6.045

Lecture 6:
The Myhill-Nerode Theorem
and Streaming Algorithms

6.045

Announcements:
- One-day Extension on Pset 2? Vote?

‘ |“a

DFA Minimization Theorem:

For every regular language A, there is a
unique (up to re-labeling of the states)
minimal-state DFA M* such that A = L(M¥).

Furthermore, there is an efficient
algorithm which, given any DFA M, will
output this unique M*.

If such algorithms existed for more

general models of computation, that
would be an engineering breakthrough!!

How could we show whether two
regular expressions are equivalent?

Claim: There is an algorithm which given
regular expressions R and R’, determines
whether L(R) = L(R’).

The Myhill-Nerode Theorem:

For every language L:
Either there’s a DFA for L
or there’s a set of strings that “trick”
every possible DFA trying to recognize L

In DFA Minimization, we defined
an equivalence relation between states of a DFA.

We can also define a similar equivalence relation
over strings in a language:

letLci*andx,ye z*
x=,y means: forallze2*, xzel P yzel

Claim: = (“L-equivalent”) is an equivalence relation

letLci*andx,ye 2*
X=,y means: forallze*, xzel & yzel

Def. x and y are indistinguishableto L iff x =y

Claim: = (“L-equivalent”) is an equivalence relation

Reflexive:
x= x: forallzeZ*, xzel & xzel .

Symmetric:
x=,y: forallze2*, xzel @ yzel

Equivalent to: forallz€ 2*,yzeL® xz €L, y = x

Transitive:
x=,y: forallze2*, xzel P yzel

y=, w: forallzeZ*,yzeLwzel
Implies forallze 2*, xze L& wzeL x = x

letLc2*and x,ye z*
X=,y means: forallze2*, xzel & yzel

Suppose we partition all strings in Z* into
equivalence classes under =,

(@

The Myhill-Nerode Theorem:
If the number of parts is finite = can construct a DFA!
If the number of parts is infinite = there is no DFA!

Mapping strings to DFA states

Given DFAM =(Q, £, 9, q,, F), we define a
function A : Z* - Q as follows:

Ale)= qq
Alc) = olq,, o)

A(o; - Oy) = 0(Aoy -+ O), Opyq)

A(w) = the state of M reached after reading in w

Note: A(w) € F < M accepts w

letLc2*and x,ye z*
X=,y means: forallze2*, xzel & yzel

The Myhill-Nerode Theorem:
A language L is regular if and only if
the number of equivalence classes of =, is finite.

Proof (=) LetM=(Q, 3, §, q,, F) be any DFA for L.
Define the relation: x =,y <& A(x) = A(y)

Claim: =, is an equivalence relation with |Q| classes

Claim: If x =, ythenx =,y

Proof: x =,y implies for all z € £*, xz and yz reach
the same state of M.SoxzclL<~yzcl,and x=y

Corollary: The number of = classes is at most
the number of =, classes (which is |Q])

10

letLc2*and x,ye z*
x=,y means: forallze2*, xzel & yzel

The Myhill-Nerode Theorem:
A language L is regular if and only if
the number of equivalence classes of = is finite.

Claim: If x =, ythenx =y
Corollary: The number of =, classes is at most
the number of =, classes (which is |Q])
Proof: Let § = {x{, X, ... } be distinct strings, one
from every ELcIass | S| = number of =, classes.
Thus forall i # j, x; # | x;. By the claim: x; =, x;.

Soeachx; € Sisina dlstlnct ~\, equivalence class.
= The number of =, classes is at least | S]|.

11

letLc2*and x,ye z*
X=,y means: forallze2*, xzel & yzel

(<) If the number of equivalence classes of =, is k
then there is a DFA for L with k states

Idea: Build a DFA whose states are
the equivalence classes of =,

Define a DFA M where:
Q is the set of equivalence classes of =,

do = [el={y |y =, €}
for all x € 2*, O([x], 6) =[xo] (well-defined??)
F={[x]| xelL}

Claim: M accepts x ifandonlyif x €L

12

Define a DFA M where:
Q is the set of equivalence classes of =,

ao = [el={y | Y=, €}
o([x], o) =[xo]
F={[x]| x€L}

Claim: M accepts x ifandonly if x€ L

Proof: Let Mrunonx = x{ - x,, € X*, for x; € X.
M starts in state [€], reads x; and moves to [x{],
reads X, and moves to [x; x5], ..., and ends in
state [x{ - x,].

So, M accepts x{ - x,, <& [x1---x,] EF

By definition of the set F, [x{ - x,]EF & x€EL

13

The Myhill-Nerode Theorem gives us a new way
to prove that a given language is not regular:

L is not regular
if and only if
there are infinitely many equiv. classes of =,

L is not regular Distinguishing set for L

if and only if /
There are infinitely many strings w,, w,, ... so that
for all w; # w;, w;and w;are distinguishable to L:

thereis az € 2* such that

exactly one of w;zand w; zis in L

14

L is not regular Distinguishing set for L

if and only if /
There are infinitely many strings w,, w,, ... so that
for all w; # w;, w;and w;are distinguishable to L

To prove that L is regular, we have to show that a
special finite object (DFA/NFA/regex) exists.

To prove that L is not regular, it is sufficient to
show that a special infinite set of strings exists!

We can prove the nonexistence of a DFA/NFA/regex
by proving the existence of this special string set!

Using Myhill-Nerode to prove non-regularity:

Theorem: L={0" 1" | n > 0} is not regular.

