) $D_{M}=\{(p, q) \mid p, q \in Q$ and $p \nsim q\}$
(2) EQUIV ${ }_{M}=\{[q] \mid q \in Q\}$

The Table-Filling Algorithm

Input: DFA M = (Q, $\left.\Sigma, \delta, q_{0}, F\right)$
Output: (1) $D_{M}=\{(p, q) \mid p, q \in Q$ and $p \nsim q\}$
(2) EQUIV ${ }_{M}=\{[q] \mid q \in Q\}$

Base Case: For all (p, q) such that p accepts and q rejects \Rightarrow mark $p \nsim q$

Iterate rule: If there are states $\mathbf{p , q}$ and a symbol $\sigma \in \Sigma$ satisfying:

$$
\begin{aligned}
& \delta(p, \sigma)=p^{\prime} \\
& \underset{\sim}{\psi} \Rightarrow(q, \sigma)=q^{\prime}
\end{aligned} \Rightarrow \begin{aligned}
& \text { mark } \\
& p \times q
\end{aligned}
$$

Repeat until the rule doesn't apply

Claim: If (p, q) is marked D by the algorithm, then $p \nsim q$
Proof: Induction on the number of iterations \boldsymbol{n} in the algorithm when (p, q) is marked D
$n=0$: If (p, q) is marked D in the base case, then exactly one of them is final, so ε distinguishes p and q
I.H. For all (p^{\prime}, q^{\prime}) marked D in the first n iterations, $p^{\prime} \nsim q^{\prime}$

Suppose (p, q) is marked D in the $(n+1)$ th iteration.
To be marked, there must be states p^{\prime}, q^{\prime} such that:

1. $p^{\prime}=\delta(p, \sigma)$ and $q^{\prime}=\delta(q, \sigma)$, for some $\sigma \in \Sigma$
2. $\left(p^{\prime}, q^{\prime}\right)$ is marked $D \Rightarrow p^{\prime} \nsim q^{\prime}$ (by induction)

So there's a w s.t. w distinguishes p^{\prime} and q^{\prime}
Then, the string ow distinguishes p and q !

Claim: If (p, q) is not marked D by the algorithm, then $p \sim q$

Proof (by contradiction):
Suppose there is a pair (p, q) not marked D by the algorithm, yet $p \nsim q$ (call this a "bad pair")

Then there is a string w such that $|w|>0$ and:
M_{p} and M_{q} have different outputs on $\mathbf{w} \quad$ (Why is $|\mathbf{w}|>0$?)
Of all such bad pairs, let (p, q) be a pair with a minimum-length distinguishing string w

Claim: If (p, q) is not marked D by the algorithm, then $p \sim q$

Proof (by contradiction):
Suppose there is a pair (p, q) not marked D by the algorithm, yet $p \nsim q$ (call this a "bad pair")
Of all such bad pairs, let (p, q) be a pair with a minimum-length distinguishing string w \mathbf{M}_{p} and M_{q} have different outputs on $\mathbf{w} \quad$ (Why is $|\mathbf{w}|>0$?)

We have $\mathbf{w}=\sigma \mathbf{w}^{\prime}$, for some string \mathbf{w}^{\prime} and some $\boldsymbol{\sigma} \in \boldsymbol{\Sigma}$ Let $p^{\prime}=\delta(p, \sigma)$ and $q^{\prime}=\delta(q, \sigma) . \quad\left(p^{\prime}, q^{\prime}\right)$ distinguished by w^{\prime} Then (p^{\prime}, q^{\prime}) is also a bad pair! (It must be not marked D)
But then (p^{\prime}, q^{\prime}) has a SHORTER distinguishing string, w^{\prime} Contradiction!

