6.045

Lecture 6: The Myhill-Nerode Theorem and Streaming Algorithms

DFA Minimization Theorem:

For every regular language A, there is a unique (up to re-labeling of the states) minimal-state DFA M* such that A = L(M*).

Furthermore, there is an *efficient algorithm* which, given any DFA M, will output this unique M*.

If such algorithms existed for more general models of computation, that would be an engineering breakthrough!! How could we show whether two regular expressions are equivalent?

Claim: There is an algorithm which given regular expressions R and R', determines whether L(R) = L(R').

The Myhill-Nerode Theorem:

For every language L: Either there's a DFA for L or there's a set of strings that "trick" every possible DFA trying to recognize L In DFA Minimization, we defined an equivalence relation between states of a DFA. We can also define a similar equivalence relation over strings in a language:

Let $L \subseteq \Sigma^*$ and $x, y \in \Sigma^*$ $x \equiv_L y$ means: for all $z \in \Sigma^*$, $xz \in L \Leftrightarrow yz \in L$

Def. x and y are indistinguishable to L iff $x \equiv_L y$

Claim: \equiv_{L} ("L-equivalent") is an equivalence relation

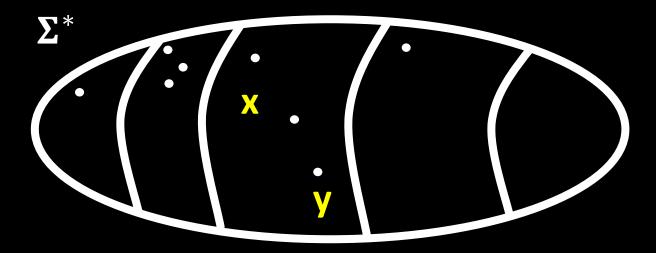
Let $L \subseteq \Sigma^*$ and $x, y \in \Sigma^*$ $x \equiv_L y$ means: for all $z \in \Sigma^*$, $xz \in L \Leftrightarrow yz \in L$

Def. x and y are indistinguishable to L iff $x \equiv_L y$

Claim: \equiv_{I} ("L-equivalent") is an equivalence relation **Reflexive:** $x \equiv_{L} x$: for all $z \in \Sigma^*$, $xz \in L \Leftrightarrow xz \in L$ **Symmetric:** $x \equiv_{L} y$: for all $z \in \Sigma^*$, $xz \in L \Leftrightarrow yz \in L$ Equivalent to: for all $z \in \Sigma^*$, $yz \in L \Leftrightarrow xz \in L$, $y \equiv_I x$ **Transitive:** $x \equiv_{L} y$: for all $z \in \Sigma^*$, $xz \in L \Leftrightarrow yz \in L$ $y \equiv_{L} w$: for all $z \in \Sigma^*$, $yz \in L \Leftrightarrow wz \in L$ Implies for all $z \in \Sigma^*$, $xz \in L \Leftrightarrow wz \in L$, $x \equiv_I x$

Let $L \subseteq \Sigma^*$ and $x, y \in \Sigma^*$ $x \equiv_L y$ means: for all $z \in \Sigma^*$, $xz \in L \Leftrightarrow yz \in L$

Suppose we partition all strings in Σ^* into equivalence classes under \equiv_{L}



The Myhill-Nerode Theorem:

If the number of parts is finite \rightarrow can construct a DFA! If the number of parts is infinite \rightarrow there is no DFA!

Mapping strings to DFA states

Given DFA M = (Q, Σ , δ , q_0 , F), we define a function $\Delta : \Sigma^* \rightarrow Q$ as follows:

$$\begin{split} & \Delta(\varepsilon) = q_0 \\ & \Delta(\sigma) = \delta(q_0, \sigma) \\ & \Delta(\sigma_1 \cdots \sigma_{k+1}) = \delta(\Delta(\sigma_1 \cdots \sigma_k), \sigma_{k+1}) \end{split}$$

 $\Delta(w)$ = the state of M reached after reading in w

Note: $\Delta(w) \in F \iff M$ accepts w

Let $L \subseteq \Sigma^*$ and $x, y \in \Sigma^*$ $x \equiv_L y$ means: for all $z \in \Sigma^*$, $xz \in L \Leftrightarrow yz \in L$

The Myhill-Nerode Theorem: A language L is regular *if and only if* the number of equivalence classes of \equiv_{L} is finite.

