6.045

Lecture 6:

The Myhill-Nerode Theorem and Streaming Algorithms

6.045

Announcements:
 - One-day Extension on Pset 2? Vote?

DFA Minimization Theorem:

For every regular language A , there is a unique (up to re-labeling of the states) minimal-state DFA \mathbf{M}^{*} such that $\mathrm{A}=\mathrm{L}\left(\mathbf{M}^{*}\right)$.

Furthermore, there is an efficient algorithm which, given any DFA M, will output this unique \mathbf{M}^{*}.

If such algorithms existed for more general models of computation, that would be an engineering breakthrough!!

How could we show whether two regular expressions are equivalent?

Claim: There is an algorithm which given regular expressions R and R^{\prime}, determines whether $L(R)=L\left(R^{\prime}\right)$.

The Myhill-Nerode Theorem:

For every language L: Either there's a DFA for L

or there's a set of strings that "trick" every possible DFA trying to recognize L

In DFA Minimization, we defined

 an equivalence relation between states of a DFA.We can also define a similar equivalence relation over strings in a language:

$$
\begin{gathered}
\text { Let } L \subseteq \Sigma^{*} \text { and } x, y \in \Sigma^{*} \\
x \equiv_{L} y \text { means: for all } z \in \Sigma^{*}, x z \in L \Leftrightarrow y z \in L
\end{gathered}
$$

Def. x and y are indistinguishable to L iff $x \equiv_{L} y$
Claim: \equiv_{L} ("L-equivalent") is an equivalence relation

Let $\mathrm{L} \subseteq \mathbf{\Sigma}^{*}$ and $\mathrm{x}, \mathrm{y} \in \mathbf{\Sigma}^{*}$

$x \equiv_{\mathrm{L}} y$ means: for all $z \in \mathbf{\Sigma}^{*}, x z \in L \Leftrightarrow y z \in L$

Def. x and y are indistinguishable to L iff $x \bar{E}_{L} y$

Claim: \bar{E}_{L} ("L-equivalent") is an equivalence relation Reflexive:
$x \bar{E}_{\mathrm{L}} \mathrm{x}:$ for all $z \in \mathbf{Z}^{*}, x z \in \mathrm{~L} \Leftrightarrow x z \in L$
Symmetric:
$x \bar{E}_{\mathrm{L}} y$: for all $z \in \mathbf{\Sigma}^{*}, x z \in L \Leftrightarrow y z \in L$ Equivalent to: for all $z \in \mathbf{\Sigma}^{*}, y z \in L \Leftrightarrow x z \in L, y \equiv_{L} x$
Transitive:
$x \bar{E}_{\mathrm{L}} \mathrm{y}$: for all $\mathbf{z} \in \mathbf{\Sigma}^{*}, x z \in \mathrm{~L} \Leftrightarrow \mathrm{yz} \in \mathrm{L}$
$\mathbf{y} \equiv_{\mathrm{L}} \mathbf{w}$: for all $\mathbf{z} \in \mathbf{\Sigma}^{*}, \mathbf{y z} \in \mathbf{L} \Leftrightarrow \mathbf{w z} \in \mathbf{L}$ Implies for all $z \in \mathbf{\Sigma}^{*}, x z \in L \Leftrightarrow w z \in L, x \equiv_{L} x$

Let $L \subseteq \Sigma^{*}$ and $x, y \in \Sigma^{*}$

$x \bar{E}_{\mathrm{L}} y$ means: for all $z \in \mathbf{\Sigma}^{*}, x z \in L \Leftrightarrow y z \in L$
Suppose we partition all strings in Σ^{*} into equivalence classes under $\overline{\mathrm{E}}_{\mathrm{L}}$

The Myhill-Nerode Theorem:
If the number of parts is finite \rightarrow can construct a DFA!
If the number of parts is infinite \rightarrow there is no DFA!

Mapping strings to DFA states

Given DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$, we define a function $\Delta: \Sigma^{*} \rightarrow \mathbf{Q}$ as follows:

$$
\begin{aligned}
& \Delta(\varepsilon)=q_{0} \\
& \Delta(\sigma)=\delta\left(q_{0}, \sigma\right) \\
& \Delta\left(\sigma_{1} \cdots \sigma_{k+1}\right)=\delta\left(\Delta\left(\sigma_{1} \cdots \sigma_{k}\right), \sigma_{k+1}\right)
\end{aligned}
$$

$\Delta(w)=$ the state of M reached after reading in w

Note: $\Delta(\mathbf{w}) \in \mathbf{F} \Leftrightarrow \mathbf{M}$ accepts \mathbf{w}

Let $L \subseteq \Sigma^{*}$ and $x, y \in \Sigma^{*}$

$x \equiv_{L} y$ means: for all $z \in \mathbf{\Sigma}^{*}, x z \in L \Leftrightarrow y z \in L$

The Myhill-Nerode Theorem:

A language L is regular if and only if the number of equivalence classes of \bar{E}_{L} is finite.

