
Lecture 7: 
Streaming Algorithms
and Communication 

Complexity

6.045



Announcements:
- Pset 2 is due tonight, 11:59pm
- Pest 3 is out! 

Due next Wednesday

6.045



L is regular 
if and only if

(∃ DFA M)(∀ strings 𝒙)[M acc. x  x ∈ L]
“M gives the correct output on all strings”

L is NOT regular 
if and only if

(∀ DFA M)(∃ string 𝒙𝑴)[M acc. 𝒙𝑴 x ∉ L]
“M gives the wrong output on 𝒙𝑴”
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So the problem of proving L is NOT regular can be 
viewed as a problem about designing “bad inputs”



L is not regular 
if and only if
There are infinitely many strings w1, w2, … so that
for all i  j, there’s a string z such that 

exactly one of wiz and wjz is in L

Distinguishing set for L
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To prove that L is not regular, it is sufficient to 
show that a special infinite set of strings exists!

To prove that L is regular, we have to show that a 
special finite object (DFA/NFA/regex) exists.

We can prove the nonexistence of a DFA/NFA/regex
by proving the existence of this special string set!



Initialize:
<variables and their assignments>

When next symbol seen is 𝝈:
<pseudocode using 𝝈 and vars>

When stream stops (end of string):
<accept/reject condition on vars>

(or: <pseudocode for output>) 

Streaming Algorithms

Have three components

Algorithm A computes L ⊆ 𝚺⋆ if 
A accepts the strings in L, rejects strings not in L



How to think of memory usage

10101011111010111111101011010110111

Space Usage of A:
𝑺(𝒏) = maximum # of bits

used to store vars in A, 
over all inputs of 

length up to 𝒏

The program is not considered
as part of the memory



Theorem: Let L’ be computable by 
streaming algorithm A with space usage ≤ 𝑺(𝒏).

Then for all n, there is a DFA M with < 𝟐𝑺 𝒏 +𝟏 states
such that L’n = L(M)n

For all streaming algorithms A using S(n) space, 
and all 𝒏, there’s a DFA M of < 2S(n)+1 states such 

that A and M agree on all strings of length up to 𝒏.

For any A µ Σ* define An = {x ∈ A | |x|≤ n}
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DFAs and Streaming

Note: L’n is always regular! 
(It’s a finite set!)



Theorem: Let L’ be computable by 
streaming algorithm A with space usage ≤ 𝑺(𝒏).

Then for all n, there is a DFA M with < 𝟐𝑺 𝒏 +𝟏 states
such that L’n = L(M)n

For any A µ Σ* define An = {x ∈ A | |x|≤ n}
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DFAs and Streaming

Proof Idea: States of M = The set of (at most) 𝟐𝑺 𝒏 +𝟏 − 𝟏
memory configurations of A, over strings of length up to n

(Why 𝟐𝑺 𝒏 +𝟏 − 𝟏?)
Start state of M = Initialized memory of A
Transition function = Mimic how A updates its memory
Final states of M = Subset of memory configurations 

in which A would accept, if the string ended there



Initialize: C := 0 and B := 0
When next symbol seen is 𝝈,
If (C = 0) then B := 𝝈, C := 1
If (C  0) and (B = 𝝈) then C := C + 1
If (C  0) and (B  𝝈) then C := C – 1
When stream stops,

accept if B=1 and C > 0, else reject

Example: L = {x | x has more 1’s than 0’s}

9

1

0

1

1

0

(0,0)

(1,1)

0

(0,1)
(B,C)

(1,2)

(0,2) 0

0

1
1

Example: 6-state DFA 
that agrees with L on all 

strings of length ≤ 𝟑
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(We only let C go up to 2)



L is not regular 
if and only if
There are infinitely many strings w1, w2, … so that
for all i  j, there’s a string z such that 

exactly one of wiz and wjz is in L

Distinguishing set for L
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In other words, if S is a distinguishing set for L, 
then any DFA for L must have at least |S| states.

In fact, Myhill-Nerode shows that the size of a 
distinguishing set for L is a lower bound on the 

number of states in a DFA for L.

We can use similar ideas to prove 
lower bounds on streaming algorithms! 



A streaming distinguisher for Ln is a subset Dn of Σ*: 
for all distinct x, y ∈ Dn , there is a z in Σ* such that 
|xz| ≤ n, |yz| ≤ n, and exactly one of xz, yz is in L.
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Idea: Use the set Dn to show that every streaming 

algorithm for L must enter at least 𝟐𝑺 𝒏 different 
memory states, over all inputs of length at most n.

