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6.045
Lecture 8:

Communication Complexity,
Start up Turing Machines
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L has a streaming alg using ≤ 𝒔(𝒏) bits of space 
means:
Give an algorithm A and prove that on all inputs x, 
A determines 𝒙 ∈ L correctly and uses ≤ 𝒔( 𝒙 ) bits 
of memory
Give an upper bound!

Every streaming alg for L needs ≥ 𝒔(𝒏) bits of space 
means:
For any 𝒏, give a streaming distinguisher S for L 
(a set of strings such that all pairs can be 

distinguished in L) where |S| ≥ 𝟐𝒔 𝒏

Give a lower bound!
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6.045
Announcements:

- Pest 3 is due tomorrow
- Midterm: March 19
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Communication Complexity

A theoretical model of distributed computing

• Function f : {0,1}* £ {0,1}* ! {0,1}

– Two inputs, 𝑥 ∈ {0,1}* and 𝑦 ∈ {0,1}*

– We assume |𝒙|=|𝒚|=𝒏. Think of 𝒏 as HUGE

• Two computers: Alice and Bob

– Alice only knows 𝑥, Bob only knows 𝑦

• Goal: Compute f(𝒙, 𝒚) by communicating as 
few bits as possible between Alice and Bob

We do not count computation cost. We only care 
about the number of bits communicated.
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Alice and Bob Have a Conversation

A(x,ε) = 0

B(y,0) = 1 

A(x,01) = 1

B(y,011) = 0

A(x,0110) = STOPx y

f(x,y)=0f(x,y)=0

In every step: A bit or STOP is sent, which is a function of 
the party’s input and all the bits communicated so far.

Communication cost = number of bits communicated
= 4 (in the example)

We assume Alice and Bob alternate in communicating, 
and the last BIT sent is the value of 𝒇(x,y)
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A(x,ε) = 0

B(y,0) = 1 

A(x,01) = 1

B(y,011) = 0

x y

f(x,y)=0f(x,y)=0

Def. A protocol computing f is a pair of functions
A, B : {0,1}* × {0,1}* → {0, 1, STOP} with the semantics:

On input (𝒙, 𝒚), let 𝒓 := 0, 𝒃𝟎 := ε. 
While (𝒃𝒓 ≠ STOP), 

𝒓 + +
If 𝒓 is odd, Alice sends 𝒃𝒓 = 𝑨 𝒙, 𝒃𝟏⋯𝒃𝒓−𝟏

else Bob sends 𝒃𝒓 = 𝑩 𝒚, 𝒃𝟏⋯𝒃𝒓−𝟏
Output 𝒃𝒓−𝟏 = f(𝒙, 𝒚). Number of rounds  = 𝒓 − 𝟏
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A(x,ε) = 0

B(y,0) = 1 

A(x,01) = 1

B(y,011) = 0

x y

f(x,y)=0f(x,y)=0

Def. The cost of a protocol (A,B) on 𝒏-bit strings is  

𝐦𝐚𝐱
𝒙,𝒚 ∈ 𝟎,𝟏 𝒏

[number of rounds taken by (A,B) on (𝒙, 𝒚)]

The communication complexity of f on 𝒏-bit strings, cc(f),
is min cost over all protocols computing f on 𝒏-bit strings
=  the minimum number of rounds used by any protocol 

computing f(𝒙, 𝒚), over all 𝒏-bit 𝒙, 𝒚
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A(x,ε) = 0

B(y,0) = 1 

A(x,01) = 1

B(y,011) = 0

x y

f(x,y)=0f(x,y)=0

Example. Let f : {0,1}* × {0,1}* → {0,1} be arbitrary

There is always a “trivial” protocol for f:
Alice sends the bits of her 𝒙 in odd-numbered rounds
Bob sends whatever bit in even rounds
After 𝟐𝒏 − 𝟏 rounds, Bob knows 𝒙 and can send 𝒇(𝒙, 𝒚)

Proposition: For every 𝒇, cc(𝒇) ≤ 𝟐𝒏
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A(x,ε) = 0

B(y,0) = 1 

A(x,01) = 1

B(y,011) = 0

x y

f(x,y)=0f(x,y)=0

Example. PARITY(𝒙, 𝒚) = σ𝒊𝒙𝒊 +  σ𝒊𝒚𝒊 mod 2. 