Proof (\Rightarrow) Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be any DFA for L.
Define the relation: $x \approx_{M} y \Leftrightarrow \Delta(x)=\Delta(y)$
Claim: \approx_{M} is an equivalence relation with $|\mathrm{Q}|$ classes
Claim: If $x \approx_{M} y$ then $x \equiv_{L} y$
Proof: $x \approx_{M} y$ implies for all $z \in \mathbf{Z}^{*}, x z$ and $y z$ reach the same state of M. So $x z \in L \Leftrightarrow y z \in L$, and $x \equiv_{L} y$
Corollary: The number of \equiv_{L} classes is at most the number of \approx_{M} classes (which is $|\mathrm{Q}|$)

Let $L \subseteq \Sigma^{*}$ and $x, y \in \Sigma^{*}$

$x \equiv_{\mathrm{L}} y$ means: for all $z \in \mathbf{\Sigma}^{*}, x z \in L \Leftrightarrow y z \in L$

The Myhill-Nerode Theorem:

A language L is regular if and only if the number of equivalence classes of \equiv_{L} is finite.

Claim: If $x \approx_{M} y$ then $x \equiv_{L} y$
Corollary: The number of E_{L} classes is at most the number of \approx_{M} classes (which is $|\mathrm{Q}|$) Proof: Let $S=\left\{x_{1}, x_{2}, \ldots\right\}$ be distinct strings, one
from every \equiv_{L} class. $|S|=$ number of \equiv_{L} classes.
Thus for all $i \neq j, x_{i} \not \equiv_{\mathrm{L}} x_{j}$. By the claim: $x_{i} \approx_{\mathrm{M}} x_{j}$. So each $x_{i} \in S$ is in a distinct \approx_{M} equivalence class.
\Rightarrow The number of \approx_{M} classes is at least $|S|$.

Let $L \subseteq \Sigma^{*}$ and $x, y \in \Sigma^{*}$

$x \equiv_{L} y$ means: for all $z \in \mathbf{Z}^{*}, x z \in L \Leftrightarrow y z \in L$
(\Leftarrow) If the number of equivalence classes of \equiv_{L} is k then there is a DFA for L with k states

Idea: Build a DFA whose states are the equivalence classes of \bar{E}_{L}

Define a DFA M where:
Q is the set of equivalence classes of \equiv_{L}
$q_{0}=[\varepsilon]=\left\{y \mid y \equiv_{L} \varepsilon\right\}$
for all $x \in \Sigma^{*}, \delta([x], \sigma)=[x \sigma] \quad$ (well-defined??)

$$
F=\{[x] \mid x \in L\}
$$

Claim: M accepts x if and only if $x \in L$

Define a DFA M where:
Q is the set of equivalence classes of \bar{E}_{L}
$q_{0}=[\varepsilon]=\left\{y \mid y E_{L} \varepsilon\right\}$
$\delta([x], \sigma)=[x \sigma]$
$F=\{[x] \mid x \in L\}$
Claim: \mathbf{M} accepts \mathbf{x} if and only if $x \in L$
Proof: Let M run on $\boldsymbol{x}=x_{1} \cdots x_{n} \in \Sigma^{\star}$, for $x_{i} \in \boldsymbol{\Sigma}$. M starts in state [ε], reads x_{1} and moves to [x_{1}], reads x_{2} and moves to $\left[x_{1} x_{2}\right], \ldots$, and ends in state $\left[x_{1} \cdots x_{n}\right]$.
So, M accepts $x_{1} \cdots x_{n} \Leftrightarrow\left[x_{1} \cdots x_{n}\right] \in F$ By definition of the set $\mathrm{F},\left[x_{1} \cdots x_{n}\right] \in \mathrm{F} \Leftrightarrow \mathrm{x} \in \mathrm{L}$

The Myhill-Nerode Theorem gives us a new way to prove that a given language is not regular:
L is not regular if and only if
there are infinitely many equiv. classes of \bar{E}_{L}