Proof (\Rightarrow) Let M = (Q, Σ , δ , q_0 , F) be any DFA for L. Define the relation: $\mathbf{x} \approx_{M} \mathbf{y} \Leftrightarrow \Delta(\mathbf{x}) = \Delta(\mathbf{y})$ **Claim:** \approx_{M} is an equivalence relation with |Q| classes **Claim:** If $\mathbf{x} \approx_{\mathbf{M}} \mathbf{y}$ then $\mathbf{x} \equiv_{\mathbf{I}} \mathbf{y}$ **Proof:** $\mathbf{x} \approx_{M} \mathbf{y}$ implies for all $\mathbf{z} \in \Sigma^{*}$, \mathbf{xz} and \mathbf{yz} reach the same state of M. So $xz \in L \Leftrightarrow yz \in L$, and $x \equiv_{I} y$ **Corollary:** The number of \equiv_1 classes is *at most* the number of \approx_{M} classes (which is |Q|)

Let $L \subseteq \Sigma^*$ and $x, y \in \Sigma^*$ $x \equiv_L y$ means: for all $z \in \Sigma^*$, $xz \in L \Leftrightarrow yz \in L$

The Myhill-Nerode Theorem: A language L is regular *if and only if* the number of equivalence classes of \equiv_{L} is finite.

Claim: If $\mathbf{x} \approx_{\mathbf{M}} \mathbf{y}$ then $\mathbf{x} \equiv_{\mathbf{I}} \mathbf{y}$ **Corollary:** The number of \equiv_1 classes is *at most* the number of \approx_{M} classes (which is |Q|) **Proof:** Let $S = \{x_1, x_2, ...\}$ be distinct strings, one from every \equiv_{I} class. |S| = number of \equiv_{I} classes. Thus for all $i \neq j$, $x_i \not\equiv x_i$. By the claim: $x_i \not\approx_M x_j$. So each $x_i \in S$ is in a distinct \approx_M equivalence class. \Rightarrow The number of \approx_{M} classes is *at least* [S].

Let $L \subset \Sigma^*$ and x, $y \in \Sigma^*$ $x \equiv_{L} y$ means: for all $z \in \Sigma^*$, $xz \in L \Leftrightarrow yz \in L$ (\Leftarrow) If the number of equivalence classes of \equiv_{1} is k then there is a DFA for L with k states Idea: Build a DFA whose states are the equivalence classes of \equiv **Define a DFA M where: Q** is the set of equivalence classes of \equiv_{I} $q_0 = [\varepsilon] = \{y \mid y \equiv \varepsilon\}$ for all $\mathbf{x} \in \mathbf{\Sigma}^*$, $\delta([\mathbf{x}], \sigma) = [\mathbf{x} \sigma]$ (well-defined??) $F = \{[x] | x \in L\}$ **Claim:** M accepts x if and only if $x \in L$

Define a DFA M where:

Q is the set of equivalence classes of \equiv_{L} $q_{0} = [\epsilon] = \{y \mid y \equiv_{L} \epsilon\}$ $\delta([x], \sigma) = [x \sigma]$ $F = \{[x] \mid x \in L\}$

Claim: M accepts x if and only if $x \in L$

Proof: Let M run on $x = x_1 \cdots x_n \in \Sigma^*$, for $x_i \in \Sigma$. M starts in state [ϵ], reads x_1 and moves to [x_1], reads x_2 and moves to [$x_1 x_2$], ..., and ends in state [$x_1 \cdots x_n$]. So, M accepts $x_1 \cdots x_n \Leftrightarrow [x_1 \cdots x_n] \in F$ By definition of the set F, [$x_1 \cdots x_n$] $\in F \Leftrightarrow x \in L$ The Myhill-Nerode Theorem gives us a *new* way to prove that a given language is not regular:

