6.045

Lecture 7:
Streaming Algorithms
and Communication
Complexity

6.045

Announcements:

- Pset 2 is due tonight, 11:59pm
- Pest 3 is out!

Due next Wednesday é

?am

!
‘i ==

L is regular
if and only if
(3 DFA M)(V strings x)[M acc. x & x € L]

“M gives the correct output on all strings”

L is NOT regular
if and only if
(V DFA M)(3 string x;)[M acc. xy; <& X € L]

“M gives the wrong output on xy”

So the problem of proving L is NOT regular can be
viewed as a problem about designing “bad inputs”

L is not regular Distinguishing set for L
if and only if /
There are infinitely many strings w,, w,, ... so that

for all i # j, there’s a string z such that
exactly one of wzand wzisinL

To prove that L is regular, we have to show that a
special finite object (DFA/NFA/regex) exists.

To prove that L is not regular, it is sufficient to
show that a special infinite set of strings exists!

We can prove the nonexistence of a DFA/NFA/regex
by proving the existence of this special string set!

Streaming Algorithms

Have three components

Initialize:
<variables and their assighments>
When next symbol seen is o:
<pseudocode using o and vars>
When stream stops (end of string):
<accept/reject condition on vars>
(or: <pseudocode for output>)

Algorithm A computes L € X” if
A accepts the strings in L, rejects strings not in L

How to think of memory usage

The program is not considered
as part of the memory

1010101111101011111110101

Space Usage of A:
S(n) = maximum # of bits
used to store vars in A,

over all inputs of
lengthup ton

DFAs and Streaming

Forany AC 2* define A, ={x €A | |[x]|<n}

Theorem: Let L' be computable by
streaming algorithm A with space usage < S(n).
Then for all n, there is a DFA M with < 25(MW+1 gtates
such that L' = L(M),

For all streaming algorithms A using S(n) space,
and all n, there’s a DFA M of < 25(M*1 states such
that A and M agree on all strings of length up to n.

Note: L' is always regular!
(It’s a finite set!)

DFAs and Streaming

Forany AC 2* define A, ={x €A | |[x]|<n}

Theorem: Let L' be computable by
streaming algorithm A with space usage < S(n).
Then for all n, there is a DFA M with < 25(MW+1 gtates
such that L' = L(M),

Proof Idea: States of M = The set of (at most) 25(™+1 _ 1
memory configurations of A, over strings of length up to n
(Why 25W+1 _ 17)
Start state of M = Initialized memory of A
Transition function = Mimic how A updates its memory
Final states of M = Subset of memory configurations

in which A would accept, if the string ended there

Example: L = {x | x has more 1’s than 0’s}

Initialize:C:=0and B:=0 Example: 6-state DFA

When next symbol seen is o,]
If (C=0) then B := o, C:= 1 that agrees with L on all

If (C-0)and (B=0)thenC:=C+1 strings of length < 3
If (C#0)and (B c)thenC:=C-1 (We only let C go up to 2)
When stream stops,

accept if B=1 and C > 0, else reject

L is not regular Distinguishing set for L
if and only if /
There are infinitely many strings w,, w,, ... so that

for all i # j, there’s a string z such that
exactly one of wzand wzisinL

In fact, Myhill-Nerode shows that the size of a
distinguishing set for L is a lower bound on the
number of states in a DFA for L.

In other words, if S is a distinguishing set for L,
then any DFA for L must have at least |S| states.

We can use similar ideas to prove
lower bounds on streaming algorithms!
10

Forany L C 2* defineL, ={x €L | |x]|<n}

A streaming distinguisher for L is a subset D of Z*:
for all distinct x, y € D, there is a z in 2* such that
Ixz] < n, |yz| < n, and exactly one of xz, yz is in L.

Streaming Theorem: Suppose for all n, there is a streaming

distinguisher D, for L. with |D| > 25,
Then all streaming algs for L must use at least S(n) space!

Idea: Use the set D, to show that every streaming

algorithm for L must enter at least 25 different
memory states, over all inputs of length at most n.

But if there are at least 25 distinct memory states,
Then the alg must be using at least S(n) bits of space!