Proof: Consider the infinite set of strings
S = {0, 00, 000, ..., 0", ...}
Claim: S is a distinguishing set for L.
Take any pair (0™, 0") of distinct strings in S
Letz=1"
Then 0™ 1Misin L, but 0" 1Mis notinlL
So all pairs of strings in S are distinguishable to L

Hence there are infinitely many equivalence
classes of = , and L is not regular!

16

Theorem: PAL = {x x® | x € {0, 1}*} is not regular.

Proof: Consider the infinite set of strings
S={010 | k > 1}
Claim: S is a distinguishing set for L.
Take any pair (01¥0, 01/0) of strings where j # k
Let z = 010
Then 01%0 010 is in PAL, but 01/0 010 is not in PAL
So all pairs of strings in S are distinguishable to PAL

Hence there are infinitely many equivalence
classes of = , and L is not regular
(by the Myhill-Nerode theorem)

17

Streaming Algorithms

Streaming Algorithms

Streaming Algorithms

Have three components

Initialize:
<variables and their assighments>
When next symbol seen is o:
<pseudocode using o and vars>
When stream stops (end of string):
<accept/reject condition on vars>
(or: <pseudocode for output>)

Algorithm A computes L € X” if
A accepts the strings in L, rejects strings not in L

Streaming Algorithms

01011101 Streaming algorithms differ from
- DFAs in several significant ways:

1. Streaming algorithms could
output more than one bit

2. The “memory” or “space” of a
recognize streaming algorithm can (slowly)

non-regular increase as it reads longer strings
languages!

3. Could also make multiple passes
over the input, could be randomized

21

L = {x | x has more 1’s than 0’s}

Initialize:C:=0and B :=0
When next symbol seen is o
If (C=0)thenB:=0,C:=1
If (C20)and(B=0)thenC:=C+1
If (C#£0)and (B#o0)thenC:=C-1
When stream stops:
accept if B=1 and C > 0, else reject

B = the majority bit On all strings of length n, the
C = how many more algorithm uses (log, n)+0(1)
times B appears bits of space (to store B and C)

How to think of memory usage

The program is not considered
as part of the memory

1010101111101011111110101

Space usage of A:
S(n) = maximum # of bits
used to store vars in A,

over all inputs of
lengthup ton

L={0"1" | n = 0}

Initialize: z := 0, s := false, fail := false
When next symbol seen is o:

If (nots)and (o0 =0)thenz:=z+1

If (not s) and (o0 = 1) then s := true; z:=z-1

If (s) and (o = 0) then fail := true

If (s)and (o0 =1)thenz:=z-1
When stream stops:

accept if and only if (not fail) and (z=0)

z = how many more times

0 appears than 1
s = “Started reading 1s yet?”
fail = “Reject for certain?”

On all strings of length n,
uses (log, n)+0O(1) space

DFAs and Streaming

Thm: Let L' be recognized by DFA M
with < 2P states.

Then L' is computable by a streaming

algorithm A using < p bits of space.

Proof Idea: Define algorithm A as follows.

Initialize: Encode the start state of M in memory.
When next symbol seen is o:

Update state of M using M’s transition function
When stream stops:

Accept if current state of M is final, else reject

25

DFAs and Streaming

Thm: Let L' be recognized by DFA M
with < 2P states.

Then L' is computable by a streaming

algorithm A using < p bits of space.

Initialize: B=0
When reading o

a
& SetB:=0
_>O & @ When stream stops:
1 AcceptiffB=1
Uses 1 bit of space

26

DFAs and Streaming

Forany AC 2* define A, ={x €A | |[x]|<n}

Theorem: Let L' be computable by
N streaming algorithm A using < S(n) bits of space
A on all strings of length up to n.
Then for all n, there is a DFA M with < 25(n)+1
states such that L' = L(M),

That is, for all streaming algorithms A using S(n)
space, there’s a DFA M of < 25(n)+1 states such that
A and M agree on all strings of length up to n.

Note: L is always regular! (It’s finite!)

27

DFAs and Streaming

Forany AC 2* define A, ={x €A | |[x]|<n}

Theorem: Let L' be computable by
> streaming algorithm A using < S(n) bits of space
on all strings of length up to n.
Then for all n, there is a DFA M with < 25(n)+1
states such that L' = L(M),

I
» W

Proof Idea: States of M = at most 25(")*1 -1 possible
memory configurations of A, over strings of length up to n
Start state of M = Initialized memory of A
Transition function = Mimic how A updates its memory
Final states of M = Subset of memory configurations

in which A would accept, if the string ended there

28

Example: L = {x | x has more 1’s than 0’s}

Initialize:C:=0and B:=0 Example: 6-state DFA

When next symbol seen is o,]
If (C=0) then B := o, C:= 1 that agrees with L on all

If (C~0)and (B=0)thenC:=C+1 strings of length < 3

If (C#0) and (B # g) then C:=C-1 (We only let C go up to 2)
When stream stops,
accept if B=1 and C > 0, else reject

29

Streaming Lower Bounds via DFAs

Forany AC 2* define A, ={x €A | |[x]|<n}

Theorem: Let L' be computable by
streaming algorithm A using S(n) bits of space
on all strings of length up to n.

Then for all n, there is a DFA M with < 25(n)+1
states such that L', = L(M),

Corollary: Suppose for some n, every DFA M
agreeing with L_ requires at least Q(n) := 25("*1 states.
Then L' is not computable by a streaming algorithm
using S(n) = log,(Q(n)/2) = log,(Q(n))-1 space!
That is, L' requires at least log,(Q(n)) space for some n.

30

