6.045

Lecture 5: Minimizing DFAs

6.045

Announcements:

- Pset 2 is up (as of last night)
 - Dylan says: "It's fire."
- How was Pset 1?

Some Languages Are Not Regular:

Limitations on DFAs/NFAs a.k.a. "Lower Bounds" on DFAs/NFAs

Minimizing DFAs

Does this DFA have a minimal number of states?

Recognizes {w | w ends in 0}

Is this minimal?

How can we tell in general?

DFA Minimization Theorem:

For every regular language A, there is a unique (up to re-labeling of the states) minimal-state DFA M* such that A = L(M*).

Furthermore, there is an *efficient algorithm* which, given any DFA M, will output this unique M*.

If such algorithms existed for more general models of computation, that would be an engineering breakthrough!!

In general, there isn't a uniquely minimal NFA

Distinguishing states with strings

For a DFA M = (Q, Σ , δ , q_0 , F), and $q \in Q$, let M_q be the DFA equal to (Q, Σ , δ , q, F)

Def. $w \in \Sigma^*$ distinguishes states p and q if: M_p accepts $w \Leftrightarrow M_q$ rejects w

Distinguishing states with strings

For a DFA M = (Q, Σ , δ , q_0 , F), and $q \in Q$, let M_q be the DFA equal to (Q, Σ , δ , q, F)

Def. $w \in \Sigma^*$ distinguishes states p and q if: M_p and M_q have different outputs on input w

Distinguishing two states

How

Def. $w \in \Sigma^*$ *distinguishes* states p and q iff M_p and M_q have *different outputs* on w

Here... read this

Ok, I'm *accepting*! Must have been p

I'm in p or q, but which?

Ok, I'm *rejecting*! Must have been q

Fix M = (Q, Σ , δ , q_0 , F) and let p, $q \in Q$ Let M_p = (Q, Σ , δ , p, F) and M_q = (Q, Σ , δ , q, F)

Definition(s):

State p is distinguishable from state q iff there is a $w \in \Sigma^*$ that distinguishes p and q iff there is a $w \in \Sigma^*$ so that M_p accepts $w \Leftrightarrow M_q$ rejects w

State p is *indistinguishable* from state q iff p is not distinguishable from q iff for all $w \in \Sigma^*$, M_p accepts $w \Leftrightarrow M_q$ accepts w

Big Idea: Pairs of indistinguishable states are redundant! From p or q, M has exactly the same output behavior

Fix M = (Q, Σ , δ , q_0 , F) and let p, q, r \in Q **Define a binary relation ~ on the states of M:** $\mathbf{p} \sim \mathbf{q}$ iff p is indistinguishable from q p $\not\sim$ q iff p is distinguishable from q **Proposition:** ~ is an equivalence relation $p \sim p$ (reflexive) $p \sim q \Rightarrow q \sim p$ (symmetric) $p \sim q$ and $q \sim r \Rightarrow p \sim r$ (transitive) **Proof?** Just look at the definition! $p \sim q$ means for all w, M_n accepts w \Leftrightarrow M_n accepts w

Fix M = (Q, Σ , δ , q_0 , F) and let p, q, r \in Q

Therefore, the relation ~ partitions Q into disjoint equivalence classes

Proposition: ~ is an equivalence relation

Algorithm: MINIMIZE-DFA **Input:** DFA M **Output:** DFA M_{MIN} such that: 1. L(M) = L(M_{MIN}) unreachable from start state 2. M_{MIN} has no *inaccessible* states 3. M_{MIN} is *irreducible* for all states $p \neq q$ of M_{MIN} , p and q are distinguishable **Theorem: Every M_{MIN} satisfying 1,2,3**

is the unique minimal DFA equivalent to M

Intuition: States of M_{MIN} = *Equivalence classes* of states of M

We'll discover the equivalent states with a *dynamic programming* algorithm

The Table-Filling AlgorithmInput: DFA M = (Q, Σ , δ , q_0 , F)Output: (1) $D_M = \{ (p, q) \mid p, q \in Q \text{ and } p \not\sim q \}$ (2) EQUIV_M = $\{ [q] \mid q \in Q \}$

Idea:

- We know how to find those pairs of states that the string ε distinguishes...
- Use this and *iteration* to find those pairs distinguishable with *longer* strings
- The pairs of states left over will be indistinguishable