11

L={0k1k| k>0}

Is there a streaming algorithm for L
using less than (log, n) space?

Theorem: For all n, every streaming
algorithm computing L must to use at
least [log, n| bits of space.

Idea: Show there is a streaming distinguisher D_ for
L ={0k1X| 0 <k < n}with |D, | =n/2+1.
By the Streaming Theorem, it follows that all
streaming algs for L need > log, (n/2+1) space!

12

L={0k1k| k>0}

Theorem: For all ven) N, every streaming algorithm
computing L needs at least |log, n| bits of space.
Proof: Forevenn,letD ={0'|i=0,.., n/2}
Claim: For all n, D is a streaming distinguisher for L
Let x=0% and y=0" be distinct strings in D . Set z = 1°.

Thenyze L, xzé&L,and |xz|<n, |yz] <n.QED

Since |D,| = n/2+1, Streaming Thm says: every
streaming algorithm for L needs > log, (n/2+1) space.

Note log, (n/2+1) > log, (n/2) = log, (n) - 1

13

“heavy hitters”

Finding Frequent Items

A streaming algorithm for
L = {x | x has more 1’s than 0’s}
tells us if 1’s occur more frequently than 0’s.

What if the alphabet is more than just 1’s and 0’s?
And what if we want to find the “top 10” symbols?

FREQUENT ITEMS: Given k and a stringx=x; ... x, € 2",
output theset S={oc € Z | o occurs > n/k times in x}

(Question: How large can the set S be?) < k

FREQUENT ITEMS: Given k and a stringx=x; ... x, € 2",
output theset S={oc € Z | o occurs > n/k times in x}

FREQUENT ITEMS: Given k and a string x =x, ... x, € 2",
output theset S={oc € Z | o occurs > n/k times in x}

Theorem: There is a two-pass streaming algorithm for
FREQUENT ITEMS using (k-1) (log |Z| + log n) space!

1st pass: Initialize a set T € 2 x {1,...,n} (originally empty)
When the next symbol o is read:
If (o,m) €T, thenT:=T-{(o,m)} + {(o,m+1)}
Elseif |[T| <k-1thenT:=T+{(c,1)}
Else for all (o’,m’) €T,
T:=T-{(c’,m’)} + {(c’,m’-1)}
Ifm’=0thenT:=T-{(c’,m’)}
Claim: At end, T contains all o occurring > n/k times in x
2nd pass: Count occurrences of all ¢’ appearing in T
to determine those occurring > n/k times

Claim: At end, T contains all o occurring > n/k times in x

1st pass: Initialize a set T € 2 x {1,...,,n} (originally empty)
When the next symbol o is read:
If (o,m) eT,thenT:=T-{(o,m)}+{(oc,m+1)}
Elseif |[T| <k-1thenT:=T+{(c,1)}
Else for all (o’,m’) €T,
T:=T-{(c’,m’)} + {(c’,m’-1)}
Ifm’'=0thenT:=T-{(c’,m’)}
2nd pass: Count occurrences of all ¢’ appearingin T
to determine those occurring > n/k times

Claim: At end, if o is not in T then o occurs < n/k times &

Idea: Have k-1 containers, n colored balls, and a trash can.
For each ball colored o: either add it to a container, or throw it
in the trash along with k-1 other balls, one from each container.

If there were m balls colored o, and no balls of color o are in
containers at the end, there must be k-m < n balls in the trash!
1st pass: Initialize a set T € 2 x {1,...,,n} (originally empty)
When the next symbol o is read:
If (o,m) eT,thenT:=T-{(o,m)}+{(oc,m+1)}
Elseif |[T| <k-1thenT:=T+{(0,1)}
Else for all (’'m’) €T, < When this happens
T:=T-{(c’,m’)} +{(co’,m’-1)} Decrement
If m’=0thenT:=T-{(c’,m’)} k-1 counters
2nd pass: Count occurrences of all ¢’ appearing in T
to determine those occurring > n/k times

Number of Distinct Elements

Distinct Elements (DE):

Input: x € {1,...,2}*, n=|x| < 2k2

Output: The number of different elements
appearing in x; call this DE(x)

Ex: x =12312 has DE(x) = 3 (X={1,2,3})

Observation: There is a streaming
algorithm for DE using O(k n) space

Theorem: Every streaming algorithm for
DE requires €2(k n) space!

