
Lecture 5:
Minimizing DFAs

6.045

1

Announcements:
- Pset 2 is up (as of last night)

- Dylan says: “It’s fire.”

- How was Pset 1?

6.045

2

DFAs NFAs

Regular
Languages

Regular
Expressions

DEFINITION

3

Some Languages Are Not Regular:

Limitations on DFAs/NFAs
a.k.a.

“Lower Bounds” on DFAs/NFAs

4

How to Make a DFA Lose Its Mind

Minimizing DFAs

5

Does this DFA have a
minimal number of states?

11

1

1

0

0

0
0

6

0

1

0
1

11

1

1

0

0

0
0

7

Recognizes
{w | w ends in 0}

Is this minimal?

0

1

0
1

8

How can we tell in general?

DFA Minimization Theorem:

For every regular language A, there is a
unique (up to re-labeling of the states)

minimal-state DFA M* such that A = L(M*).

Furthermore, there is an efficient
algorithm which, given any DFA M, will

output this unique M*.

9

If such algorithms existed for more
general models of computation, that

would be an engineering breakthrough!!

In general, there isn’t a uniquely minimal NFA

0

0

0

0

10

Distinguishing states with strings

For a DFA M = (Q, Σ, , q0, F), and q ∈ Q,
let Mq be the DFA equal to (Q, Σ, , q, F)

11

Def. w Σ* distinguishes states p and q if:
Mp accepts wMq rejects w

M
w

w

p

q

accept

reject

M
w

w

p

q
accept

rejectOR

Distinguishing states with strings

For a DFA M = (Q, Σ, , q0, F), and q ∈ Q,
let Mq be the DFA equal to (Q, Σ, , q, F)

12

Def. w Σ* distinguishes states p and q if:
Mp and Mq have different outputs on input w

M
w

w

p

q

accept

reject

M
w

w

p

q
accept

rejectOR

Distinguishing two states

Def. w Σ* distinguishes states p and q iff

Mp and Mq have different outputs on w

I’m in p or q, but which?
How can I tell?

W

Here… read this
Ok, I’m accepting!
Must have been p

13

Ok, I’m rejecting!
Must have been q

Fix M = (Q, Σ, , q0, F) and let p, q Q

Definition(s):

State p is distinguishable from state q
iff there is a w Σ* that distinguishes p and q
iff there is a w Σ* so that

Mp accepts w Mq rejects w

State p is indistinguishable from state q
iff p is not distinguishable from q
iff for all w Σ*, Mp accepts wMq accepts w

14

Big Idea: Pairs of indistinguishable states are redundant!
From p or q, M has exactly the same output behavior

Let Mp = (Q, Σ, , p, F) and Mq = (Q, Σ, , q, F)

0
0,1

00

1

1

1

q0

q1

q2

q3

15

Which pairs of states
are distinguishable?

Are q0 and q1

distinguishable?

0
0,1

00

1

1

1

q0

q1

q2

q3

16

Are q0 and q3

distinguishable?

0
0,1

00

1

1

1

q0

q1

q2

q3

17

Are q1 and q2

distinguishable?

Fix M = (Q, Σ, , q0, F) and let p, q, r Q

Define a binary relation ∼ on the states of M:

p ∼ q iff p is indistinguishable from q

p ≁ q iff p is distinguishable from q

Proposition: ∼ is an equivalence relation

p ∼ p (reflexive)

p ∼ q q ∼ p (symmetric)

p ∼ q and q ∼ r p ∼ r (transitive)

Proof?

18

Just look at the definition! p ∼ q means
for all w, Mp accepts w Mq accepts w

Fix M = (Q, Σ, , q0, F) and let p, q, r Q

Proposition: ∼ is an equivalence relation

Therefore, the relation ∼ partitions Q into
disjoint equivalence classes

q0

Q

q

[q] := { p | p ∼ q }

19

11

1

1

0

0

0
0

20

Algorithm: MINIMIZE-DFA

Input: DFA M

Output: DFA MMIN such that:

1. L(M) = L(MMIN)

2. MMIN has no inaccessible states

3. MMIN is irreducible

for all states p q of MMIN, p and q are distinguishable

||

Theorem: Every MMIN satisfying 1,2,3
is the unique minimal DFA equivalent to M

21

unreachable from start state

Intuition:
States of MMIN = Equivalence classes

of states of M

We’ll discover the equivalent states with
a dynamic programming algorithm

22

The Table-Filling Algorithm

Input: DFA M = (Q, Σ, , q0, F)

