
Lecture 7:
Streaming Algorithms
and Communication

Complexity

6.045

Announcements:
- Pset 2 is due tonight, 11:59pm
- Pest 3 is out!

Due next Wednesday

6.045

L is regular
if and only if

(∃ DFA M)(∀ strings 𝒙)[M acc. x  x ∈ L]
“M gives the correct output on all strings”

L is NOT regular
if and only if

(∀ DFA M)(∃ string 𝒙𝑴)[M acc. 𝒙𝑴 x ∉ L]
“M gives the wrong output on 𝒙𝑴”

3

So the problem of proving L is NOT regular can be
viewed as a problem about designing “bad inputs”

L is not regular
if and only if
There are infinitely many strings w1, w2, … so that
for all i  j, there’s a string z such that

exactly one of wiz and wjz is in L

Distinguishing set for L

4

To prove that L is not regular, it is sufficient to
show that a special infinite set of strings exists!

To prove that L is regular, we have to show that a
special finite object (DFA/NFA/regex) exists.

We can prove the nonexistence of a DFA/NFA/regex
by proving the existence of this special string set!

Initialize:
<variables and their assignments>

When next symbol seen is 𝝈:
<pseudocode using 𝝈 and vars>

When stream stops (end of string):
<accept/reject condition on vars>

(or: <pseudocode for output>)

Streaming Algorithms

Have three components

Algorithm A computes L ⊆ 𝚺⋆ if
A accepts the strings in L, rejects strings not in L

How to think of memory usage

10101011111010111111101011010110111

Space Usage of A:
𝑺(𝒏) = maximum # of bits

used to store vars in A,
over all inputs of

length up to 𝒏

The program is not considered
as part of the memory

Theorem: Let L’ be computable by
streaming algorithm A with space usage ≤ 𝑺(𝒏).

Then for all n, there is a DFA M with < 𝟐𝑺 𝒏 +𝟏 states
such that L’n = L(M)n

For all streaming algorithms A using S(n) space,
and all 𝒏, there’s a DFA M of < 2S(n)+1 states such

that A and M agree on all strings of length up to 𝒏.

For any A µ Σ* define An = {x ∈ A | |x|≤ n}

7

DFAs and Streaming

Note: L’n is always regular!
(It’s a finite set!)

Theorem: Let L’ be computable by
streaming algorithm A with space usage ≤ 𝑺(𝒏).

Then for all n, there is a DFA M with < 𝟐𝑺 𝒏 +𝟏 states
such that L’n = L(M)n

For any A µ Σ* define An = {x ∈ A | |x|≤ n}

8

DFAs and Streaming

Proof Idea: States of M = The set of (at most) 𝟐𝑺 𝒏 +𝟏 − 𝟏
memory configurations of A, over strings of length up to n

(Why 𝟐𝑺 𝒏 +𝟏 − 𝟏?)
Start state of M = Initialized memory of A
Transition function = Mimic how A updates its memory
Final states of M = Subset of memory configurations

in which A would accept, if the string ended there

Initialize: C := 0 and B := 0
When next symbol seen is 𝝈,
If (C = 0) then B := 𝝈, C := 1
If (C  0) and (B = 𝝈) then C := C + 1
If (C  0) and (B  𝝈) then C := C – 1
When stream stops,

accept if B=1 and C > 0, else reject

Example: L = {x | x has more 1’s than 0’s}

9

1

0

1

1

0

(0,0)

(1,1)

0

(0,1)
(B,C)

(1,2)

(0,2) 0

0

1
1

Example: 6-state DFA
that agrees with L on all

strings of length ≤ 𝟑

0

(1,0)1

(We only let C go up to 2)

L is not regular
if and only if
There are infinitely many strings w1, w2, … so that
for all i  j, there’s a string z such that

exactly one of wiz and wjz is in L

Distinguishing set for L

10

In other words, if S is a distinguishing set for L,
then any DFA for L must have at least |S| states.

In fact, Myhill-Nerode shows that the size of a
distinguishing set for L is a lower bound on the

number of states in a DFA for L.

We can use similar ideas to prove
lower bounds on streaming algorithms!

A streaming distinguisher for Ln is a subset Dn of Σ*:
for all distinct x, y ∈ Dn , there is a z in Σ* such that
|xz| ≤ n, |yz| ≤ n, and exactly one of xz, yz is in L.

11

Idea: Use the set Dn to show that every streaming

algorithm for L must enter at least 𝟐𝑺 𝒏 different
memory states, over all inputs of length at most n.

Streaming Theorem: Suppose for all n, there is a streaming

distinguisher Dn for Ln with |Dn| ≥ 𝟐𝑺 𝒏 .
Then all streaming algs for L must use at least 𝑺(𝒏) space!

For any L µ Σ* define Ln = {x ∈ L | |x|≤ n}

But if there are at least 𝟐𝑺 𝒏 distinct memory states,
Then the alg must be using at least 𝑺(𝒏) bits of space!

