
Lecture 6:
The Myhill-Nerode Theorem

and Streaming Algorithms
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Announcements:
- One-day Extension on Pset 2? Vote?

6.045
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DFA Minimization Theorem:

For every regular language A, there is a 
unique (up to re-labeling of the states) 

minimal-state DFA M* such that A = L(M*).

Furthermore, there is an efficient 
algorithm which, given any DFA M, will 

output this unique M*.
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If such algorithms existed for more 
general models of computation, that 

would be an engineering breakthrough!! 



How could we show whether two 
regular expressions are equivalent?
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Claim: There is an algorithm which given 
regular expressions R and R’, determines 

whether L(R) = L(R’).



The Myhill-Nerode Theorem:

For every language L:
Either there’s a DFA for L

or there’s a set of strings that “trick” 
every possible DFA trying to recognize L
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In DFA Minimization, we defined 
an equivalence relation between states of a DFA. 

We can also define a similar equivalence relation
over strings in a language:

Def.  x and y are indistinguishable to L  iff x ≡L y

Let L  Σ* and x, y 2 Σ*
x ≡L y   means: for all z 2 Σ*, xz 2 L  yz 2 L

Claim: ≡L (“L-equivalent”) is an equivalence relation
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Let L  Σ* and x, y 2 Σ*
x ≡L y   means:   for all z 2 Σ*, xz 2 L  yz 2 L

Def.  x and y are indistinguishable to L  iff x ≡L y

Claim: ≡L (“L-equivalent”) is an equivalence relation
Reflexive:
x ≡L x : for all z 2 Σ*, xz 2 L  xz 2 L

Symmetric:
x ≡L y : for all z 2 Σ*, xz 2 L  yz 2 L

Equivalent to: for all z 2 Σ*, yz 2 L  xz 2 L,  y ≡L x 

Transitive:
x ≡L y : for all z 2 Σ*, xz 2 L  yz 2 L

y ≡L w : for all z 2 Σ*, yz 2 L  wz 2 L

Implies for all z 2 Σ*, xz 2 L  wz 2 L, x ≡L x 



Suppose we partition all strings in Σ* into 
equivalence classes under ≡L

If the number of parts is finite→ can construct a DFA!
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𝚺∗

Let L  Σ* and x, y 2 Σ*
x ≡L y   means:   for all z 2 Σ*, xz 2 L  yz 2 L

If the number of parts is infinite→ there is no DFA!

x

y

The Myhill-Nerode Theorem:



Mapping strings to DFA states

Given DFA M = (Q, Σ, , q0, F), we define a 
function  : Σ* → Q as follows:

(ε) =

() =

(1 ⋯ k+1 ) = ( (1 ⋯ k), k+1 ) 

q0

(q0, )

Note:  (w)  F   M accepts w

(w) = the state of M reached after reading in w
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The Myhill-Nerode Theorem:
A language L is regular if and only if

the number of equivalence classes of  ≡L is finite.

Let L  Σ* and x, y 2 Σ*
x ≡L y   means:   for all z 2 Σ*, xz 2 L  yz 2 L

Proof  (⇒) Let M = (Q, Σ, , q0, F) be any DFA for L.
Define the relation:  x ≈M y  (x) = (y)

Claim: ≈M is an equivalence relation with |Q| classes
Claim: If x ≈M y then x ≡L y
Proof: x ≈M y implies for all z 2 Σ*, xz and yz reach

the same state of M. So xz 2 L  yz 2 L, and  x ≡L y 

Corollary: The number of ≡L classes is at most
the number of ≈M classes (which is |Q|)
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The Myhill-Nerode Theorem:
A language L is regular if and only if

the number of equivalence classes of  ≡L is finite.

Let L  Σ* and x, y 2 Σ*
x ≡L y   means:   for all z 2 Σ*, xz 2 L  yz 2 L

Claim: If x ≈M y then x ≡L y
Corollary: The number of ≡L classes is at most

the number of ≈M classes (which is |Q|)
Proof: Let 𝑺 = {𝒙𝟏, 𝒙𝟐, … } be distinct strings, one 

from every ≡L class. |𝑺| = number of ≡L classes.
Thus for all 𝒊 ≠ 𝒋, 𝒙𝒊 ≢ L 𝒙𝒋. By the claim: 𝒙𝒊 ≉M 𝒙𝒋. 