L is not regular
if and only if

Distinguishing set for L

There are infinitely many strings w_{1}, w_{2}, \ldots so that for all $\mathrm{w}_{\mathrm{i}} \neq \mathrm{w}_{\mathrm{j}}, \mathrm{w}_{\mathrm{i}}$ and w_{j} are distinguishable to L :
there is a $z \in \Sigma^{*}$ such that exactly one of $\mathrm{w}_{\mathrm{i}} \mathrm{z}$ and $\mathrm{w}_{\mathrm{j}} \mathrm{z}$ is in L

L is not regular if and only if

Distinguishing set for L

There are infinitely many strings $\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots$ so that for all $w_{i} \neq w_{j}, w_{i}$ and w_{j} are distinguishable to L

To prove that L is regular, we have to show that a special finite object (DFA/NFA/regex) exists.

To prove that L is not regular, it is sufficient to show that a special infinite set of strings exists!

We can prove the nonexistence of a DFA/NFA/regex by proving the existence of this special string set!

Using Myhill-Nerode to prove non-regularity:

Theorem: $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is not regular.
Proof: Consider the infinite set of strings

$$
S=\left\{0,00,000, \ldots, 0^{n}, \ldots\right\}
$$

Claim: S is a distinguishing set for L.
Take any pair ($0^{m}, 0^{n}$) of distinct strings in S
Let $\mathrm{z}=1 \mathrm{~m}$
Then $0^{\mathrm{m}} 1^{\mathrm{m}}$ is in L, but $0^{\mathrm{n}} 1^{\mathrm{m}}$ is not in L So all pairs of strings in S are distinguishable to L Hence there are infinitely many equivalence classes of \equiv_{L}, and L is not regular!

Theorem: PAL $=\left\{x x^{R} \mid x \in\{0,1\}^{*}\right\}$ is not regular.

Proof: Consider the infinite set of strings

$$
S=\left\{01^{k} 0 \mid k \geq 1\right\}
$$

Claim: S is a distinguishing set for L.
Take any pair ($01^{\mathrm{k}} 0,01 \mathrm{j} 0$) of strings where $\mathrm{j} \neq \mathrm{k}$
Let $\mathrm{z}=01^{\mathrm{k}} 0$
Then $01^{\mathrm{k}} 001^{\mathrm{k}} 0$ is in PAL, but $01^{10} 01^{\mathrm{k}} 0$ is not in PAL So all pairs of strings in S are distinguishable to PAL

Hence there are infinitely many equivalence classes of Ξ_{L}, and L is not regular
(by the Myhill-Nerode theorem)

Streaming Algorithms

Streaming Algorithms

Q

Streaming Algorithms

Have three components

 Initialize:<variables and their assignments> When next symbol seen is σ :
<pseudocode using σ and vars> When stream stops (end of string):
<accept/reject condition on vars>
(or: <pseudocode for output>)
Algorithm A computes $L \subseteq \Sigma^{\star}$ if
A accepts the strings in L, rejects strings not in L

Streaming Algorithms

01011101 Streaming algorithms differ from

DFAs in several significant ways:

1. Streaming algorithms could output more than one bit

Can
recognize non-regular languages!

$L=\{x \mid x$ has more 1's than 0's $\}$

Initialize: C := $\mathbf{0}$ and B := $\mathbf{0}$
When next symbol seen is σ :

$$
\begin{aligned}
& \text { If }(C=0) \text { then } B:=\sigma, C:=1 \\
& \text { If }(C \neq 0) \text { and }(B=\sigma) \text { then } C:=C+1 \\
& \text { If }(C \neq 0) \text { and }(B \neq \sigma) \text { then } C:=C-1
\end{aligned}
$$

When stream stops:

$$
\text { accept if } \mathrm{B}=1 \text { and } \mathrm{C}>0 \text {, else reject }
$$

B = the majority bit
C = how many more times B appears

On all strings of length n, the algorithm uses $\left(\log _{2} n\right)+O(1)$ bits of space (to store B and C)

How to think of memory usage

The program is not considered as part of the memory

1010101111101011111110101

Space usage of A:
$\boldsymbol{S}(\boldsymbol{n})=$ maximum \# of bits used to store vars in A, over all inputs of length up to n

$$
L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}
$$

Initialize: $\mathbf{z}:=\mathbf{0 , s}:=$ false, fail := false
When next symbol seen is σ :
If (not s) and ($\sigma=0$) then $\mathbf{z}:=\mathbf{z + 1}$
If (not s) and ($\sigma=1$) then $s:=$ true; $z:=z-1$
If (s) and $(\sigma=0)$ then fail := true
If (s) and ($\sigma=1$) then $z:=z-1$
When stream stops:
accept if and only if (not fail) and (z=0)
z = how many more times
0 appears than 1
s = "Started reading 1s yet?"
On all strings of length \mathbf{n}, uses $\left(\log _{2} n\right)+O(1)$ space fail = "Reject for certain?"

