
Lecture 7:
Streaming Algorithms
and Communication

Complexity

6.045

Announcements:
- Pset 2 is due tonight, 11:59pm
- Pest 3 is out!

Due next Wednesday

6.045

L is regular
if and only if

(∃ DFA M)(∀ strings 𝒙)[M acc. x  x ∈ L]
“M gives the correct output on all strings”

L is NOT regular
if and only if

(∀ DFA M)(∃ string 𝒙𝑴)[M acc. 𝒙𝑴 x ∉ L]
“M gives the wrong output on 𝒙𝑴”

3

So the problem of proving L is NOT regular can be
viewed as a problem about designing “bad inputs”

L is not regular
if and only if
There are infinitely many strings w1, w2, … so that
for all i  j, there’s a string z such that

exactly one of wiz and wjz is in L

Distinguishing set for L

4

To prove that L is not regular, it is sufficient to
show that a special infinite set of strings exists!

To prove that L is regular, we have to show that a
special finite object (DFA/NFA/regex) exists.

We can prove the nonexistence of a DFA/NFA/regex
by proving the existence of this special string set!

Initialize:
<variables and their assignments>

When next symbol seen is 𝝈:
<pseudocode using 𝝈 and vars>

When stream stops (end of string):
<accept/reject condition on vars>

(or: <pseudocode for output>)

Streaming Algorithms

Have three components

Algorithm A computes L ⊆ 𝚺⋆ if
A accepts the strings in L, rejects strings not in L

How to think of memory usage

10101011111010111111101011010110111

Space Usage of A:
𝑺(𝒏) = maximum # of bits

used to store vars in A,
over all inputs of

length up to 𝒏

The program is not considered
as part of the memory

Theorem: Let L’ be computable by
streaming algorithm A with space usage ≤ 𝑺(𝒏).

Then for all n, there is a DFA M with < 𝟐𝑺 𝒏 +𝟏 states
such that L’n = L(M)n

For all streaming algorithms A using S(n) space,
and all 𝒏, there’s a DFA M of < 2S(n)+1 states such

that A and M agree on all strings of length up to 𝒏.

For any A µ Σ* define An = {x ∈ A | |x|≤ n}

7

DFAs and Streaming

Note: L’n is always regular!
(It’s a finite set!)

Theorem: Let L’ be computable by
streaming algorithm A with space usage ≤ 𝑺(𝒏).

Then for all n, there is a DFA M with < 𝟐𝑺 𝒏 +𝟏 states
such that L’n = L(M)n

For any A µ Σ* define An = {x ∈ A | |x|≤ n}

8

DFAs and Streaming

Proof Idea: States of M = The set of (at most) 𝟐𝑺 𝒏 +𝟏 − 𝟏
memory configurations of A, over strings of length up to n

(Why 𝟐𝑺 𝒏 +𝟏 − 𝟏?)
Start state of M = Initialized memory of A
Transition function = Mimic how A updates its memory
Final states of M = Subset of memory configurations

in which A would accept, if the string ended there

L is not regular
if and only if
There are infinitely many strings w1, w2, … so that
for all i  j, there’s a string z such that

exactly one of wiz and wjz is in L

Distinguishing set for L

10

In other words, if S is a distinguishing set for L,
then any DFA for L must have at least |S| states.

In fact, Myhill-Nerode shows that the size of a
distinguishing set for L is a lower bound on the

number of states in a DFA for L.

We can use similar ideas to prove
lower bounds on streaming algorithms!

A streaming distinguisher for Ln is a subset Dn of Σ*:
for all distinct x, y ∈ Dn , there is a z in Σ* such that
|xz| ≤ n, |yz| ≤ n, and exactly one of xz, yz is in L.

11

Idea: Use the set Dn to show that every streaming

algorithm for L must enter at least 𝟐𝑺 𝒏 different
memory states, over all inputs of length at most n.