So each 𝒙𝒊 ∈ 𝑺 is in a distinct ≈M equivalence class. 
⇒ The number of ≈M classes is at least |𝑺|.
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Idea: Build a DFA whose states are 
the equivalence classes of ≡L

Define a DFA M where: 
Q is the set of equivalence classes of ≡L

q0 =  [ε] = {y | y ≡L ε}
for all x ∈ Σ*, ([x], )   = [x ]   (well-defined??)

F =  {[x] | x 2 L}

Claim:  M accepts x if and only if  x 2 L

(⇐) If the number of equivalence classes of  ≡L is k
then there is a DFA for L with k states
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Let L  Σ* and x, y 2 Σ*
x ≡L y   means:   for all z 2 Σ*, xz 2 L  yz 2 L



Define a DFA M where: 
Q is the set of equivalence classes of ≡L

q0 =  [ε] = {y | y ≡L ε}
([x], )   = [x ]
F =  {[x] | x 2 L}

Claim:  M accepts x if and only if  x 2 L
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Proof: Let M run on 𝒙 = 𝒙𝟏⋯𝒙𝒏 ∈ 𝚺
⋆, for  𝒙𝒊 ∈ 𝚺.

M starts in state [ε], reads 𝒙𝟏 and moves to [𝒙𝟏], 
reads 𝒙𝟐 and moves to [𝒙𝟏 𝒙𝟐], …, and ends in 
state [𝒙𝟏⋯𝒙𝒏]. 
So, M accepts 𝒙𝟏⋯𝒙𝒏  [𝒙𝟏⋯𝒙𝒏] ∈ F
By definition of the set F,  [𝒙𝟏⋯𝒙𝒏] ∈ F x ∈ L



The Myhill-Nerode Theorem gives us a new way 
to prove that a given language is not regular:

L is not regular 
if and only if

there are infinitely many equiv. classes of  ≡L

L is not regular 
if and only if
There are infinitely many strings w1, w2, … so that
for all wi  wj,  wi and wj are distinguishable to L:

there is a z 2 Σ* such that 

exactly one of wi z and wj z is in L

Distinguishing set for L

14



L is not regular 
if and only if
There are infinitely many strings w1, w2, … so that
for all wi  wj,  wi and wj are distinguishable to L

Distinguishing set for L
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To prove that L is not regular, it is sufficient to 
show that a special infinite set of strings exists!

To prove that L is regular, we have to show that a 
special finite object (DFA/NFA/regex) exists.

We can prove the nonexistence of a DFA/NFA/regex 
by proving the existence of this special string set!



Using Myhill-Nerode to prove non-regularity:

Theorem: L = {0n 1n | n ¸ 0} is not regular.

Proof: Consider the infinite set of strings 
S = {0, 00, 000, …, 0n, …}

Claim: S is a distinguishing set for L.
Take any pair (0m, 0n) of distinct strings in S
Let z = 1m

Then 0m 1m is in L, but 0n 1m is not in L
So all pairs of strings in S are distinguishable to L

Hence there are infinitely many equivalence 
classes of ≡L , and L is not regular!
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Theorem: PAL = {x xR | x ∈ {0, 1}*} is not regular.

Proof: Consider the infinite set of strings 
S = {01k0 | k ≥ 1}

Claim: S is a distinguishing set for L.
Take any pair (01k0, 01j0) of strings where j ≠ k
Let z = 01k0
Then 01k0 01k0 is in PAL, but 01j0 01k0 is not in PAL
So all pairs of strings in S are distinguishable to PAL

Hence there are infinitely many equivalence 
classes of ≡L , and L is not regular 
(by the Myhill-Nerode theorem)
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Streaming Algorithms
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Streaming Algorithms
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Initialize:
<variables and their assignments>

When next symbol seen is 𝝈:
<pseudocode using 𝝈 and vars>

When stream stops (end of string):
<accept/reject condition on vars>

(or: <pseudocode for output>) 

Streaming Algorithms
Have three components

Algorithm A computes L ⊆ 𝚺⋆ if 
A accepts the strings in L, rejects strings not in L



Streaming Algorithms

01011101 Streaming algorithms differ from 
DFAs in several significant ways:

1. Streaming algorithms could 
output more than one bit

2. The “memory” or “space” of a
streaming algorithm can (slowly)
increase as it reads longer strings

3.  Could also make multiple passes
over the input, could be randomized
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Can 
recognize 

non-regular 
languages!



