
Lecture 7: 
Streaming Algorithms
and Communication 

Complexity

6.045



Announcements:
- Pset 2 is due tonight, 11:59pm
- Pest 3 is out! 

Due next Wednesday

6.045



L is regular 
if and only if

(∃ DFA M)(∀ strings 𝒙)[M acc. x  x ∈ L]
“M gives the correct output on all strings”

L is NOT regular 
if and only if

(∀ DFA M)(∃ string 𝒙𝑴)[M acc. 𝒙𝑴 x ∉ L]
“M gives the wrong output on 𝒙𝑴”
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So the problem of proving L is NOT regular can be 
viewed as a problem about designing “bad inputs”



L is not regular 
if and only if
There are infinitely many strings w1, w2, … so that
for all i  j, there’s a string z such that 

exactly one of wiz and wjz is in L

Distinguishing set for L
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To prove that L is not regular, it is sufficient to 
show that a special infinite set of strings exists!

To prove that L is regular, we have to show that a 
special finite object (DFA/NFA/regex) exists.

We can prove the nonexistence of a DFA/NFA/regex
by proving the existence of this special string set!



Initialize:
<variables and their assignments>

When next symbol seen is 𝝈:
<pseudocode using 𝝈 and vars>

When stream stops (end of string):
<accept/reject condition on vars>

(or: <pseudocode for output>) 

Streaming Algorithms

Have three components

Algorithm A computes L ⊆ 𝚺⋆ if 
A accepts the strings in L, rejects strings not in L



How to think of memory usage

10101011111010111111101011010110111

Space Usage of A:
𝑺(𝒏) = maximum # of bits

used to store vars in A, 
over all inputs of 

length up to 𝒏

The program is not considered
as part of the memory



Theorem: Let L’ be computable by 
streaming algorithm A with space usage ≤ 𝑺(𝒏).

Then for all n, there is a DFA M with < 𝟐𝑺 𝒏 +𝟏 states
such that L’n = L(M)n

For all streaming algorithms A using S(n) space, 
and all 𝒏, there’s a DFA M of < 2S(n)+1 states such 

that A and M agree on all strings of length up to 𝒏.

For any A µ Σ* define An = {x ∈ A | |x|≤ n}
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DFAs and Streaming

Note: L’n is always regular! 
(It’s a finite set!)



Theorem: Let L’ be computable by 
streaming algorithm A with space usage ≤ 𝑺(𝒏).

Then for all n, there is a DFA M with < 𝟐𝑺 𝒏 +𝟏 states
such that L’n = L(M)n

For any A µ Σ* define An = {x ∈ A | |x|≤ n}
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DFAs and Streaming

Proof Idea: States of M = The set of (at most) 𝟐𝑺 𝒏 +𝟏 − 𝟏
memory configurations of A, over strings of length up to n

(Why 𝟐𝑺 𝒏 +𝟏 − 𝟏?)
Start state of M = Initialized memory of A
Transition function = Mimic how A updates its memory
Final states of M = Subset of memory configurations 

in which A would accept, if the string ended there



L is not regular 
if and only if
There are infinitely many strings w1, w2, … so that
for all i  j, there’s a string z such that 

exactly one of wiz and wjz is in L

Distinguishing set for L
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In other words, if S is a distinguishing set for L, 
then any DFA for L must have at least |S| states.

In fact, Myhill-Nerode shows that the size of a 
distinguishing set for L is a lower bound on the 

number of states in a DFA for L.

We can use similar ideas to prove 
lower bounds on streaming algorithms! 



A streaming distinguisher for Ln is a subset Dn of Σ*: 
for all distinct x, y ∈ Dn , there is a z in Σ* such that 
|xz| ≤ n, |yz| ≤ n, and exactly one of xz, yz is in L.
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Idea: Use the set Dn to show that every streaming 

algorithm for L must enter at least 𝟐𝑺 𝒏 different 
memory states, over all inputs of length at most n.