(2) EQUIVM = { [q] | q Q }

(1) DM = { (p, q) | p, q Q and p ≁ q }

• We know how to find those pairs of states
that the string ε distinguishes…

• Use this and iteration to find those pairs
distinguishable with longer strings

• The pairs of states left over will be
indistinguishable

Idea:

Output:

23

The Table-Filling Algorithm

Input: DFA M = (Q, Σ, , q0, F)

(2) EQUIVM = { [q] | q Q }

(1) DM = { (p, q) | p, q Q and p ≁ q }Output:

24

q0

q1

qi

qn

q0 q1 qi qn

Suppose |Q|=n+1.
Start by making a table of cells,
with ½ of all possible state pairs.
We want to fill in which pairs are
distinguishable.

The Table-Filling Algorithm

Input: DFA M = (Q, Σ, , q0, F)

(2) EQUIVM = { [q] | q Q }

(1) DM = { (p, q) | p, q Q and p ≁ q }Output:

25

q0

q1

qi

qn

q0 q1 qi qn

Base Case: For all (p, q) such that
p accepts and q rejects mark p ≁ q

q0

q1

qi

qn

q0 q1 qi qn

Iterate rule: If there are states p, q
and a symbol σ Σ satisfying: D D

D

 (p,) = p

 (q,) = q
≁

mark
p ≁ q

Repeat until the rule doesn’t apply

The Table-Filling Algorithm

Base Case: For all (p, q) such that
p accepts and q rejects mark p ≁ q

26

Input: DFA M = (Q, Σ, , q0, F)

(2) EQUIVM = { [q] | q Q }

(1) DM = { (p, q) | p, q Q and p ≁ q }Output:

1 0

1

0 1

0,1

0

q0

q0 q1

q1

q2

q2 q3

q3

q0 q1 q2 q3

27

Are q1 and q2

distinguishable?

Are q0 and q1

distinguishable?

Are q0 and q2

distinguishable?

11

1

1

0

0

0
0

q0

q0 q1

q1

q2

q2 q3

q3 D D

D

D

q0 q1

q2q3

28

Recognizes
{w | w ends in 0}

Proof: Induction on the number of iterations 𝒏 in the
algorithm when (p, q) is marked D

𝒏 = 𝟎: If (p, q) is marked D in the base case, then
exactly one of them is final, so ε distinguishes p and q

To be marked, there must be states p, q such that:

1. p = (p,) and q = (q,), for some Σ

Then, the string w distinguishes p and q!

Suppose (p, q) is marked D in the (𝒏 + 𝟏)th iteration.

2. (p, q) is marked D p ≁ q (by induction)

So there’s a w s.t. w distinguishes p’ and q’

29

I.H. For all (p’, q’) marked D in the first 𝒏 iterations, p ≁ q

Claim: If (p, q) is marked D by the algorithm, then p ≁ q

Claim: If (p, q) is not marked D by the algorithm, then p ∼ q

Proof (by contradiction):

Suppose there is a pair (p, q) not marked D by the
algorithm, yet p ≁ q (call this a “bad pair”)

Then there is a string w such that |w| > 0 and:

Mp and Mq have different outputs on w

Of all such bad pairs, let (p, q) be a pair with a
minimum-length distinguishing string w

(Why is |w| > 0?)

30

Proof (by contradiction):

Suppose there is a pair (p, q) not marked D by the
algorithm, yet p ≁ q (call this a “bad pair”)

We have w = w, for some string w’ and some Σ

Let p = (p,) and q = (q,).

Then (p, q) is also a bad pair! (It must be not marked D)

Of all such bad pairs, let (p, q) be a pair with a
minimum-length distinguishing string w

31

But then (p, q) has a SHORTER distinguishing string, w
Contradiction!

(p,q’) distinguished by w’

Claim: If (p, q) is not marked D by the algorithm, then p ∼ q

Mp and Mq have different outputs on w (Why is |w| > 0?)

Algorithm MINIMIZE

Input: DFA M

Output: Equivalent minimal-state DFA MMIN

1. Remove all inaccessible states from M

2. Run Table-Filling algorithm on M to get:
EQUIVM = { [q] | q is an accessible state of M }

QMIN = EQUIVM, q0 MIN = [q0], FMIN = { [q] | q F }

MIN([q],) = [(q,)]

3. Define: MMIN = (QMIN, Σ, MIN, q0 MIN, FMIN)

Claim: L(MMIN) = L(M)
32

(well-defined??)