L = { 0k 1k | k ≥ 0 }

Is there a streaming algorithm for L
using less than (log2 n) space?

Idea: Show there is a streaming distinguisher Dn for
Ln = { 0k1k | 𝟎 ≤ k ≤ n } with |Dn| = n/2+1.

By the Streaming Theorem, it follows that all
streaming algs for L need ≥ log2 (n/2+1) space!

Theorem: For all n, every streaming
algorithm computing L must to use at

least ⌊log2 n⌋ bits of space.

12

Let x=0a and y=0b be distinct strings in Dn. Set z = 1b.
Then yz ∈ L, xz ∉ L, and |xz|≤ n, |yz| ≤ n. QED

Theorem: For all (even) n, every streaming algorithm
computing L needs at least ⌊log2 n⌋ bits of space.

13

Proof: For even n, let Dn = {0i | i = 0, …, n/2}

Claim: For all n, Dn is a streaming distinguisher for Ln

Since |Dn| = n/2+1, Streaming Thm says: every
streaming algorithm for L needs ≥ log2 (n/2+1) space.

Note log2 (n/2+1) > log2 (n/2) = log2 (n) - 1

L = { 0k 1k | k ≥ 0 }

Finding Frequent Items
A streaming algorithm for

L = {x | x has more 1’s than 0’s}
tells us if 1’s occur more frequently than 0’s.

FREQUENT ITEMS: Given k and a string x = x1  xn Î Σn,
output the set S = {σ Î Σ | σ occurs > n/k times in x}

What if the alphabet is more than just 1’s and 0’s?

And what if we want to find the “top 10” symbols?

(Question: How large can the set S be?)

“heavy hitters”

<k

FREQUENT ITEMS: Given k and a string x = x1  xn Î Σn,
output the set S = {σ Î Σ | σ occurs > n/k times in x}

FREQUENT ITEMS: Given k and a string x = x1  xn Î Σn,
output the set S = {σ Î Σ | σ occurs > n/k times in x}

1st pass: Initialize a set T ⊆ Σ x {1,…,n} (originally empty)
When the next symbol σ is read:
If (σ,m) ÎT, then T := T – {(σ,m)} + {(σ,m+1)}

Else if |T| < k-1 then T := T + {(σ,1)}
Else for all (σ’,m’) ÎT,

T := T – {(σ’,m’)} + {(σ’,m’-1)}
If m’ = 0 then T := T – {(σ’,m’)}

Claim: At end, T contains all σ occurring > n/k times in x
2nd pass: Count occurrences of all σ’ appearing in T

to determine those occurring > n/k times

Theorem: There is a two-pass streaming algorithm for
FREQUENT ITEMS using (k-1) (log |Σ| + log n) space!

1st pass: Initialize a set T ⊆ Σ x {1,…,n} (originally empty)
When the next symbol σ is read:
If (σ,m) ÎT, then T := T – {(σ,m)} + {(σ,m+1)}

Else if |T| < k-1 then T := T + {(σ,1)}
Else for all (σ’,m’) ÎT,

T := T – {(σ’,m’)} + {(σ’,m’-1)}
If m’ = 0 then T := T – {(σ’,m’)}

2nd pass: Count occurrences of all σ’ appearing in T
to determine those occurring > n/k times

Claim: At end, T contains all σ occurring > n/k times in x

1st pass: Initialize a set T ⊆ Σ x {1,…,n} (originally empty)
When the next symbol σ is read:
If (σ,m) ÎT, then T := T – {(σ,m)} + {(σ,m+1)}

Else if |T| < k-1 then T := T + {(σ,1)}
Else for all (σ’,m’) ÎT,

T := T – {(σ’,m’)} + {(σ’,m’-1)}
If m’ = 0 then T := T – {(σ’,m’)}

2nd pass: Count occurrences of all σ’ appearing in T
to determine those occurring > n/k times

Claim: At end, if σ is not in T then σ occurs ≤ n/k times

Idea: Have k-1 containers, n colored balls, and a trash can.

When this happens

Decrement
k-1 counters

For each ball colored 𝝈: either add it to a container, or throw it
in the trash along with k-1 other balls, one from each container.

If there were m balls colored 𝝈, and no balls of color 𝝈 are in
containers at the end, there must be k⋅m ≤ n balls in the trash!

Number of Distinct Elements

Distinct Elements (DE):
Input: x ∈ {1,…,2k}*, n = |x| < 2k/2

Output: The number of different elements
appearing in x; call this DE(x)

Ex: x = 12312 has DE(x) = 3 (𝚺={1,2,3})

Observation: There is a streaming
algorithm for DE using O(k n) space

Theorem: Every streaming algorithm for
DE requires (k n) space!

