6.045

Lecture 7:

Streaming Algorithms and Communication Complexity

6.045

Announcements:

- Pset $\mathbf{2}$ is due tonight, 11:59pm
- Pest 3 is out!

Due next Wednesday

L is regular
if and only if
(\exists DFA \mathbf{M})(\forall strings \boldsymbol{x})[M acc. $\mathrm{x} \Leftrightarrow \mathrm{x} \in \mathrm{L}]$ " M gives the correct output on all strings"

L is NOT regular
if and only if
$(\forall$ DFA $M)\left(\exists\right.$ string $\left.x_{M}\right)\left[M\right.$ acc. $\left.x_{M} \Leftrightarrow \mathrm{x} \notin \mathrm{L}\right]$ " M gives the wrong output on x_{M} "

So the problem of proving L is NOT regular can be viewed as a problem about designing "bad inputs"

L is not regular
if and only if
There are infinitely many strings w_{1}, w_{2}, \ldots so that for all $\mathrm{i} \neq \mathrm{j}$, there's a string z such that exactly one of $w_{i} z$ and $w_{j} z$ is in L

To prove that L is regular, we have to show that a special finite object (DFA/NFA/regex) exists.

To prove that L is not regular, it is sufficient to show that a special infinite set of strings exists!

We can prove the nonexistence of a DFA/NFA/regex by proving the existence of this special string set!

Streaming Algorithms

Have three components

Initialize:
<variables and their assignments>
When next symbol seen is σ :
<pseudocode using σ and vars>
When stream stops (end of string):
<accept/reject condition on vars>
(or: <pseudocode for output>)
Algorithm A computes $L \subseteq \Sigma^{\star}$ if
A accepts the strings in L, rejects strings not in L

How to think of memory usage

The program is not considered as part of the memory

1010101111101011111110101

Space Usage of A:
 $\boldsymbol{S}(\boldsymbol{n})=$ maximum \# of bits used to store vars in A, over all inputs of
 length up to n

DFAs and Streaming

For any $A \subseteq \Sigma^{*}$ define $A_{n}=\{x \in A| | x \mid \leq n\}$
Theorem: Let L' be computable by
streaming algorithm A with space usage $\leq S(n)$.
Then for all n, there is a DFA M with $<2^{S(n)+1}$ states such that $\mathrm{L}_{\mathrm{n}}^{\prime}=\mathrm{L}(\mathrm{M})_{\mathrm{n}}$

For all streaming algorithms A using $S(\mathrm{n})$ space, and all n, there's a DFA M of < $2^{S(n)+1}$ states such that A and M agree on all strings of length up to n.

> Note: \mathbf{L}_{n} is always regular! (It's a finite set!)

DFAs and Streaming

For any $A \subseteq \Sigma^{*}$ define $A_{n}=\{x \in A| | x \mid \leq n\}$
Theorem: Let L' be computable by
streaming algorithm A with space usage $\leq S(n)$.
Then for all n, there is a DFA M with $<2^{S(n)+1}$ states such that $\mathrm{L}_{\mathrm{n}}^{\prime}=\mathrm{L}(\mathrm{M})_{\mathrm{n}}$
Proof Idea: States of $M=$ The set of (at most) $2^{S(n)+1}-1$ memory configurations of A , over strings of length up to \boldsymbol{n} (Why $2^{S(n)+1}-1$?)
Start state of $\mathbf{M}=$ Initialized memory of \mathbf{A}
Transition function = Mimic how A updates its memory
Final states of $\mathbf{M}=$ Subset of memory configurations in which A would accept, if the string ended there

Example: $L=\{x \mid x$ has more 1's than 0's $\}$
Initialize: C := $\mathbf{0}$ and B := 0
When next symbol seen is σ, If $(\mathbf{C}=0)$ then $\mathrm{B}:=\sigma, \mathrm{C}:=1$
If $(C \neq 0)$ and $(B=\sigma)$ then $C:=C+1$
If $(C \neq 0)$ and $(B \neq \sigma)$ then $C:=C-1$ When stream stops,

L is not regular
if and only if
There are infinitely many strings w_{1}, w_{2}, \ldots so that for all $\mathbf{i} \neq \mathrm{j}$, there's a string \mathbf{z} such that exactly one of $\mathrm{w}_{\mathrm{i}} \mathrm{z}$ and $\mathrm{w}_{\mathrm{j}} \mathrm{z}$ is in L

In fact, Myhill-Nerode shows that the size of a distinguishing set for L is a lower bound on the number of states in a DFA for L.