Streaming Theorem: Suppose for all n, there is a streaming 

distinguisher Dn for Ln with |Dn| ≥ 𝟐𝑺 𝒏 . 
Then all streaming algs for L must use at least 𝑺(𝒏) space!

For any L µ Σ* define Ln = {x ∈ L | |x|≤ n}

But if there are at least 𝟐𝑺 𝒏 distinct memory states, 
Then the alg must be using at least 𝑺(𝒏) bits of space!



L = { 0k 1k | k ≥ 0 }

Is there a streaming algorithm for L 
using less than (log2 n) space?

Idea: Show there is a streaming distinguisher Dn for 
Ln = { 0k1k | 𝟎 ≤ k ≤ n } with |Dn| = n/2+1. 

By the Streaming Theorem, it follows that all 
streaming algs for L need ≥ log2 (n/2+1) space!

Theorem: For all n, every streaming 
algorithm computing L must to use at 

least ⌊log2 n⌋ bits of space.
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Let x=0a and y=0b be distinct strings in Dn. Set z = 1b. 
Then yz ∈ L, xz ∉ L, and |xz|≤ n, |yz| ≤ n. QED

Theorem: For all (even) n, every streaming algorithm 
computing L needs at least ⌊log2 n⌋ bits of space.
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Proof: For even n, let Dn = {0i | i = 0, …, n/2}

Claim: For all n, Dn is a streaming distinguisher for Ln

Since |Dn| = n/2+1, Streaming Thm says: every 
streaming algorithm for L needs ≥ log2 (n/2+1) space.

Note log2 (n/2+1) > log2 (n/2) = log2 (n) - 1

L = { 0k 1k | k ≥ 0 }



Finding Frequent Items
A streaming algorithm for

L = {x | x has more 1’s than 0’s}
tells us if 1’s occur more frequently than 0’s.

FREQUENT ITEMS: Given k and a string x = x1  xn Î Σn, 
output the set S = {σ Î Σ | σ occurs > n/k times in x}

What if the alphabet is more than just 1’s and 0’s? 

And what if we want to find the “top 10” symbols?

(Question: How large can the set S be?)

“heavy hitters”

<k



FREQUENT ITEMS: Given k and a string x = x1  xn Î Σn, 
output the set S = {σ Î Σ | σ occurs > n/k times in x}



FREQUENT ITEMS: Given k and a string x = x1  xn Î Σn, 
output the set S = {σ Î Σ | σ occurs > n/k times in x}

1st pass: Initialize a set T ⊆ Σ x {1,…,n} (originally empty)
When the next symbol σ is read:
If (σ,m) ÎT, then T := T – {(σ,m)} + {(σ,m+1)}

Else if |T| < k-1 then T := T + {(σ,1)}
Else for all (σ’,m’) ÎT,

T := T – {(σ’,m’)} + {(σ’,m’-1)}
If m’ = 0 then T := T – {(σ’,m’)}

Claim: At end, T contains all σ occurring > n/k times in x
2nd pass: Count occurrences of all σ’ appearing in T

to determine those occurring > n/k times

Theorem: There is a two-pass streaming algorithm for 
FREQUENT ITEMS using (k-1) (log |Σ| + log n) space!



1st pass: Initialize a set T ⊆ Σ x {1,…,n} (originally empty)
When the next symbol σ is read:
If (σ,m) ÎT, then T := T – {(σ,m)} + {(σ,m+1)}  

Else if |T| < k-1 then T := T + {(σ,1)}
Else for all (σ’,m’) ÎT,

T := T – {(σ’,m’)} + {(σ’,m’-1)}
If m’ = 0 then T := T – {(σ’,m’)}

2nd pass: Count occurrences of all σ’ appearing in T
to determine those occurring > n/k times

Claim: At end, T contains all σ occurring > n/k times in x



1st pass: Initialize a set T ⊆ Σ x {1,…,n} (originally empty)
When the next symbol σ is read:
If (σ,m) ÎT, then T := T – {(σ,m)} + {(σ,m+1)}

Else if |T| < k-1 then T := T + {(σ,1)}
Else for all (σ’,m’) ÎT,

T := T – {(σ’,m’)} + {(σ’,m’-1)}
If m’ = 0 then T := T – {(σ’,m’)}

2nd pass: Count occurrences of all σ’ appearing in T
to determine those occurring > n/k times

Claim: At end, if σ is not in T then σ occurs ≤ n/k times

Idea: Have k-1 containers, n colored balls, and a trash can.

When this happens

Decrement 
k-1 counters

For each ball colored 𝝈: either add it to a container, or throw it 
in the trash along with k-1 other balls, one from each container. 

If there were m balls colored 𝝈, and no balls of color 𝝈 are in 
containers at the end, there must be k⋅m ≤ n balls in the trash! 