Streaming Theorem: Suppose for all n, there is a streaming 

distinguisher Dn for Ln with |Dn| ≥ 𝟐𝑺 𝒏 . 
Then all streaming algs for L must use at least 𝑺(𝒏) space!

For any L µ Σ* define Ln = {x ∈ L | |x|≤ n}

But if there are at least 𝟐𝑺 𝒏 distinct memory states, 
Then the alg must be using at least 𝑺(𝒏) bits of space!



L = { 0k 1k | k ≥ 0 }

Is there a streaming algorithm for L 
using less than (log2 n) space?

Idea: Show there is a streaming distinguisher Dn for 
Ln = { 0k1k | 𝟎 ≤ k ≤ n } with |Dn| = n/2+1. 

By the Streaming Theorem, it follows that all 
streaming algs for L need ≥ log2 (n/2+1) space!

Theorem: For all n, every streaming 
algorithm computing L must to use at 

least (log2 n) bits of space.
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Let x=0a and y=0b be distinct strings in Dn. Set z = 1b. 
Then yz ∈ L, xz ∉ L, and |xz|≤ n, |yz| ≤ n. QED

Theorem: For all (even) n, every streaming algorithm 
computing L needs at least (log2 n) bits of space.
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Proof: For even n, let Dn = {0i | i = 0, …, n/2}

Claim: For all n, Dn is a streaming distinguisher for Ln

Since |Dn| = n/2+1, Streaming Thm says: every 
streaming algorithm for L needs ≥ log2 (n/2+1) space.

Note log2 (n/2+1) > log2 (n/2) = log2 (n) - 1

L = { 0k 1k | k ≥ 0 }



Finding Frequent Items
A streaming algorithm for

L = {x | x has more 1’s than 0’s}
tells us if 1’s occur more frequently than 0’s.

FREQUENT ITEMS: Given k and a string x = x1  xn Î Σn, 
output the set S = {σ Î Σ | σ occurs > n/k times in x}

What if the alphabet is more than just 1’s and 0’s? 

And what if we want to find the “top 10” symbols?

(Question: How large can the set S be?)

“heavy hitters”



FREQUENT ITEMS: Given k and a string x = x1  xn Î Σn, 
output the set S = {σ Î Σ | σ occurs > n/k times in x}



FREQUENT ITEMS: Given k and a string x = x1  xn Î Σn, 
output the set S = {σ Î Σ | σ occurs > n/k times in x}

1st pass: Initialize a set T ⊆ Σ x {1,…,n} (originally empty)
When the next symbol σ is read:
If (σ,m) ÎT, then T := T – {(σ,m)} + {(σ,m+1)}

Else if |T| < k-1 then T := T + {(σ,1)}
Else for all (σ’,m’) ÎT,

T := T – {(σ’,m’)} + {(σ’,m’-1)}
If m’ = 0 then T := T – {(σ’,m’)}

Claim: At end, T contains all σ occurring > n/k times in x
2nd pass: Count occurrences of all σ’ appearing in T

to determine those occurring > n/k times

Theorem: There is a two-pass streaming algorithm for 
FREQUENT ITEMS using (k-1) (log |Σ| + log n) space!



1st pass: Initialize a set T ⊆ Σ x {1,…,n} (originally empty)
When the next symbol σ is read:
If (σ,m) ÎT, then T := T – {(σ,m)} + {(σ,m+1)}  

Else if |T| < k-1 then T := T + {(σ,1)}
Else for all (σ’,m’) ÎT,

T := T – {(σ’,m’)} + {(σ’,m’-1)}
If m’ = 0 then T := T – {(σ’,m’)}

2nd pass: Count occurrences of all σ’ appearing in T
to determine those occurring > n/k times

Claim: At end, T contains all σ occurring > n/k times in x



1st pass: Initialize a set T ⊆ Σ x {1,…,n} (originally empty)
When the next symbol σ is read:
If (σ,m) ÎT, then T := T – {(σ,m)} + {(σ,m+1)}

Else if |T| < k-1 then T := T + {(σ,1)}
Else for all (σ’,m’) ÎT,

T := T – {(σ’,m’)} + {(σ’,m’-1)}
If m’ = 0 then T := T – {(σ’,m’)}

2nd pass: Count occurrences of all σ’ appearing in T
to determine those occurring > n/k times

Claim: At end, if σ is not in T then σ occurs ≤ n/k times

Idea: Have k-1 containers, n colored balls, and a trash can.