What’s a good protocol for computing PARITY? 

Alice sends 𝒃𝟏 = (σ𝒊𝒙𝒊 mod 2)  
Bob sends 𝒃𝟐 = (𝒃𝟏 + σ𝒊𝒚𝒊 mod 2). Alice stops.

Proposition:  cc(PARITY) = 2
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x y

f(x,y)=0f(x,y)=0

Example. MAJORITY(𝒙, 𝒚) = most frequent bit in 𝒙𝒚
Models voting in two “remote” locations; they want to determine a winner

What’s a good protocol for computing MAJORITY? 

Alice sends 𝑵𝒙 = number of 1s in 𝒙
Bob computes 𝑵𝒚 = number of 1s in 𝒚, 

sends 1 iff 𝑵𝒙 +𝑵𝒚 is greater than (|x|+|y|)/2 = 𝒏

Proposition: cc(MAJORITY) ≤ O(log 𝐧)
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x y

f(x,y)=0f(x,y)=0

Example. EQUALS(𝒙, 𝒚) = 1  ⇔ 𝒙 = 𝒚
Useful for checking consistency of two far-apart databases!

What’s a good protocol for computing EQUALS? 

????
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x y

Examples:
𝑳 = { x | x has an odd number of 1s} 

⇒ 𝒇𝑳 𝒙, 𝒚 = PARITY(x,y) = σ𝒊𝒙𝒊 +  σ𝒊𝒚𝒊 mod 2
𝑳 = { x | x has at least as many 1s as 0s}

⇒ 𝒇𝑳 𝒙, 𝒚 = MAJORITY(x,y)
𝑳 = { xx | x ∈ {0,1}*} 

⇒ 𝒇𝑳 𝒙, 𝒚 = EQUALS(x,y)

Connection to Streaming Algs and DFAs

Let 𝑳 ⊆ {0,1}*
Def. 𝒇𝑳: {0,1}*×{0,1}*→ {0,1}

for 𝒙, 𝒚 with |𝒙|=|𝒚| as:
𝒇𝑳 𝒙, 𝒚 = 𝟏 ⇔ 𝒙𝒚 ∈ 𝑳
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Theorem: If 𝑳 has a streaming alg using ≤ 𝒔(𝒎) space on 
inputs of length ≤ 𝟐𝒎, then cc(𝒇𝑳) ≤ 𝑶(𝒔 𝒏 ).

Proof Idea: Alice runs streaming algorithm A on 𝒙, 
reaches a memory state 𝒎. She sends 𝒎 to Bob in 
𝑶(𝒔 𝒏 ) rounds. Then Bob starts up A from state 𝒎, 
runs A on 𝒚. Gets an output bit, sends bit to Alice.

x y

Let 𝑳 ⊆ {0,1}*
Def. 𝒇𝑳: {0,1}*×{0,1}*→ {0,1}

for 𝒙, 𝒚 with |𝒙|=|𝒚| as:
𝒇𝑳 𝒙, 𝒚 = 𝟏 ⇔ 𝒙𝒚 ∈ 𝑳

Connection to Streaming Algs and DFAs
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Theorem: If 𝑳 has a streaming alg using ≤ 𝒔(𝒎) space on 
inputs of length ≤ 𝟐𝒎, then cc(𝒇𝑳) ≤ 𝑶(𝒔 𝒏 ).

Corollary: For every regular 𝑳, cc(𝒇𝑳) ≤ O(1).

Example: cc(PARITY) = 2

Corollary: cc(MAJORITY) ≤ O(log n),
because there’s a streaming algorithm for 
{x  : x has more 1’s than 0’s} with O(log n) space

What about the Comm. Complexity of EQUALS?