L is not regular if and only if there are infinitely many equiv. classes of \equiv_{L}

L is not regular *if and only if* There are infinitely many strings $w_1, w_2, ...$ so that for all $w_i \neq w_j$, w_i and w_j are distinguishable to L: there is a $z \in \Sigma^*$ such that *exactly one* of $w_i z$ and $w_i z$ is in L L is not regular *if and only if* There are infinitely many strings $w_1, w_2, ...$ so that for all $w_i \neq w_j$, w_i and w_j are distinguishable to L

To prove that L is regular, we have to show that a special finite object (DFA/NFA/regex) exists.

To prove that L is not regular, it is sufficient to show that a special infinite set of strings exists!

We can prove the nonexistence of a DFA/NFA/regex by proving the existence of this special string set!

Using Myhill-Nerode to prove non-regularity:

Theorem: $L = \{0^n \ 1^n \mid n > 0\}$ is not regular. **Proof:** Consider the infinite set of strings $S = \{0, 00, 000, ..., 0^n, ...\}$ **Claim: S is a distinguishing set for L.** Take any pair (0^m, 0ⁿ) of distinct strings in S Let $z = 1^m$ Then 0^m 1^m is in L, but 0ⁿ 1^m is *not* in L So all pairs of strings in S are distinguishable to L

Hence there are infinitely many equivalence classes of \equiv_{L} , and L is not regular!

Theorem: PAL = { $x x^R$ | $x \in \{0, 1\}^*$ } is not regular.

Proof: Consider the infinite set of strings $S = \{01^k0 \mid k \ge 1\}$ **Claim: S is a distinguishing set for L.** Take any pair (01^k0, 01^j0) of strings where $j \neq k$ Let $z = 1^{k}0$ Then 01^k0 1^k0 is in PAL, but 01^j0 1^k0 is not in PAL So all pairs of strings in S are distinguishable to PAL <u>Hence there are infinitely many equivalence</u> classes of \equiv_{I} , and L is not regular (by the Myhill-Nerode theorem)

Streaming Algorithms

Streaming Algorithms

Streaming Algorithms Have three components Initialize: <variables and their assignments> When next symbol seen is σ : <pseudocode using σ and vars> When stream stops (end of string): <accept/reject condition on vars> (or: <pseudocode for output>)

Algorithm A computes $L \subseteq \Sigma^*$ if A accepts the strings in L, rejects strings not in L

Streaming Algorithms

01011101

Streaming algorithms differ from DFAs in several significant ways:

1. Streaming algorithms could output more than one bit

Can recognize non-regular languages! 2. The "memory" or "space" of a
streaming algorithm can (slowly) *increase* as it reads longer strings

3. Could also make multiple passes over the input, could be randomized

L = {x | x has more 1's than 0's}

Initialize: C := 0 and B := 0 When next symbol seen is σ : If (C = 0) then B := σ , C := 1 If (C \neq 0) and (B = σ) then C := C + 1 If (C \neq 0) and (B $\neq \sigma$) then C := C - 1 When stream stops: accept if B=1 and C > 0, else reject

B = the majority bit C = how many more times B appears On all strings of length n, the algorithm uses (log₂ n)+O(1) bits of space (to store B and C)

How to think of memory usage

The program is *not considered* as part of the memory

Initialize: C := 0 and B := 0 When the next symbol x is read, If (C = 0) then B := x, C := 1 If (C \neq 0) and (B = x) then C := C + 1 If (C \neq 0) and (B \neq x) then C := C - 1 When the stream stops, accept if B=1 and C > 0, else reject

1010101111101011111110101

Space usage of A: S(n) = maximum # of bits used to store vars in A, over all inputs of length up to n