Streaming Theorem: Suppose for all n, there is a streaming

distinguisher Dn for Ln with |Dn| ≥ 𝟐𝑺 𝒏 .
Then all streaming algs for L must use at least 𝑺(𝒏) space!

For any L µ Σ* define Ln = {x ∈ L | |x|≤ n}

But if there are at least 𝟐𝑺 𝒏 distinct memory states,
Then the alg must be using at least 𝑺(𝒏) bits of space!

L = { 0k 1k | k ≥ 0 }

Is there a streaming algorithm for L
using less than (log2 n) space?

Idea: Show there is a streaming distinguisher Dn for
Ln = { 0k1k | 𝟎 ≤ k ≤ n } with |Dn| = n/2+1.

By the Streaming Theorem, it follows that all
streaming algs for L need ≥ log2 (n/2+1) space!

Theorem: For all n, every streaming
algorithm computing L must to use at

least (log2 n) bits of space.

12

Let x=0a and y=0b be distinct strings in Dn. Set z = 1b.
Then yz ∈ L, xz ∉ L, and |xz|≤ n, |yz| ≤ n. QED

Theorem: For all (even) n, every streaming algorithm
computing L needs at least (log2 n) bits of space.

13

Proof: For even n, let Dn = {0i | i = 0, …, n/2}

Claim: For all n, Dn is a streaming distinguisher for Ln

Since |Dn| = n/2+1, Streaming Thm says: every
streaming algorithm for L needs ≥ log2 (n/2+1) space.

Note log2 (n/2+1) > log2 (n/2) = log2 (n) - 1

L = { 0k 1k | k ≥ 0 }

Finding Frequent Items
A streaming algorithm for

L = {x | x has more 1’s than 0’s}
tells us if 1’s occur more frequently than 0’s.

FREQUENT ITEMS: Given k and a string x = x1  xn Î Σn,
output the set S = {σ Î Σ | σ occurs > n/k times in x}

What if the alphabet is more than just 1’s and 0’s?

And what if we want to find the “top 10” symbols?

(Question: How large can the set S be?)

“heavy hitters”

FREQUENT ITEMS: Given k and a string x = x1  xn Î Σn,
output the set S = {σ Î Σ | σ occurs > n/k times in x}

FREQUENT ITEMS: Given k and a string x = x1  xn Î Σn,
output the set S = {σ Î Σ | σ occurs > n/k times in x}

1st pass: Initialize a set T ⊆ Σ x {1,…,n} (originally empty)
When the next symbol σ is read:
If (σ,m) ÎT, then T := T – {(σ,m)} + {(σ,m+1)}

Else if |T| < k-1 then T := T + {(σ,1)}
Else for all (σ’,m’) ÎT,

T := T – {(σ’,m’)} + {(σ’,m’-1)}
If m’ = 0 then T := T – {(σ’,m’)}

Claim: At end, T contains all σ occurring > n/k times in x
2nd pass: Count occurrences of all σ’ appearing in T

to determine those occurring > n/k times

Theorem: There is a two-pass streaming algorithm for
FREQUENT ITEMS using (k-1) (log |Σ| + log n) space!

1st pass: Initialize a set T ⊆ Σ x {1,…,n} (originally empty)
When the next symbol σ is read:
If (σ,m) ÎT, then T := T – {(σ,m)} + {(σ,m+1)}

Else if |T| < k-1 then T := T + {(σ,1)}
Else for all (σ’,m’) ÎT,

T := T – {(σ’,m’)} + {(σ’,m’-1)}
If m’ = 0 then T := T – {(σ’,m’)}

2nd pass: Count occurrences of all σ’ appearing in T
to determine those occurring > n/k times

Claim: At end, T contains all σ occurring > n/k times in x

1st pass: Initialize a set T ⊆ Σ x {1,…,n} (originally empty)
When the next symbol σ is read:
If (σ,m) ÎT, then T := T – {(σ,m)} + {(σ,m+1)}

Else if |T| < k-1 then T := T + {(σ,1)}
Else for all (σ’,m’) ÎT,

T := T – {(σ’,m’)} + {(σ’,m’-1)}
If m’ = 0 then T := T – {(σ’,m’)}

2nd pass: Count occurrences of all σ’ appearing in T
to determine those occurring > n/k times

Claim: At end, if σ is not in T then σ occurs ≤ n/k times

Idea: Have k-1 containers, n colored balls, and a trash can.