When this happens

Decrement 
k-1 counters

For each ball colored 𝝈: either add it to a container, or throw it 
in the trash along with k-1 other balls, one from each container. 

If there were m balls colored 𝝈, and no balls of color 𝝈 are in 
containers at the end, there must be k⋅m ≤ n balls in the trash! 



Number of Distinct Elements

Distinct Elements (DE):
Input:    x ∈ {1,…,2k}*,  n = |x| < 2k/2 

Output: The number of different elements 
appearing in x; call this DE(x)

Observation: There is a streaming
algorithm for DE using O(k n) space

Theorem: Every streaming algorithm for 
DE requires (k n) space!
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The DE problem
Input:    x 2 {0,1,…,2k}*,  2k  > |x|2

Output: The number of distinct elements 
appearing in x

Note: There is a streaming algorithm for 
DE using O(k n) space

Theorem: Every streaming algorithm for 
DE requires (k n) space
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Theorem: Every streaming algorithm for 
DE requires (k n) space

Say x, y ∈ Σ are length-n DE distinguishable if 
(∃z ∈ Σ*)[DE(xz) ≠ DE(yz)] & |xz|≤n, |yz|≤n]   

Lemma: Let S ⊆ Σ* be such that every pair of strings in 
S is length-n DE distinguishable. Then, streaming algs
for DE need ≥ log2 |S| bits of space (on inputs of length ≤n)

Proof Sketch: Let algorithm A use < log2 |S| space. We 
show A cannot compute DE on all inputs of length ≤n.
By the pigeonhole principle, there are distinct x, y in S
that lead A to the same memory state. 
So A gives the same output on both xz and yz.
But DE(xz) ≠ DE(yz), so A does not compute DE.
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Lemma: Let S ⊆ Σ* be such that every pair of strings in 
S is length-n DE distinguishable. Then every streaming 
algorithm for DE needs ≥ log2 |S| bits of space.

Claim: For all n, there is a such a set S with |S| ≥ 2k n/4

Proof: For each subset T of Σ of size n/2,
define xT to be any concatenation of the symbols in T

For distinct sets T and T’, xT and xT’ are distinguishable: 
xT xT contains exactly n/2 distinct elements
xT’ xT has more than n/2 distinct elements

The total number of such subsets T is
𝟐𝒌

𝒏/𝟐
≥ 2k n/2/(n/2)n/2 ≥ 2k n/4 ,  for n < 2k/2








 2
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Theorem: Every streaming algorithm for 
DE requires (k n) space



Theorem: Every streaming algorithm for 
approximating the number of DE to within 
+- 20% error also requires (k n) space!

See Lecture Notes.








 2
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Randomized Algorithms Help!

Distinct Elements (DE)
Input:    x ∈ {1,…,2k}*, n = |x| < 2k/2 

Output: The number of different elements 
appearing in x

Theorem: There is a randomized streaming 
algorithm that w.h.p. approximates DE 

to within 0.1% error, using O(k + log n) space!
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Recall: Deterministic streaming algorithms 
require at least (kn) space.
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Communication Complexity
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Communication Complexity

A theoretical model of distributed computing
• Function f : {0,1}*£ {0,1}*! {0,1}

– Two inputs, 𝑥 ∈ {0,1}* and 𝑦 ∈ {0,1}*

– We assume |𝒙|=|𝒚|=𝒏. Think of 𝒏 as HUGE

• Two computers: Alice and Bob

– Alice only knows 𝑥, Bob only knows 𝑦

• Goal: Compute f(𝒙, 𝒚) by communicating as 
few bits as possible between Alice and Bob

We do not count computation cost. We only care 
about the number of bits communicated.
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Alice and Bob Have a Conversation

A(x,ε) = 0

B(y,0) = 1 

A(x,01) = 1

B(y,011) = 0

A(x,0110) = STOPx y

f(x,y)=0f(x,y)=0

In every step: A bit or STOP is sent, which is a function of 
the party’s input and all the bits communicated so far.