Number of Distinct Elements

Distinct Elements (DE):
Input:    x ∈ {1,…,2k}*,  n = |x| < 2k/2 

Output: The number of different elements 
appearing in x; call this DE(x)

Ex: x = 12312 has DE(x) = 3 (𝚺={1,2,3})

Observation: There is a streaming
algorithm for DE using O(k n) space

Theorem: Every streaming algorithm for 
DE requires (k n) space!
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Theorem: Every streaming algorithm for 
DE requires (k n) space

Say x, y ∈ Σ are length-n DE distinguishable if 
(∃z ∈ Σ*)[DE(xz) ≠ DE(yz)] & |xz|≤n, |yz|≤n] 

Lemma: Let S ⊆ Σ* be such that every pair of strings in 
S is length-n DE distinguishable. Then, streaming algs
for DE need ≥ log2 |S| bits of space (on inputs of length ≤n)

Proof Sketch: Let algorithm A use < log2 |S| space. We 
show A cannot compute DE on all inputs of length ≤n.
By the pigeonhole principle, there are distinct x, y in S
that lead A to the same memory state. 
So A gives the same output on both xz and yz.
But DE(xz) ≠ DE(yz), so A does not compute DE.
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Lemma: Let S ⊆ Σ* be such that every pair of strings in 
S is length-n DE distinguishable. Then every streaming 
algorithm for DE needs ≥ log2 |S| bits of space.

Claim: For all n, there is a such a set S with |S| ≥ 2k n/4

Proof: For each subset T of Σ of size n/2,
define xT to be any concatenation of the symbols in T

For distinct sets T and T’, xT and xT’ are distinguishable: 
xT xT contains exactly n/2 distinct elements
xT’ xT has more than n/2 distinct elements

The total number of such subsets T is
𝟐𝒌

𝒏/𝟐
≥ 2k n/2/(n/2)n/2 ≥ 2k n/4 ,  for n < 2k/2








 2
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Theorem: Every streaming algorithm for 
DE requires (k n) space



Theorem: Every streaming algorithm for 
DE requires (k n) space

The total number of such subsets is 2(k n), for 2k > n2.

What’s the number of subsets of {1,…,𝟐𝒌} of size n/2?
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> 𝟐
𝒌𝒏

𝟒



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
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 2
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Theorem: Every streaming algorithm for 
approximating the number of DE to within 
+- 20% error also requires (k n) space!

See Lecture Notes.








 2
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Randomized Algorithms Help!

Distinct Elements (DE)
Input:    x ∈ {1,…,2k}*, n = |x| < 2k/2 

Output: The number of different elements 
appearing in x

Theorem: There is a randomized streaming 
algorithm that w.h.p. approximates DE 

to within 0.1% error, using O(k + log n) space!
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Recall: Deterministic streaming algorithms 
require at least (kn) space.
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Randomized Algorithm for DE

Idea: Let h: {1,…,2k} → [0, 1] be a random function.
(For all 𝒊 ∈ {1,…,2k}, pick 𝒋 ∈ {1,…,n2} at random, h(𝒊) := 𝒋/n2)

Initialize m := 1.
When xi is read, update m := min{m, h(xi)}.
At the end of the stream, return 1/m.

Claim: Let x ∈ {1,…,2k}*
With probability > 0.8, DE(x)/5 ≤ 1/m ≤ 10⋅DE(x).

Can boost accuracy using O(1) more hash functions!
(See the Lecture Notes!)

Obs: m = minimum of DE(x) random numbers in [0,1]
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Randomized Algorithm for DE

Idea: Let h: {1,…,2k} → [0, 1] be a random function.
(For all 𝒊 ∈ {1,…,2k}, pick 𝒋 ∈ {1,…,n2} at random, h(𝒊) := 𝒋/n2)

Initialize m := 1.
When xi is read, update m := min{m, h(xi)}.
At the end of the stream, return 1/m.

Use special (pairwise-independent) hash functions 
which can be stored with only O(k + log(n)) space.

Naively, this uses 2k log(n) space to store the function h!
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Communication Complexity
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Communication Complexity

A theoretical model of distributed computing
• Function f : {0,1}*£ {0,1}*! {0,1}

– Two inputs, 𝑥 ∈ {0,1}* and 𝑦 ∈ {0,1}*

– We assume |𝒙|=|𝒚|=𝒏. Think of 𝒏 as HUGE

• Two computers: Alice and Bob

– Alice only knows 𝑥, Bob only knows 𝑦

• Goal: Compute f(𝒙, 𝒚) by communicating as 
few bits as possible between Alice and Bob

We do not count computation cost. We only care 
about the number of bits communicated.