When this happens

Decrement
k-1 counters

For each ball colored 𝝈: either add it to a container, or throw it
in the trash along with k-1 other balls, one from each container.

If there were m balls colored 𝝈, and no balls of color 𝝈 are in
containers at the end, there must be k⋅m ≤ n balls in the trash!

Number of Distinct Elements

Distinct Elements (DE):
Input: x ∈ {1,…,2k}*, n = |x| < 2k/2

Output: The number of different elements
appearing in x; call this DE(x)

Observation: There is a streaming
algorithm for DE using O(k n) space

Theorem: Every streaming algorithm for
DE requires (k n) space!

19

The DE problem
Input: x 2 {0,1,…,2k}*, 2k > |x|2

Output: The number of distinct elements
appearing in x

Note: There is a streaming algorithm for
DE using O(k n) space

Theorem: Every streaming algorithm for
DE requires (k n) space

20

Theorem: Every streaming algorithm for
DE requires (k n) space

Say x, y ∈ Σ are length-n DE distinguishable if
(∃z ∈ Σ*)[DE(xz) ≠ DE(yz)] & |xz|≤n, |yz|≤n]

Lemma: Let S ⊆ Σ* be such that every pair of strings in
S is length-n DE distinguishable. Then, streaming algs
for DE need ≥ log2 |S| bits of space (on inputs of length ≤n)

Proof Sketch: Let algorithm A use < log2 |S| space. We
show A cannot compute DE on all inputs of length ≤n.
By the pigeonhole principle, there are distinct x, y in S
that lead A to the same memory state.
So A gives the same output on both xz and yz.
But DE(xz) ≠ DE(yz), so A does not compute DE.

21

Lemma: Let S ⊆ Σ* be such that every pair of strings in
S is length-n DE distinguishable. Then every streaming
algorithm for DE needs ≥ log2 |S| bits of space.

Claim: For all n, there is a such a set S with |S| ≥ 2k n/4

Proof: For each subset T of Σ of size n/2,
define xT to be any concatenation of the symbols in T

For distinct sets T and T’, xT and xT’ are distinguishable:
xT xT contains exactly n/2 distinct elements
xT’ xT has more than n/2 distinct elements

The total number of such subsets T is
𝟐𝒌

𝒏/𝟐
≥ 2k n/2/(n/2)n/2 ≥ 2k n/4 , for n < 2k/2








 2

22

Theorem: Every streaming algorithm for
DE requires (k n) space

Theorem: Every streaming algorithm for
approximating the number of DE to within
+- 20% error also requires (k n) space!

See Lecture Notes.








 2

24

Randomized Algorithms Help!

Distinct Elements (DE)
Input: x ∈ {1,…,2k}*, n = |x| < 2k/2

Output: The number of different elements
appearing in x

Theorem: There is a randomized streaming
algorithm that w.h.p. approximates DE

to within 0.1% error, using O(k + log n) space!

25

Recall: Deterministic streaming algorithms
require at least (kn) space.

28

Communication Complexity

29

Communication Complexity

A theoretical model of distributed computing
• Function f : {0,1}*£ {0,1}*! {0,1}

– Two inputs, 𝑥 ∈ {0,1}* and 𝑦 ∈ {0,1}*

– We assume |𝒙|=|𝒚|=𝒏. Think of 𝒏 as HUGE

• Two computers: Alice and Bob

– Alice only knows 𝑥, Bob only knows 𝑦

• Goal: Compute f(𝒙, 𝒚) by communicating as
few bits as possible between Alice and Bob

We do not count computation cost. We only care
about the number of bits communicated.