Communication cost = number of bits communicated
= 4 (in the example)

We assume Alice and Bob alternate in communicating, 
and the last BIT sent is the value of 𝒇(x,y)



31

A(x,ε) = 0

B(y,0) = 1 

A(x,01) = 1

B(y,011) = 0

x y

f(x,y)=0f(x,y)=0

Def. A protocol for a function f is a pair of functions
A, B : {0,1}* × {0,1}* → {0, 1, STOP} with the semantics:

On input (𝒙, 𝒚), let 𝒓 := 0, 𝒃𝟎 := ε. 
While (𝒃𝒓 ≠ STOP), 

𝒓 + +
If 𝒓 is odd, Alice sends 𝒃𝒓 = 𝑨 𝒙, 𝒃𝟏⋯𝒃𝒓−𝟏

else Bob sends 𝒃𝒓 = 𝑩 𝒚, 𝒃𝟏⋯𝒃𝒓−𝟏
Output 𝒃𝒓−𝟏 = f(𝒙, 𝒚).   Number of rounds  = 𝒓 − 𝟏
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A(x,ε) = 0

B(y,0) = 1 

A(x,01) = 1

B(y,011) = 0

x y

f(x,y)=0f(x,y)=0

Def. The cost of a protocol (A,B) on 𝒏-bit strings is  

𝐦𝐚𝐱
𝒙,𝒚 ∈ 𝟎,𝟏 𝒏

[number of rounds taken by (A,B) on (𝒙, 𝒚)]

The communication complexity of f on 𝒏-bit strings, cc(f),
is min cost over all protocols computing f on 𝒏-bit strings
=  the minimum number of rounds used by any protocol 

computing f(𝒙, 𝒚), over all 𝒏-bit 𝒙, 𝒚
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A(x,ε) = 0

B(y,0) = 1 

A(x,01) = 1

B(y,011) = 0

x y

f(x,y)=0f(x,y)=0

Example. Let f : {0,1}* × {0,1}* → {0,1} be arbitrary

There is always a “trivial” protocol for f:
Alice sends the bits of her 𝒙 in odd rounds
Bob sends whatever bit he wants in even rounds
After 𝟐𝒏 − 𝟏 rounds, Bob knows 𝒙 and can send 𝒇(𝒙, 𝒚)

Proposition: For every 𝒇, cc(𝒇) ≤ 𝟐𝒏
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A(x,ε) = 0

B(y,0) = 1 

A(x,01) = 1

B(y,011) = 0

x y

f(x,y)=0f(x,y)=0

Example. PARITY(𝒙, 𝒚) = σ𝒊𝒙𝒊 +  σ𝒊𝒚𝒊 mod 2. 

What’s a good protocol for computing PARITY? 

Proposition:  cc(PARITY) = 2
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x y

f(x,y)=0f(x,y)=0

Example. MAJORITY(𝒙, 𝒚) = most frequent bit in 𝒙𝒚
Models voting in two “remote” locations; they want to determine a winner

What’s a good protocol for computing MAJORITY? 

Proposition: cc(MAJORITY) ≤ O(log 𝐧)
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x y

f(x,y)=0f(x,y)=0

Example. EQUALS(𝒙, 𝒚) = 1  ⇔ 𝒙 = 𝒚
Useful for checking consistency of two far-apart databases!

What’s a good protocol for computing EQUALS? 

????