The Table-Filling Algorithm Input: DFA M = (Q, Σ , δ , q_0 , F) Output: (1) $D_M = \{ (p, q) \mid p, q \in Q \text{ and } p \not\sim q \}$ (2) $EQUIV_M = \{ [q] \mid q \in Q \}$

Suppose |Q|=n+1. Start by making a table of cells, with ½ of all possible state pairs. We want to fill in which pairs are distinguishable. The Table-Filling Algorithm Input: DFA M = (Q, Σ , δ , q_0 , F) Output: (1) D_M = { (p, q) | p, q \in Q and p $\not\sim$ q } (2) EQUIV_M = { [q] | q \in Q }

The Table-Filling Algorithm Input: DFA M = (Q, Σ , δ , q_0 , F) Output: (1) $D_M = \{ (p, q) \mid p, q \in Q \text{ and } p \not \sim q \}$ (2) $EQUIV_M = \{ [q] \mid q \in Q \}$ **q**₀ **Base Case:** For all (p, q) such that \mathbf{q}_1 p accepts and q rejects \Rightarrow mark p \checkmark q Iterate rule: If there are states p, q and a symbol $\sigma \in \Sigma$ satisfying: δ (p, σ) = p' mark p ≁ q δ (q, σ) = q' q_n $\mathbf{q}_0 \mathbf{q}_1$ q_n

Repeat until the rule doesn't apply

Claim: If (p, q) is marked D by the algorithm, then p ≁ q

Proof: Induction on the number of iterations *n* in the algorithm when (p, q) is marked **D**

n = 0: If (p, q) is marked D in the base case, then exactly one of them is final, so ε distinguishes p and q I.H. For all (p', q') marked D in the first n iterations, p' + q' Suppose (p, q) is marked D in the (n + 1)th iteration. To be marked, there must be states p', q' such that: **1.** $p' = \delta(p,\sigma)$ and $q' = \delta(q,\sigma)$, for some $\sigma \in \Sigma$ 2. (p', q') is marked $D \implies p' \not\sim q'$ (by induction) So there's a w s.t. w distinguishes p' and q' Then, the string σw distinguishes p and q!

Claim: If (p, q) is not marked D by the algorithm, then p ~ q

Proof (by contradiction):

Suppose there is a pair (p, q) not marked D by the algorithm, yet p $\not\sim$ q (call this a "bad pair")

Then there is a string w such that |w| > 0 and:

 M_p and M_q have different outputs on w (Why is |w| > 0?)

Of all such bad pairs, let (p, q) be a pair with a *minimum-length* distinguishing string w Claim: If (p, q) is not marked D by the algorithm, then p ~ q

Proof (by contradiction):

Suppose there is a pair (p, q) not marked D by the algorithm, yet $p \not\sim q$ (call this a "bad pair") Of all such bad pairs, let (p, q) be a pair with a *minimum-length* distinguishing string w M_p and M_q have different outputs on w (Why is |w| > 0?) We have $w = \sigma w'$, for some string w' and some $\sigma \in \Sigma$ Let $\mathbf{p}' = \delta(\mathbf{p}, \sigma)$ and $\mathbf{q}' = \delta(\mathbf{q}, \sigma)$. (\mathbf{p}', \mathbf{q}') distinguished by \mathbf{w}' Then (p', q') is also a bad pair! (It must be not marked D) But then (p', q') has a SHORTER distinguishing string, w' **Contradiction!** 31

Algorithm MINIMIZE Input: DFA M Output: Equivalent minimal-state DFA M_{MIN} 1. Remove all inaccessible states from M 2. Run Table-Filling algorithm on M to get: **EQUIV_M** = { [q] | q is an accessible state of M } 3. Define: $M_{MIN} = (Q_{MIN}, \Sigma, \delta_{MIN}, q_{0 MIN}, F_{MIN})$ $\mathbf{Q}_{\text{MIN}} = \mathbf{EQUIV}_{\text{M}}, \ \mathbf{q}_{0 \text{ MIN}} = [\mathbf{q}_0], \ \mathbf{F}_{\text{MIN}} = \{ [\mathbf{q}] \mid \mathbf{q} \in \mathbf{F} \}$ $\delta_{\text{MIN}}([q], \sigma) = [\delta(q, \sigma)]$ (well-defined??) Claim: $L(M_{MIN}) = L(M)$