Let 𝑳 ⊆ {0,1}* Def. 𝒇𝑳 𝒙, 𝒚 = 𝟏 ⇔ 𝒙𝒚 ∈ 𝑳

Connection to Streaming Algs and DFAs
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Theorem: cc(EQUALS) = 𝚯(𝒏).
In particular, every communication protocol for EQUALS 
must send ≥ 𝒏 bits between Alice and Bob.

No communication protocol can do much better than 
“send your whole input”!

Corollary: 𝑳 = {xx | x in {0,1}*} is not regular.

Corollary: Every streaming algorithm for 𝑳
needs 𝒄 𝒏 bits of memory, for some constant 𝒄 > 0!

𝛀(𝒏)

Communication Complexity of EQUALS
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Theorem: cc(EQUALS) = 𝚯(𝒏). In particular, every
protocol for EQUALS needs ≥ 𝒏 bits of communication!

Idea: Consider all possible ways A & B can communicate.

Definition: The communication pattern of a protocol on 
inputs (𝒙, 𝒚) is the sequence of bits Alice & Bob send.

0

1 

1

0

Pattern: 0110𝒙 𝒚

Communication Complexity of EQUALS
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A(x’,ε) = 0

B(y’,0) = 1 

A(x’,01) = 1

B(y’,011) = 0

𝒙’ 𝒚’

A(x,ε) = 0

B(y,0) = 1 

A(x,01) = 1

B(y,011) = 0

𝒙 𝒚

Key Lemma: If (𝒙, 𝒚) and (𝒙′, 𝒚′) have the same pattern 𝑷
in a protocol, then (𝒙, 𝒚′) and (𝒙′, 𝒚) also have pattern 𝑷
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A(x’,ε) = 0

B(y’,0) = 1 

A(x’,01) = 1

B(y’,011) = 0

𝒙’ 𝒚’

A(x,ε) = 0

B(y’,0) = 1 

A(x,01) = 1

B(y’,011) = 0

𝒙 𝒚

Key Lemma: If (𝒙, 𝒚) and (𝒙′, 𝒚′) have the same pattern 𝑷
in a protocol, then (𝒙, 𝒚′) and (𝒙′, 𝒚) also have pattern 𝑷
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Key Lemma: If (𝒙, 𝒚) and (𝒙′, 𝒚′) have the same pattern 𝑷
in a protocol, then (𝒙, 𝒚′) and (𝒙′, 𝒚) also have pattern 𝑷

A(x,ε) = 0

B(y’,0) = 1 

A(x,01) = 1

B(y’,011) = 0

𝒙’ 𝒚’

A(x,ε) = 0

B(y,0) = 1 

A(x,01) = 1

B(y,011) = 0

𝒙 𝒚
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Theorem: The comm. complexity of EQUALS is 𝚯(𝒏).
In particular, every protocol for EQUALS needs ≥ 𝒏 bits 
of communication.

Proof: By contradiction. Suppose cc(EQUALS) ≤ 𝒏 − 𝟏.
Then there are ≤ 𝟐𝒏 − 𝟏 possible communication patterns of 
that protocol, over all pairs of inputs (𝒙, 𝒚) with n bits each.

Claim: There are 𝒙 ≠ 𝒚 such that on (𝒙, 𝒙) and on (𝒚, 𝒚), 
the protocol uses the same pattern 𝑷.

By the Key Lemma, (𝒙, 𝒚) and 𝒚, 𝒙 also use pattern 𝑷

So Alice & Bob output the same bit on (𝒙, 𝒚) and (𝒙, 𝒙).
But EQUALS(𝒙, 𝒚) = 0 and EQUALS(𝒙, 𝒙) = 1. Contradiction!

Communication Complexity of EQUALS
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Randomized Protocols Help!

EQUALS needs ≥ 𝒏 bits of communication, 
but…

Theorem: There is a randomized protocol for 
computing EQUALS 𝒙, 𝒚 using only O(log 𝒏)

bits of communication, 
which is correct with probability 99.9%!