$L = \{0^n 1^n \mid n \ge 0\}$

Initialize: z := 0, s := false, fail := false When next symbol seen is σ : If (not s) and ($\sigma = 0$) then z := z + 1If (not s) and ($\sigma = 1$) then s := true; z:=z-1 If (s) and ($\sigma = 0$) then fail := true If (s) and ($\sigma = 1$) then z := z - 1When stream stops: accept if and only if (not fail) and (z=0)

On all strings of length n, uses (log₂ n)+O(1) space

DFAs and Streaming

Thm: Let L' be recognized by DFA M with ≤ 2^p states.
Then L' is computable by a streaming algorithm A using ≤ p bits of space.

Proof Idea: Define algorithm **A** as follows.

Initialize: Encode the *start state* of M in memory. When next symbol seen is σ :

Update state of M using M's transition function When stream stops:

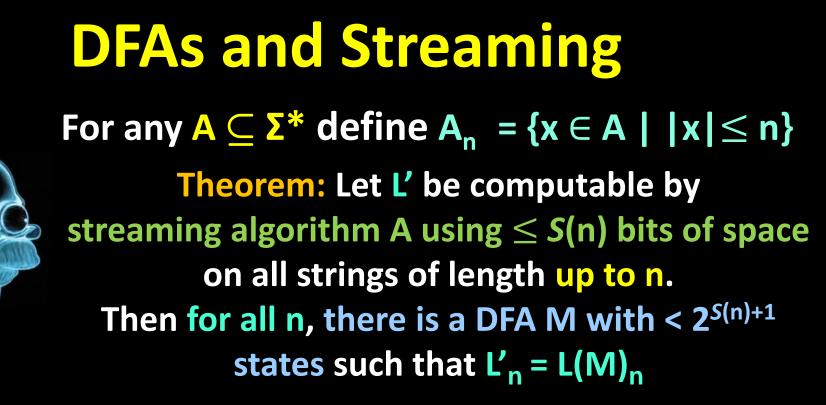
Accept if current state of M is final, else *reject*

DFAs and Streaming

Thm: Let L' be recognized by DFA M with ≤ 2^p states.
Then L' is computable by a streaming algorithm A using ≤ p bits of space.



Initialize: B = 0When reading σ : Set $B := \sigma$ When stream stops: Accept iff B = 1Uses 1 bit of space



That is, for all streaming algorithms A using S(n)space, there's a DFA M of < $2^{S(n)+1}$ states such that A and M agree on all strings of length up to n.

Note: L'_n is always regular! (It's finite!)

DFAs and Streaming For any $A \subseteq \Sigma^*$ define $A_n = \{x \in A \mid |x| \le n\}$ **Theorem:** Let **L'** be computable by streaming algorithm A using $\leq S(n)$ bits of space on all strings of length up to n. Then for all n, there is a DFA M with $< 2^{S(n)+1}$ states such that $L'_n = L(M)_n$

Proof Idea: States of M = at most 2^{S(n)+1} -1 possible memory configurations of A, over strings of length up to n Start state of M = Initialized memory of A Transition function = Mimic how A updates its memory Final states of M = Subset of memory configurations in which A would accept, if the string ended there

Streaming Lower Bounds via DFAs For any $A \subseteq \Sigma^*$ define $A_n = \{x \in A \mid |x| \le n\}$ **Theorem:** Let **L'** be computable by streaming algorithm A using S(n) bits of space on all strings of length up to n. Then for all n, there is a DFA M with $< 2^{S(n)+1}$ states such that $L'_n = L(M)_n$ **Corollary:** Suppose for some n, every DFA M agreeing with L'_n requires at least $Q(n) := 2^{S(n)+1}$ states. Then L' is not computable by a streaming algorithm

using $S(n) = \log_2(Q(n)/2) = \log_2(Q(n))-1$ space! That is, L' requires at least $\log_2(Q(n))$ space for some n.