In other words, if S is a distinguishing set for L, then any DFA for L must have at least |S| states.

> We can use similar ideas to prove lower bounds on streaming algorithms!

For any $L \subseteq \Sigma^{*}$ define $L_{n}=\{x \in L| | x \mid \leq n\}$
A streaming distinguisher for L_{n} is a subset D_{n} of Σ^{*} : for all distinct $\mathrm{x}, \mathrm{y} \in \mathrm{D}_{\mathrm{n}}$, there is a \mathbf{z} in Σ^{*} such that $|x z| \leq n,|y z| \leq n$, and exactly one of $x z, y z$ is in L.

Streaming Theorem: Suppose for all n, there is a streaming distinguisher D_{n} for L_{n} with $\left|D_{n}\right| \geq 2^{S(n)}$.
Then all streaming algs for L must use at least $S(n)$ space!
Idea: Use the set D_{n} to show that every streaming algorithm for L must enter at least $2^{S(n)}$ different memory states, over all inputs of length at most \boldsymbol{n}. But if there are at least $2^{S(n)}$ distinct memory states, Then the alg must be using at least $S(n)$ bits of space!

$$
L=\left\{0^{k} 1^{k} \mid k \geq 0\right\}
$$

Is there a streaming algorithm for L using less than $\left(\log _{2} n\right)$ space?

Theorem: For all n , every streaming algorithm computing L must to use at least $\left[\log _{2} n\right\rfloor$ bits of space.

Idea: Show there is a streaming distinguisher D_{n} for

$$
L_{n}=\left\{0^{k} 1^{k} \mid 0 \leq k \leq n\right\} \text { with }\left|D_{n}\right|=n / 2+1 .
$$

By the Streaming Theorem, it follows that all streaming algs for L need $\geq \log _{2}(n / 2+1)$ space!

$$
L=\left\{0^{k} 1^{k} \mid k \geq 0\right\}
$$

Theorem: For all ${ }_{\text {(even) }} \mathbf{n}$, every streaming algorithm computing L needs at least $\left[\log _{2} n\right]$ bits of space.

Proof: For even n, let $D_{n}=\left\{0^{i} \mid i=0, \ldots, n / 2\right\}$
Claim: For all n, D_{n} is a streaming distinguisher for L_{n} Let $\mathrm{x}=0^{\mathrm{a}}$ and $\mathrm{y}=0^{\mathrm{b}}$ be distinct strings in D_{n}. Set $\mathrm{z}=1^{\mathrm{b}}$. Then $y z \in L, x z \notin L$, and $|x z| \leq n,|y z| \leq n$. QED

Since $\left|D_{n}\right|=n / 2+1$, Streaming Thm says: every streaming algorithm for L needs $\geq \log _{2}(n / 2+1)$ space.

Note $\log _{2}(n / 2+1)>\log _{2}(n / 2)=\log _{2}(n)-1$

Finding Frequent Items

> A streaming algorithm for $L=\{x \mid x$ has more 1's than 0's $\}$
tells us if 1's occur more frequently than 0's.

What if the alphabet is more than just 1's and 0's?
And what if we want to find the "top 10" symbols?
FREQUENT ITEMS: Given k and a string $x=x_{1} \ldots x_{n} \in \Sigma^{n}$, output the set $S=\{\sigma \in \Sigma \mid \sigma$ occurs $>n / k$ times in $x\}$
(Question: How large can the set S be?)