23

Turing Machines



Turing Machine (1936)

FINITE 

STATE 

CONTROL

INFINITE REWRITABLE TAPE

I N P U T

q0q1

A …
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In each step:
- Reads a symbol
- Writes a symbol
- Changes state
- Moves Left or Right



Turing Machine (1936)

INFINITE REWRITABLE TAPE

I N P U TA …
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https://www.cs.utah.edu/~draperg/cartoons/2005/turing.html



Turing Machines versus DFAs

The TM can both write to and read from the tape,
and can write symbols that aren’t part of input

The “tape head” can move right and left

The input is written on an infinite tape

Accept and Reject take immediate effect

with “blank” symbols after the input

27



A TM for L = { w#w | w  {0,1}* } over 𝚺={0,1,#}

1. If there’s no # on the tape (or more than one #), reject.
2. While there is a bit to the left of #,

Replace the first bit b with X, and check if the first bit b’
to the right of the # is identical to b. (If not, reject.) 
Replace that bit b’ with an X too.

3. If there’s a bit to the right of #, then reject else accept
28



Definition: A Turing Machine is a 7-tuple 
T = (Q, Σ, Γ, , q0, qaccept, qreject), where: 

Q is a finite set of states

Γ is the tape alphabet, where   Γ and Σ  Γ

q0  Q is the start state

Σ is the input alphabet, where   Σ

 : Q  Γ → Q  Γ  {L, R}

qaccept  Q is the accept state

qreject  Q is the reject state, and qreject  qaccept

29

 = “blank”
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0 → 0, R

read write move

→ , R

qaccept

qreject

0 → 0, R

→ , R

Σ = {0}

 = “blank”
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0 → 0, R

read write move

→ , R

qaccept

0 → 0, R

→ , R

0 → 0, R

 → , L

Σ = {0}

 = “blank”



Turing Machine Configurations

q01101000110 2 (Q [ Γ)*

corresponds to the configuration:

q0

1 0 0 0 0 01 1 1 1
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Turing Machine Configurations

0q1101000110 2 (Q [ Γ)*

corresponds to the configuration:

q1

1 0 0 0 0 00 1 1 1
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Turing Machine Configurations

0000011110q7 2 (Q [ Γ)*

corresponds to the configuration:

q7

0 0 0 1 1 00 0 1 1
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Defining Acceptance and Rejection for TMs

Let C1 and C2 be configurations of a TM M
Definition. C1 yields C2 if  M is in configuration C2

after running M in configuration C1 for one step

Example. Suppose (q1, b) = (q2, c, L)
Then aq1bb yields q2acb
Suppose (q1, a) = (q2, c, R)
Then abq1a yields abcq2

Let w  Σ* and M be a Turing machine.
M accepts w if there are configs C0, C1, ..., Ck, s.t.

• C0 = q0w  [the initial configuration]
• Ci yields Ci+1 for i = 0, ..., k-1, and 
• Ck contains the accept state qaccept

35

accepting 
computation 

history of M on x



A TM M recognizes a language L 
if M accepts exactly those strings in L

A TM M decides a language L if M accepts all 
strings in L and rejects all strings not in L

A language L is recognizable 
(a.k.a. recursively enumerable)

if some TM recognizes L

A language L is decidable (a.k.a. recursive)
if some TM decides L

36



A Turing machine for deciding { 0   | n ≥ 0 }2n

1. Sweep from left to right, x-out every other 0
2. If in step 1, the tape had only one 0, accept
3. If in step 1, the tape had an odd number of 0’s,

reject
4. Move the head left to the first input symbol.
5. Go to step 1.

Turing Machine PSEUDOCODE:

Why does this work?
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even
0’s

Step 1

odd        
0’s

0 → , R

 → , R

qacceptqreject

0 → x, R

x → x, R
 → , R

x → x, R

0 → 0, L
x → x, L

x → x, R

 → , L
 → , R

0 → x, R
0 → 0, R

 → , R
x → x, R

q0 q1

q2

q3

q4

{ 0   | n ≥ 0 }2n

Step 2

Step 3

Step 4
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