L = {x | x has more 1’s than 0’s}

Initialize: C := 0 and B := 0
When next symbol seen is 𝝈:

If (C = 0) then B := 𝝈, C := 1
If (C  0) and (B = 𝝈) then C := C + 1
If (C  0) and (B  𝝈) then C := C – 1

When stream stops:
accept if B=1 and C > 0, else reject

B = the majority bit
C = how many more   

times B appears

On all strings of length n, the 
algorithm uses (log2 n)+O(1)

bits of space (to store B and C)



How to think of memory usage

10101011111010111111101011010110111

Space usage of A:
𝑺(𝒏) = maximum # of bits

used to store vars in A, 
over all inputs of 

length up to 𝒏

The program is not considered
as part of the memory



L = {𝟎𝒏𝟏𝒏 | 𝒏 ≥ 𝟎}
Initialize: z := 0, s := false, fail := false
When next symbol seen is 𝝈:

If (not s) and (𝝈 = 0) then z := z + 1 
If (not s) and (𝝈 = 1) then s := true; z:=z-1
If (s) and (𝝈 = 0) then fail := true 
If (s) and (𝝈 = 1) then z := z – 1

When stream stops:
accept if and only if (not fail) and (z=0)

z = how many more times 
0 appears than 1

s = “Started reading 1s yet?”
fail = “Reject for certain?”

On all strings of length n, 
uses (log2 n)+O(1) space



DFAs and Streaming

Thm: Let L’ be recognized by DFA M 
with ≤ 2p states.

Then L’ is computable by a streaming 
algorithm A using ≤ p bits of space.

Proof Idea: Define algorithm A as follows.

Initialize: Encode the start state of M in memory.
When next symbol seen is 𝝈:

Update state of M using M’s transition function
When stream stops:

Accept if current state of M is final, else reject
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DFAs and Streaming

Thm: Let L’ be recognized by DFA M 
with ≤ 2p states.

Then L’ is computable by a streaming 
algorithm A using ≤ p bits of space.

Initialize: B = 0
When reading 𝝈:

Set B := 𝝈
When stream stops:

Accept iff B = 1 
Uses 1 bit of space
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Theorem: Let L’ be computable by 
streaming algorithm A using ≤ S(n) bits of space

on all strings of length up to n.
Then for all n, there is a DFA M with < 2S(n)+1

states such that L’n = L(M)n

That is, for all streaming algorithms A using S(n) 
space, there’s a DFA M of < 2S(n)+1 states such that 

A and M agree on all strings of length up to 𝒏.

For any A µ Σ* define An = {x ∈ A | |x|≤ n}
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DFAs and Streaming

Note: L’n is always regular! (It’s finite!)



Theorem: Let L’ be computable by 
streaming algorithm A using ≤ S(n) bits of space

on all strings of length up to n.
Then for all n, there is a DFA M with < 2S(n)+1

states such that L’n = L(M)n

Proof Idea: States of M = at most 2S(n)+1 -1 possible 
memory configurations of A, over strings of length up to n
Start state of M = Initialized memory of A
Transition function = Mimic how A updates its memory
Final states of M = Subset of memory configurations 

in which A would accept, if the string ended there

For any A µ Σ* define An = {x ∈ A | |x|≤ n}
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DFAs and Streaming



Initialize: C := 0 and B := 0
When next symbol seen is 𝝈,
If (C = 0) then B := 𝝈, C := 1
If (C  0) and (B = 𝝈) then C := C + 1
If (C  0) and (B  𝝈) then C := C – 1
When stream stops,

accept if B=1 and C > 0, else reject

Example: L = {x | x has more 1’s than 0’s}
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Example: 6-state DFA 
that agrees with L on all 

strings of length ≤ 𝟑

0

(1,0)1

(We only let C go up to 2)



Theorem: Let L’ be computable by 
streaming algorithm A using S(n) bits of space

on all strings of length up to n.
Then for all n, there is a DFA M with < 2S(n)+1

states such that L’n = L(M)n

Corollary: Suppose for some n, every DFA M 
agreeing with L’n requires at least Q(n) := 2S(n)+1 states.

Then L’ is not computable by a streaming algorithm 
using S(n) = log2(Q(n)/2) = log2(Q(n))-1 space!

That is, L’ requires at least log2(Q(n)) space for some n.

For any A µ Σ* define An = {x ∈ A | |x|≤ n}

30

Streaming Lower Bounds via DFAs