FREQUENT ITEMS: Given k and a string $x=x_{1} \ldots x_{n} \in \Sigma^{n}$, output the set $\mathrm{S}=\{\sigma \in \Sigma \mid \sigma$ occurs $>\mathrm{n} / \mathrm{k}$ times in x$\}$

FREQUENT ITEMS: Given k and a string $x=x_{1} \ldots x_{n} \in \Sigma^{n}$, output the set $S=\{\sigma \in \Sigma \mid \sigma$ occurs $>n / k$ times in $x\}$

Theorem: There is a two-pass streaming algorithm for FREQUENT ITEMS using $(k-1)(\log |\Sigma|+\log n)$ space!
1st pass: Initialize a set $T \subseteq \Sigma \times\{1, \ldots, n\}$ (originally empty) When the next symbol σ is read:
If $(\sigma, m) \in T$, then $T:=T-\{(\sigma, m)\}+\{(\sigma, m+1)\}$
Else if $|\mathrm{T}|<\mathrm{k}-1$ then $\mathrm{T}:=\mathrm{T}+\{(\sigma, 1)\}$
Else for all $\left(\sigma^{\prime}, m^{\prime}\right) \in T$,

$$
\begin{aligned}
& \mathrm{T}:=\mathrm{T}-\left\{\left(\sigma^{\prime}, \mathrm{m}^{\prime}\right)\right\}+\left\{\left(\sigma^{\prime}, \mathrm{m}^{\prime}-1\right)\right\} \\
& \text { If } \mathrm{m}^{\prime}=0 \text { then } \mathrm{T}:=\mathrm{T}-\left\{\left(\sigma^{\prime}, \mathrm{m}^{\prime}\right)\right\}
\end{aligned}
$$

Claim: At end, T contains all σ occurring $>n / k$ times in x 2nd pass: Count occurrences of all σ^{\prime} appearing in T to determine those occurring > n/k times

Claim: At end, T contains all σ occurring $>n / k$ times in x

1st pass: Initialize a set $T \subseteq \Sigma x\{1, \ldots, \mathrm{n}\}$ (originally empty) When the next symbol σ is read:
If $(\sigma, m) \in T$, then $T:=T-\{(\sigma, m)\}+\{(\sigma, m+1)\}$
Else if $|\mathrm{T}|<\mathrm{k}-1$ then $\mathrm{T}:=\mathrm{T}+\{(\mathrm{\sigma}, 1)\}$
Else for all $\left(\sigma^{\prime}, m^{\prime}\right) \in T$,

$$
\begin{aligned}
& \mathrm{T}:=\mathrm{T}-\left\{\left(\sigma^{\prime}, \mathrm{m}^{\prime}\right)\right\}+\left\{\left(\sigma^{\prime}, \mathrm{m}^{\prime}-1\right)\right\} \\
& \text { If } \mathrm{m}^{\prime}=0 \text { then } \mathrm{T}:=\mathrm{T}-\left\{\left(\sigma^{\prime}, \mathrm{m}^{\prime}\right)\right\}
\end{aligned}
$$

2nd pass: Count occurrences of all σ^{\prime} appearing in T to determine those occurring > n / k times

Claim: At end, if σ is not in T then σ occurs $\leq n / k$ times Idea: Have k-1 containers, n colored balls, and a trash can. For each ball colored σ : either add it to a container, or throw it in the trash along with k -1 other balls, one from each container. If there were m balls colored σ, and no balls of color σ are in containers at the end, there must be $\mathrm{k} \cdot \mathrm{m} \leq \mathrm{n}$ balls in the trash! 1st pass: Initialize a set $T \subseteq \Sigma \times\{1, \ldots, n\}$ (originally empty) When the next symbol σ is read:
If $(\sigma, m) \in T$, then $T:=T-\{(\sigma, m)\}+\{(\sigma, m+1)\}$
Else if $|\mathrm{T}|<\mathrm{k}-1$ then $\mathrm{T}:=\mathrm{T}+\{(\sigma, 1)\}$
Else for all $\left(\sigma^{\prime}, m^{\prime}\right) \in T$,
When this happens

$$
\begin{array}{l|l}
\mathrm{T}:=\mathrm{T}-\left\{\left(\sigma^{\prime}, m^{\prime}\right)\right\}+\left\{\left(\sigma^{\prime}, m^{\prime}-1\right)\right\} & \text { Decrement } \\
\text { If } \mathrm{m}^{\prime}=0 \text { then } \mathrm{T}:=\mathrm{T}-\left\{\left(\sigma^{\prime}, m^{\prime}\right)\right\} & \mathrm{k}-1 \text { counters }
\end{array}
$$