30

Alice and Bob Have a Conversation

A(x,ε) = 0

B(y,0) = 1

A(x,01) = 1

B(y,011) = 0

A(x,0110) = STOPx y

f(x,y)=0f(x,y)=0

In every step: A bit or STOP is sent, which is a function of
the party’s input and all the bits communicated so far.

Communication cost = number of bits communicated
= 4 (in the example)

We assume Alice and Bob alternate in communicating,
and the last BIT sent is the value of 𝒇(x,y)

31

A(x,ε) = 0

B(y,0) = 1

A(x,01) = 1

B(y,011) = 0

x y

f(x,y)=0f(x,y)=0

Def. A protocol for a function f is a pair of functions
A, B : {0,1}* × {0,1}* → {0, 1, STOP} with the semantics:

On input (𝒙, 𝒚), let 𝒓 := 0, 𝒃𝟎 := ε.
While (𝒃𝒓 ≠ STOP),

𝒓 + +
If 𝒓 is odd, Alice sends 𝒃𝒓 = 𝑨 𝒙, 𝒃𝟏⋯𝒃𝒓−𝟏

else Bob sends 𝒃𝒓 = 𝑩 𝒚, 𝒃𝟏⋯𝒃𝒓−𝟏
Output 𝒃𝒓−𝟏 = f(𝒙, 𝒚). Number of rounds = 𝒓 − 𝟏

32

A(x,ε) = 0

B(y,0) = 1

A(x,01) = 1

B(y,011) = 0

x y

f(x,y)=0f(x,y)=0

Def. The cost of a protocol (A,B) on 𝒏-bit strings is

𝐦𝐚𝐱
𝒙,𝒚 ∈ 𝟎,𝟏 𝒏

[number of rounds taken by (A,B) on (𝒙, 𝒚)]

The communication complexity of f on 𝒏-bit strings, cc(f),
is min cost over all protocols computing f on 𝒏-bit strings
= the minimum number of rounds used by any protocol

computing f(𝒙, 𝒚), over all 𝒏-bit 𝒙, 𝒚

33

A(x,ε) = 0

B(y,0) = 1

A(x,01) = 1

B(y,011) = 0

x y

f(x,y)=0f(x,y)=0

Example. Let f : {0,1}* × {0,1}* → {0,1} be arbitrary

There is always a “trivial” protocol for f:
Alice sends the bits of her 𝒙 in odd rounds
Bob sends whatever bit he wants in even rounds
After 𝟐𝒏 − 𝟏 rounds, Bob knows 𝒙 and can send 𝒇(𝒙, 𝒚)

Proposition: For every 𝒇, cc(𝒇) ≤ 𝟐𝒏

34

A(x,ε) = 0

B(y,0) = 1

A(x,01) = 1

B(y,011) = 0

x y

f(x,y)=0f(x,y)=0

Example. PARITY(𝒙, 𝒚) = σ𝒊𝒙𝒊 + σ𝒊𝒚𝒊 mod 2.

What’s a good protocol for computing PARITY?

Proposition: cc(PARITY) = 2

35

x y

f(x,y)=0f(x,y)=0

Example. MAJORITY(𝒙, 𝒚) = most frequent bit in 𝒙𝒚
Models voting in two “remote” locations; they want to determine a winner

What’s a good protocol for computing MAJORITY?

Proposition: cc(MAJORITY) ≤ O(log 𝐧)

36

x y

f(x,y)=0f(x,y)=0

Example. EQUALS(𝒙, 𝒚) = 1 ⇔ 𝒙 = 𝒚
Useful for checking consistency of two far-apart databases!

What’s a good protocol for computing EQUALS?

????