19

Theorem: Every streaming algorithm for
DE requires Q2(k n) space

Say X, y € 2 are length-n DE distinguishable if
(3z € £*)[DE(xz) # DE(yz)] & |xz|<n, |yz|<n]

Lemma: Let S € Z* be such that every pair of strings in
S is length-n DE distinguishable. Then, streaming algs
for DE need > log, |S| bits of space (on inputs of length <n)

Proof Sketch: Let algorithm A use < log, |S| space. We
show A cannot compute DE on all inputs of length <n.
By the pigeonhole principle, there are distinct x,yin S
that lead A to the same memory state.

So A gives the same output on both xz and yz.

But DE(xz) + DE(yz), so A does not compute DE.

20

Theorem: Every streaming algorithm for
DE requires Q2(k n) space

Lemma: Let S € 2* be such that every pair of strings in
S is length-n DE distinguishable. Then every streaming
algorithm for DE needs = log, |S| bits of space.

Claim: For all n, there is a such a set S with |S| > 2kn/4

Proof: For each subset T of X of size n/2,
define x; to be any concatenation of the symbolsin T

For distinct sets T and T’, x; and x;, are distinguishable:

X; X; contains exactly n/2 distinct elements
X X; has more than n/2 distinct elements
The total number of such subsets T is

(nz/kz) > 2k n/Z/(n/Z)n/Z > 2kn/4 for n < 2K/2

21

Theorem: Every streaming algorithm for
DE requires €2(k n) space

The total number of such subsets is 2¢%kn) for 2k > n2,
What’s the number of subsets of {1,...,2%} of size n/2?

Y

b
Want to estimate this quantity. Use () > (%)

2 2 2
Then (22) = (T) = n
2 2 AV
2/ 3
n 2% 2 kn k 2% kn
Since (2)2 <\=—] <24 ,wehave (Zn) > —5>24
2 22

Theorem: Every streaming algorithm for
approximating the number of DE to within
+- 20% error also requires C2(k n) space!

See Lecture Notes.

23

Randomized Algorithms Help!

Distinct Elements (DE)

Input: x € {1,...,2<}*, n= | x| < 22

Output: The number of different elements
appearing in x

Theorem: There is a randomized streaming
algorithm that w.h.p. approximates DE
to within 0.1% error, using O(k + log n) space!

Recall: Deterministic streaming algorithms
require at least 2(kn) space.

24

Randomized Algorithm for DE

Idea: Let h: {1,...,2¢} > [0, 1] be a random function.
(Foralli € {1,...,2%}, pick j € {1,...,n*} at random, h(i) := j/n?)

Initialize m := 1.

When x; is read, update m := min{m, h(x;)}.
At the end of the stream, return 1/m.

Obs: m = minimum of DE(x) random numbers in [0,1]
Claim: Let x € {1,...,2K}*
With probability > 0.8, DE(x)/5 < 1/m < 10-DE(x).

Can boost accuracy using O(1) more hash functions!
(See the Lecture Notes!)

25

Randomized Algorithm for DE

Idea: Let h: {1,...,2¢} > [0, 1] be a random function.
(Foralli € {1,...,2%}, pick j € {1,...,n*} at random, h(i) := j/n?)

Initialize m := 1.

When x; is read, update m := min{m, h(x;)}.
At the end of the stream, return 1/m.

Naively, this uses 2Xlog(n) space to store the function h!

Use special (pairwise-independent) hash functions
which can be stored with only O(k + log(n)) space.

26

Communication Complexity

Communication Complexity

A theoretical model of distributed computing
* Function f:{0,1}* x {0,1}* — {0,1}

— Two inputs, x € {0,1}* and y € {0,1}*

— We assume | x|=|y|=n. Think of n as HUGE
« Two computers: Alice and Bob

— Alice only knows x, Bob only knows vy

* Goal: Compute f(x, y) by communicating as
few bits as possible between Alice and Bob

We do not count computation cost. We only care
about the number of bits communicated.

28