2nd pass: Count occurrences of all σ^{\prime} appearing in T to determine those occurring > n/k times

Number of Distinct Elements

Distinct Elements (DE):
Input: $x \in\left\{1, . ., 2^{k}\right\}^{*}, n=|x|<2^{k / 2}$
Output: The number of different elements appearing in \mathbf{x}; call this DE(x)
Ex: $x=12312$ has $\operatorname{DE}(x)=3(\Sigma=\{1,2,3\})$
Observation: There is a streaming algorithm for DE using $\mathbf{O}(\mathrm{k} n)$ space

Theorem: Every streaming algorithm for DE requires $\Omega(k n)$ space!

Theorem: Every streaming algorithm for DE requires $\Omega(k n)$ space

Say $x, y \in \Sigma$ are length-n $D E$ distinguishable if $\left.\left(\exists z \in \Sigma^{*}\right)[D E(x z) \neq \operatorname{DE}(y z)] \&|x z| \leq n,|y z| \leq n\right]$

Lemma: Let $\mathrm{S} \subseteq \Sigma^{*}$ be such that every pair of strings in S is length-n DE distinguishable. Then, streaming algs for DE need $\geq \log _{2}|S|$ bits of space (on inputs of length $\leq n$)

Proof Sketch: Let algorithm A use $<\log _{2}|\mathrm{~S}|$ space. We show A cannot compute DE on all inputs of length $\leq n$. By the pigeonhole principle, there are distinct x, y in S that lead A to the same memory state.
So A gives the same output on both $x z$ and $y z$. But $\operatorname{DE}(x z) \neq \mathrm{DE}(\mathrm{yz})$, so A does not compute DE.

Theorem: Every streaming algorithm for DE requires $\Omega(k n)$ space

Lemma: Let $\mathrm{S} \subseteq \Sigma^{*}$ be such that every pair of strings in S is length-n DE distinguishable. Then every streaming algorithm for DE needs $\geq \log _{2}|S|$ bits of space.

Claim: For all n, there is a such a set S with $|S| \geq 2^{\mathrm{k}} \mathrm{n} / 4$
Proof: For each subset T of Σ of size $n / 2$, define x_{T} to be any concatenation of the symbols in T For distinct sets T and $\mathrm{T}^{\prime}, \mathrm{x}_{\mathrm{T}}$ and $\mathrm{X}_{\mathrm{T}^{\prime}}$ are distinguishable: $\mathrm{x}_{\mathrm{T}} \mathrm{x}_{\mathrm{T}}$ contains exactly $\mathrm{n} / 2$ distinct elements $\mathrm{x}_{\mathrm{T}}, \mathrm{X}_{\mathrm{T}}$ has more than $\mathrm{n} / 2$ distinct elements

The total number of such subsets T is

$$
\binom{2^{k}}{n^{k}} \geq 2^{k n / 2} /(n / 2)^{n / 2} \geq 2^{k n / 4}, \text { for } n<2^{k / 2}
$$

Theorem: Every streaming algorithm for DE requires $\Omega(k n)$ space

The total number of such subsets is $2^{\Omega(k n)}$, for $2^{k}>n^{2}$. What's the number of subsets of $\left\{1, \ldots, 2^{k}\right\}$ of size $n / 2$?