DFAs and Streaming

Thm: Let L' be recognized by DFA M with $\leq 2^{p}$ states.

Then L^{\prime} is computable by a streaming algorithm A using $\leq p$ bits of space.

Proof Idea: Define algorithm A as follows.
Initialize: Encode the start state of \mathbf{M} in memory. When next symbol seen is σ :

Update state of M using M's transition function When stream stops:

Accept if current state of M is final, else reject

DFAs and Streaming

Thm: Let \mathbf{L}^{\prime} be recognized by DFA M with $\leq 2^{p}$ states.
Then L^{\prime} is computable by a streaming algorithm A using $\leq p$ bits of space.

Initialize: B = 0
When reading σ :
Set $\mathrm{B}:=\boldsymbol{\sigma}$
When stream stops:
Accept iff B=1
Uses 1 bit of space

DFAs and Streaming

For any $A \subseteq \Sigma^{*}$ define $A_{n}=\{x \in A| | x \mid \leq n\}$
Theorem: Let L' be computable by
streaming algorithm A using $\leq S(n)$ bits of space on all strings of length up to n.
Then for all n, there is a DFA M with < $2^{s(n)+1}$ states such that $\mathrm{L}_{\mathrm{n}}=\mathrm{L}(\mathrm{M})_{\mathrm{n}}$

That is, for all streaming algorithms A using S(n) space, there's a DFA M of < $\mathbf{2}^{\boldsymbol{S (n) + 1}}$ states such that A and M agree on all strings of length up to \boldsymbol{n}.

$$
\text { Note: } L_{n}^{\prime} \text { is always regular! (It's finite!) }
$$

DFAs and Streaming

For any $A \subseteq \Sigma^{*}$ define $A_{n}=\{x \in A| | x \mid \leq n\}$
Theorem: Let L' be computable by
streaming algorithm A using $\leq S(n)$ bits of space on all strings of length up to n.
Then for all n, there is a DFA M with < $2^{s(n)+1}$ states such that $\mathrm{L}_{\mathrm{n}}=\mathrm{L}(\mathrm{M})_{\mathrm{n}}$
Proof Idea: States of $M=$ at most $2^{S(n)+1}-1$ possible memory configurations of A, over strings of length up to n Start state of M = Initialized memory of A
Transition function = Mimic how A updates its memory
Final states of $\mathbf{M}=$ Subset of memory configurations in which A would accept, if the string ended there

Example: $L=\{x \mid x$ has more 1's than 0's $\}$
Initialize: C := $\mathbf{0}$ and B := 0
When next symbol seen is σ, If $(\mathbf{C}=0)$ then $\mathrm{B}:=\sigma, \mathrm{C}:=1$
If $(C \neq 0)$ and $(B=\sigma)$ then $C:=C+1$
If $(C \neq 0)$ and $(B \neq \sigma)$ then $C:=C-1$ When stream stops, accept if $\mathrm{B}=1$ and $\mathrm{C}>0$, else reject

Streaming Lower Bounds via DFAs

For any $\mathbf{A} \subseteq \Sigma^{*}$ define $A_{n}=\{x \in A| | x \mid \leq n\}$
Theorem: Let L' be computable by streaming algorithm A using $S(n)$ bits of space on all strings of length up to n. Then for all n, there is a DFA M with < $2^{s(n)+1}$ states such that $\mathrm{L}_{\mathrm{n}}=\mathrm{L}(\mathrm{M})_{\mathrm{n}}$

Corollary: Suppose for some n, every DFA M agreeing with \mathbf{L}^{\prime} requires at least $\mathbf{Q}(\mathrm{n}):=\mathbf{2}^{\mathrm{S}(\mathrm{n})+1}$ states. Then L^{\prime} is not computable by a streaming algorithm

$$
\text { using } S(n)=\log _{2}(Q(n) / 2)=\log _{2}(Q(n))-1 \text { space! }
$$

That is, L^{\prime} requires at least $\log _{2}(\mathbf{Q}(n))$ space for some n.