Algorithm MINIMIZE

Input: DFA M

Output: Equivalent minimal-state DFA M MIN

1. Remove all inaccessible states from \mathbf{M}
2. Run Table-Filling algorithm on \mathbf{M} to get: EQUIV $_{M}=\{[q] \mid q$ is an accessible state of M \}
3. Define: $M_{\text {MIN }}=\left(Q_{M I N}, \Sigma, \delta_{\text {MIN }}, q_{0 \text { MIN }}, F_{\text {MIN }}\right)$

$$
\mathbf{Q}_{\mathrm{MIN}}=\operatorname{EQUIV}_{\mathrm{M}}, \mathrm{q}_{0 \mathrm{MIN}}=\left[\mathrm{q}_{0}\right], \mathrm{F}_{\mathrm{MIN}}=\{[\mathrm{q}] \mid \mathrm{q} \in \mathrm{~F}\}
$$

$$
\delta_{\text {MiN }}([q], \sigma)=[\delta(q, \sigma)]
$$

$$
\text { Claim: } \mathrm{L}\left(\mathrm{M}_{\mathrm{MIN}}\right)=\mathrm{L}(\mathrm{M})
$$

(well-defined??)

The MINIMIZE Algorithm in Pictures

1. Remove all inaccessible states

The MINIMIZE Algorithm in Pictures

2. Run Table-Filling to get equiv classes

The MINIMIZE Algorithm in Pictures

3. Define $\mathbf{M}_{\text {MIN }}$ with states = equiv classes

States of $\mathrm{M}_{\mathrm{MIN}}=\quad \begin{gathered}\text { Equivalence classes } \\ \text { of states of } \mathrm{M}\end{gathered}$

MINIMIZE

MINIMIZE

Thm: $\mathbf{M}_{\text {MIN }}$ is the unique minimal DFA equivalent to \mathbf{M}
Claim: Let \mathbf{M}^{\prime} be any DFA where $\mathrm{L}\left(\mathrm{M}^{\prime}\right)=\mathrm{L}\left(\mathrm{M}_{\text {MIN }}\right)$ and \mathbf{M}^{\prime} has no inaccessible states and \mathbf{M}^{\prime} is irreducible. Then there is an isomorphism between \mathbf{M}^{\prime} and $\mathbf{M}_{\mathbf{M I N}}$

Suppose we have proved the Claim is true. Assuming the Claim we can prove the Thm:

Proof of Thm: Let \mathbf{M}^{\prime} be any minimal DFA for \mathbf{M}.
Since \mathbf{M}^{\prime} is minimal, \mathbf{M}^{\prime} has no inaccessible states and is irreducible (otherwise, we could make M^{\prime} smaller!)
By the Claim, there is an isomorphism between \mathbf{M}^{\prime} and the DFA $\mathbf{M}_{\text {MIN }}$ that is output by MINIMIZE(M).
That is, $\mathrm{M}_{\text {MIN }}$ is isomorphic to every minimal M^{\prime}.

Thm: $\mathbf{M}_{\text {MIN }}$ is the unique minimal DFA equivalent to \mathbf{M}
Claim: Let \mathbf{M}^{\prime} be any DFA where $\mathrm{L}\left(\mathrm{M}^{\prime}\right)=\mathrm{L}\left(\mathrm{M}_{\text {MIN }}\right)$ and \mathbf{M}^{\prime} has no inaccessible states and \mathbf{M}^{\prime} is irreducible.
Then there is an isomorphism between \mathbf{M}^{\prime} and $\mathbf{M}_{\mathbf{M I N}}$
Proof: We recursively construct a map from the states of $\mathbf{M}_{\text {MIN }}$ to the states of \mathbf{M}^{\prime}

Base Case: $\mathrm{q}_{\mathrm{omiN}} \mapsto \mathrm{q}_{\mathrm{o}}{ }^{\prime}$
Recursive Step: If $p \mapsto \mathbf{p}^{\prime}$

$$
{\underset{q}{ }}^{\sigma} \int_{\mathbf{q}^{\prime}} \sigma \quad \text { Then } \mathbf{q} \mapsto \mathbf{q}^{\prime}
$$

Base Case: $q_{0 \text { miN }} \mapsto \mathbf{q}_{0}{ }^{\prime}$ Recursive Step: If $p \mapsto \mathbf{p}^{\prime}$ $\underset{\mathbf{q}}{\int_{\mathbf{q}^{\prime}} \sigma} \int^{\mid} \sigma$ Then $\mathbf{q} \mapsto \mathbf{q}^{\prime}$

Base Case: $q_{0 \text { min }} \mapsto q_{0}{ }^{\prime}$
Recursive Step: If $\mathbf{p} \mapsto \mathbf{p}^{\prime}$

Claim: Map is an isomorphism. Need to prove:
The map is defined everywhere
The map is well defined
The map is a bijection (one-to-one and onto)
The map preserves all transitions:
If $p \mapsto p^{\prime}$ then $\delta_{\text {MIN }}(p, \sigma) \mapsto \delta^{\prime}\left(p^{\prime}, \sigma\right)$
(this follows from the definition of the map!)