M

The MINIMIZE Algorithm in Pictures

1. Remove all inaccessible states

33

q0

q

M

The MINIMIZE Algorithm in Pictures

2. Run Table-Filling to get equiv classes

34

q0

q

[q] := { p | p ∼ q }

M

The MINIMIZE Algorithm in Pictures

3. Define MMIN with states = equiv classes

35

q0

q

States of MMIN = Equivalence classes
of states of M

10
1

0

1

0q0 q1

q2

MINIMIZE

36

q0 q1

q0

q1

q2 q3

q2 DD

1

0

1
0

10
1

0

1

0q0 q1

q2

MINIMIZE

37

1 0

1

0

1

0,1

0

q0 q1

q3

q5

q4

0

1

q2

0,1q0

q0 q1

q1

q3

q3 q4

q4

q5

q5

38

Distinguish q1

from q3 and q4

Distinguish q0

from q3 and q4

Suppose we have proved the Claim is true.
Assuming the Claim we can prove the Thm:

Proof of Thm: Let M be any minimal DFA for M.
Since M is minimal, M has no inaccessible states and is

irreducible (otherwise, we could make M’ smaller!)
By the Claim, there is an isomorphism between M’ and

the DFA MMIN that is output by MINIMIZE(M).
That is, MMIN is isomorphic to every minimal M’.

Claim: Let M be any DFA where L(M)=L(MMIN) and
M has no inaccessible states and M is irreducible.
Then there is an isomorphism between M and MMIN

Thm: MMIN is the unique minimal DFA equivalent to M

40

Proof: We recursively construct a map from
the states of MMIN to the states of M

Base Case: q0 MIN q0

Recursive Step: If p p

q

q

Then q q

41

Claim: Let M be any DFA where L(M)=L(MMIN) and
M has no inaccessible states and M is irreducible.
Then there is an isomorphism between M and MMIN

Thm: MMIN is the unique minimal DFA equivalent to M

q q

Base Case: q0 MIN q0

Recursive Step: If p p

 Then q q

42

q q

Base Case: q0 MIN q0

Recursive Step: If p p

 Then q q

The map is defined everywhere

Claim: Map is an isomorphism. Need to prove:

The map is well defined

The map is a bijection (one-to-one and onto)

The map preserves all transitions:
If p p then MIN(p,) ’(p’,)
(this follows from the definition of the map!)

43

The map is defined everywhere

That is, for all states q of MMIN

there is a state q of M such that q q

If q MMIN, there is a string w such that
MMIN is in state q after reading in w

Let q be the state of M’ after reading in w.
Claim: q q (proof by induction on |w|)

q q

Base Case: q0 MIN q0

Recursive Step: If p p

 Then q q

44

The map is onto: ∀q’ ∃ q such that q q

Want to show: For all states q of M there is a
state q of MMIN such that q q

For every q in M’ there is a string w such that
M reaches state q after reading in w

Let q be the state of MMIN after reading in w.
Claim: q q (proof by induction on |w|)

q q

Base Case: q0 MIN q0

Recursive Step: If p p

 Then q q

45

The map is well defined: ∀q ∃! q’ such that q q

Suppose there are states q and q such that
q q and q q

We show that q and q are indistinguishable,
so it must be that q = q (why?)

q q

Base Case: q0 MIN q0

Recursive Step: If p p

 Then q q

46

MMIN M

Suppose there are states q and q such that
q q and q q

q

u

q0

q

v

q0

q

u

q0 MIN

q

v

q0 MIN

Assume for contradiction q and q are distinguishable

w

A
c
c
e

p
t

w

R
e
je

c
t

w
R

e
je

c
t

w

A
c

c
e

p
t

Contradiction!

47

MMIN M

Proof by contradiction. Suppose there are
states p ¹ q such that p q and q q

q

u

q0

q

v

q0

p

u

q0 MIN

q

v

q0 MIN

If p q, then p and q are distinguishable

w

A
c
c
e

p
t

w

R
e
je

c
t

w
R

e
je

c
t

w

A
c

c
e

p
t

Map is 1-to-1: ∀p ≠ q, p q and q q’ ⇒ q’ ≠ q’’

Contradiction!

48

How can we prove that two regular
expressions are equivalent?

49

50