$$
\binom{2^{k}}{\frac{n}{2}}
$$

Want to estimate this quantity. Use $\binom{a}{b} \geq\left(\frac{a}{b}\right)^{b}$
Then $\binom{2^{k}}{\frac{n}{2}} \geq\left(\frac{2^{k}}{\frac{n}{2}}\right)^{\frac{n}{2}} \geq \frac{2^{\frac{k n}{2}}}{\left(\frac{n}{2}\right)^{\frac{n}{2}}}$.
Since $\left(\frac{n}{2}\right)^{\frac{n}{2}}<\left(\frac{2^{\frac{k}{2}}}{2}\right)^{\frac{\hbar}{2}}<2^{\frac{k n}{4}}$, we have $\binom{2^{k}}{\frac{n}{2}} \geq \frac{2^{\frac{k n}{2}}}{\left(\frac{n}{2}\right)^{\frac{n}{2}}}>2^{\frac{k n}{4}}$

Theorem: Every streaming algorithm for approximating the number of DE to within +- 20\% error also requires $\Omega(k n)$ space!

See Lecture Notes.

Randomized Algorithms Help!

Distinct Elements (DE)
Input: $x \in\left\{1, . ., 2^{k}\right\}^{*}, n=|x|<2^{k / 2}$
Output: The number of different elements appearing in x

Theorem: There is a randomized streaming algorithm that w.h.p. approximates DE to within 0.1% error, using $\mathrm{O}(\mathrm{k}+\log \mathrm{n})$ space!

Recall: Deterministic streaming algorithms require at least $\Omega(k n)$ space.

Randomized Algorithm for DE

Idea: Let $\mathrm{h}:\left\{1, . ., 2^{\mathrm{k}}\right\} \rightarrow[0,1]$ be a random function.
(For all $i \in\left\{1, . ., 2^{k}\right\}$, pick $j \in\left\{1, . . ., n^{2}\right\}$ at random, $\left.h(i):=j / n^{2}\right)$
Initialize $\mathbf{m}:=1$.
When x_{i} is read, update $\mathrm{m}:=\min \left\{\mathrm{m}, \mathrm{h}\left(\mathrm{x}_{\mathrm{i}}\right)\right\}$.
At the end of the stream, return $1 / m$.
Obs: $m=$ minimum of $\operatorname{DE}(x)$ random numbers in $[0,1]$
Claim: Let $x \in\left\{1, . . .2^{k}\right\} *$
With probability > $0.8, \mathrm{DE}(\mathrm{x}) / 5 \leq 1 / \mathrm{m} \leq 10 \cdot \mathrm{DE}(\mathrm{x})$.
Can boost accuracy using $O(1)$ more hash functions!
(See the Lecture Notes!)

Randomized Algorithm for DE

Idea: Let $h:\left\{1, . ., 2^{\mathrm{k}}\right\} \rightarrow[0,1]$ be a random function.
(For all $i \in\left\{1, . . .2^{k}\right\}$, pick $j \in\left\{1, . ., n^{2}\right\}$ at random, $h(i):=j / n^{2}$)
Initialize $\mathbf{m}:=1$.
When x_{i} is read, update $\mathrm{m}:=\min \left\{\mathrm{m}, \mathrm{h}\left(\mathrm{x}_{\mathrm{i}}\right)\right\}$.
At the end of the stream, return $1 / m$.
Naively, this uses $2^{\mathrm{k}} \log (\mathrm{n})$ space to store the function h ! Use special (pairwise-independent) hash functions which can be stored with only $\mathrm{O}(\mathrm{k}+\log (\mathrm{n})$) space.

Communication Complexity

Communication Complexity

A theoretical model of distributed computing

- Function $f:\{0,1\}^{*} \times\{0,1\}^{*} \rightarrow\{0,1\}$
- Two inputs, $x \in\{0,1\}^{*}$ and $y \in\{0,1\}^{*}$
- We assume $|x|=|y|=n$. Think of n as HUGE
- Two computers: Alice and Bob - Alice only knows x, Bob only knows y
- Goal: Compute $f(x, y)$ by communicating as few bits as possible between Alice and Bob
We do not count computation cost. We only care about the number of bits communicated.