Base Case: $q_{0 \text { Min }} \mapsto q_{0}{ }^{\prime}$
Recursive Step: If $\mathbf{p} \mapsto \mathbf{p}^{\prime}$

$$
{\underset{q}{ }}_{\sigma} \sigma \int_{\mathbf{q}^{\prime}} \sigma \quad \text { Then } \mathbf{q} \mapsto \mathbf{q}^{\prime}
$$

The map is defined everywhere
That is, for all states \mathbf{q} of $\mathbf{M}_{\text {MIN }}$ there is a state \mathbf{q}^{\prime} of \mathbf{M}^{\prime} such that $\mathbf{q} \mapsto \mathbf{q}^{\prime}$

If $\mathbf{q} \in \mathbf{M}_{\mathbf{M I N}}$, there is a string \mathbf{w} such that $\mathbf{M}_{\text {MIN }}$ is in state \mathbf{q} after reading in w

Let q^{\prime} be the state of \mathbf{M}^{\prime} after reading in \mathbf{w}. Claim: $\mathbf{q} \mapsto \mathbf{q}^{\prime} \quad$ (proof by induction on $/ w /$)

Base Case: $q_{0 \text { MIN }} \mapsto q_{0}{ }^{\prime}$
Recursive Step: If $\mathbf{p} \mapsto \mathbf{p}^{\prime}$

The map is onto: $\forall q^{\prime} \exists \mathrm{q}$ such that $\mathrm{q} \mapsto \mathrm{q}^{\prime}$
Want to show: For all states \mathbf{q}^{\prime} of \mathbf{M}^{\prime} there is a state \mathbf{q} of $\mathbf{M}_{\text {MIN }}$ such that $\mathbf{q} \mapsto \mathbf{q}^{\prime}$

For every \mathbf{q}^{\prime} in \mathbf{M}^{\prime} there is a string w such that $\mathbf{M}^{\mathbf{\prime}}$ reaches state $\mathbf{q}^{\mathbf{\prime}}$ after reading in \mathbf{w}

Let \mathbf{q} be the state of $\mathrm{M}_{\text {MIN }}$ after reading in \mathbf{w}. Claim: $\mathbf{q} \mapsto \mathrm{q}^{\prime} \quad$ (proof by induction on $|w|$)

Base Case: $q_{0 \text { MIN }} \mapsto q_{0}{ }^{\prime}$
Recursive Step: If $p \mapsto \mathbf{p}^{\prime}$

The map is well defined: $\forall q \exists!q^{\prime}$ such that $q \mapsto q^{\prime}$

Suppose there are states \mathbf{q}^{\prime} and $\mathbf{q}^{\prime \prime}$ such that $\mathbf{q} \mapsto \mathbf{q}^{\prime}$ and $\mathbf{q} \mapsto \mathbf{q}^{\prime \prime}$

We show that \mathbf{q}^{\prime} and $\mathbf{q}^{\prime \prime}$ are indistinguishable, so it must be that $q^{\prime}=q^{\prime \prime}$ (why?)

Suppose there are states \mathbf{q}^{\prime} and $\mathbf{q}^{\prime \prime}$ such that $\mathbf{q} \mapsto \mathbf{q}^{\prime}$ and $\mathbf{q} \mapsto \mathbf{q}^{\prime \prime}$

Assume for contradiction \mathbf{q}^{\prime} and $\mathbf{q}^{\prime \prime}$ are distinguishable

Map is 1-to-1: $\forall p \neq q, p \mapsto q^{\prime}$ and $q \mapsto q^{\prime \prime} \Rightarrow q^{\prime} \neq q^{\prime \prime}$
Proof by contradiction. Suppose there are states $p \neq q$ such that $p \mapsto q^{\prime}$ and $q \mapsto q^{\prime}$ If $p \neq q$, then p and q are distinguishable

How can we prove that two regular expressions are equivalent?