19

Theorem: Every streaming algorithm for
DE requires (k n) space

Say x, y ∈ Σ are length-n DE distinguishable if
(∃z ∈ Σ*)[DE(xz) ≠ DE(yz)] & |xz|≤n, |yz|≤n]

Lemma: Let S ⊆ Σ* be such that every pair of strings in
S is length-n DE distinguishable. Then, streaming algs
for DE need ≥ log2 |S| bits of space (on inputs of length ≤n)

Proof Sketch: Let algorithm A use < log2 |S| space. We
show A cannot compute DE on all inputs of length ≤n.
By the pigeonhole principle, there are distinct x, y in S
that lead A to the same memory state.
So A gives the same output on both xz and yz.
But DE(xz) ≠ DE(yz), so A does not compute DE.

20

Lemma: Let S ⊆ Σ* be such that every pair of strings in
S is length-n DE distinguishable. Then every streaming
algorithm for DE needs ≥ log2 |S| bits of space.

Claim: For all n, there is a such a set S with |S| ≥ 2k n/4

Proof: For each subset T of Σ of size n/2,
define xT to be any concatenation of the symbols in T

For distinct sets T and T’, xT and xT’ are distinguishable:
xT xT contains exactly n/2 distinct elements
xT’ xT has more than n/2 distinct elements

The total number of such subsets T is
𝟐𝒌

𝒏/𝟐
≥ 2k n/2/(n/2)n/2 ≥ 2k n/4 , for n < 2k/2








 2

21

Theorem: Every streaming algorithm for
DE requires (k n) space

Theorem: Every streaming algorithm for
DE requires (k n) space

The total number of such subsets is 2(k n), for 2k > n2.

What’s the number of subsets of {1,…,𝟐𝒌} of size n/2?

𝟐𝒌
𝒏
𝟐

Want to estimate this quantity. Use 𝒂
𝒃

≥
𝒂

𝒃

𝒃

Then
𝟐𝒌
𝒏

𝟐

≥
𝟐𝒌

𝒏

𝟐

𝒏

𝟐

≥
𝟐
𝒌𝒏
𝟐

𝒏

𝟐

𝒏
𝟐

.

Since
𝒏

𝟐

𝒏

𝟐
<

𝟐
𝒌
𝟐

𝟐

𝒏

𝟐

< 𝟐
𝒌𝒏

𝟒 , we have
𝟐𝒌
𝒏

𝟐

≥
𝟐
𝒌𝒏
𝟐

𝒏

𝟐

𝒏
𝟐

> 𝟐
𝒌𝒏

𝟒








 2

22

Theorem: Every streaming algorithm for
approximating the number of DE to within
+- 20% error also requires (k n) space!

See Lecture Notes.








 2

23

Randomized Algorithms Help!

Distinct Elements (DE)
Input: x ∈ {1,…,2k}*, n = |x| < 2k/2

Output: The number of different elements
appearing in x

Theorem: There is a randomized streaming
algorithm that w.h.p. approximates DE

to within 0.1% error, using O(k + log n) space!

24

Recall: Deterministic streaming algorithms
require at least (kn) space.

25

Randomized Algorithm for DE

Idea: Let h: {1,…,2k} → [0, 1] be a random function.
(For all 𝒊 ∈ {1,…,2k}, pick 𝒋 ∈ {1,…,n2} at random, h(𝒊) := 𝒋/n2)

Initialize m := 1.
When xi is read, update m := min{m, h(xi)}.
At the end of the stream, return 1/m.

Claim: Let x ∈ {1,…,2k}*
With probability > 0.8, DE(x)/5 ≤ 1/m ≤ 10⋅DE(x).

Can boost accuracy using O(1) more hash functions!
(See the Lecture Notes!)

Obs: m = minimum of DE(x) random numbers in [0,1]

26

Randomized Algorithm for DE

Idea: Let h: {1,…,2k} → [0, 1] be a random function.
(For all 𝒊 ∈ {1,…,2k}, pick 𝒋 ∈ {1,…,n2} at random, h(𝒊) := 𝒋/n2)

Initialize m := 1.
When xi is read, update m := min{m, h(xi)}.
At the end of the stream, return 1/m.

Use special (pairwise-independent) hash functions
which can be stored with only O(k + log(n)) space.

Naively, this uses 2k log(n) space to store the function h!

27

Communication Complexity

28

Communication Complexity

A theoretical model of distributed computing
• Function f : {0,1}*£ {0,1}*! {0,1}

– Two inputs, 𝑥 ∈ {0,1}* and 𝑦 ∈ {0,1}*

– We assume |𝒙|=|𝒚|=𝒏. Think of 𝒏 as HUGE

• Two computers: Alice and Bob

– Alice only knows 𝑥, Bob only knows 𝑦

• Goal: Compute f(𝒙, 𝒚) by communicating as
few bits as possible between Alice and Bob

We do not count computation cost. We only care
about the number of bits communicated.