The MINIMIZE Algorithm in Pictures

1. Remove all inaccessible states

The MINIMIZE Algorithm in Pictures

2. Run Table-Filling to get equiv classes

The MINIMIZE Algorithm in Pictures

3. Define M_{MIN} with states = equiv classes

States of M_{MIN} = Equivalence classes of states of M

Thm: M_{MIN} is the *unique* minimal DFA equivalent to M

Claim: Let M' be any DFA where $L(M')=L(M_{MIN})$ and M' has no inaccessible states and M' is irreducible. Then there is an *isomorphism* between M' and M_{MIN}

Suppose we have proved the Claim is true. Assuming the Claim we can prove the Thm:

Proof of Thm: Let M' be any minimal DFA for M. Since M' is minimal, M' has no inaccessible states and is irreducible *(otherwise, we could make M' smaller!)* By the Claim, there is an isomorphism between M' and the DFA M_{MIN} that is output by MINIMIZE(M). That is, M_{MIN} is isomorphic to every minimal M'.

Thm: M_{MIN} is the *unique* minimal DFA equivalent to M

Claim: Let M' be any DFA where $L(M')=L(M_{MIN})$ and M' has no inaccessible states and M' is irreducible. Then there is an *isomorphism* between M' and M_{MIN}

Proof: We recursively construct a map from the states of M_{MIN} to the states of M'

Base Case: $q_{0 \text{ MIN}} \mapsto q_0'$

 Recursive Step:
 If $p \mapsto p'$
 $\int \sigma$ $\int \sigma$ Then $q \mapsto q'$

 q q'

Base Case: $q_{0 \text{ MIN}} \mapsto q_{0}'$ Recursive Step: If $p \mapsto p'$ $\int_{q}^{\sigma} \int_{q'}^{\sigma}$ Then $q \mapsto q'$

Claim: Map is an isomorphism. Need to prove: The map is defined everywhere The map is well defined The map is a bijection (one-to-one and onto) The map preserves all transitions: If $p \mapsto p'$ then $\delta_{MIN}(p, \sigma) \mapsto \delta'(p', \sigma)$ (this follows from the definition of the map!)

The map is defined everywhere

That is, for all states q of M_{MIN} there is a state q' of M' such that $q \mapsto q'$

If $q \in M_{MIN}$, there is a string w such that M_{MIN} is in state q after reading in w

Let q' be the state of M' after reading in w. Claim: $q \mapsto q'$ (proof by induction on |w|) Base Case: $q_{0 \text{ MIN}} \mapsto q_{0}'$ Recursive Step: If $p \mapsto p'$ $\downarrow \sigma \qquad \downarrow \sigma$ $q \qquad q'$ Then $q \mapsto q'$

The map is onto: $\forall q' \exists q$ such that $q \mapsto q'$

Want to show: For all states q' of M' there is a state q of M_{MIN} such that $q \mapsto q'$

For every q' in M' there is a string w such that M' reaches state q' after reading in w

Let q be the state of M_{MIN} after reading in w. Claim: $q \mapsto q'$ (proof by induction on |w|) Base Case: $q_{0 \text{ MIN}} \mapsto q_{0}'$ Recursive Step: If $p \mapsto p'$ $\int_{q}^{\sigma} \int_{q'}^{\sigma}$ Then $q \mapsto q'$

The map is well defined: $\forall q \exists ! q'$ such that $q \mapsto q'$

Suppose there are states q' and q'' such that $q \mapsto q'$ and $q \mapsto q''$

We show that q' and q'' are *indistinguishable*, so it must be that q' = q'' (why?) Suppose there are states q' and q'' such that $q \mapsto q'$ and $q \mapsto q''$

Assume for contradiction q' and q'' are distinguishable

Map is 1-to-1: $\forall p \neq q, p \mapsto q' and q \mapsto q'' \Rightarrow q' \neq q''$ **Proof by contradiction.** Suppose there are states $p \neq q$ such that $p \mapsto q'$ and $q \mapsto q'$ If $p \neq q$, then p and q are distinguishable M' W W ccep Q $\mathbf{q}_{\mathbf{0}}$ D **Q₀ MIN Contradiction!** elect $\mathbf{q}_{\mathbf{0}}$ Q_{0 MIN}

How can we prove that two regular expressions are equivalent?