

6.045

Communication Complexity, Start up Turing Machines

L has a streaming alg using $\leq \boldsymbol{s}(\boldsymbol{n})$ bits of space means:
Give an algorithm \mathbf{A} and prove that on all inputs x , A determines $\boldsymbol{x} \in \mathrm{L}$ correctly and uses $\leq \boldsymbol{s}(|\boldsymbol{x}|)$ bits of memory
Give an upper bound!

Every streaming alg for L needs $\geq \boldsymbol{s}(\boldsymbol{n})$ bits of space means:
For any \boldsymbol{n}, give a streaming distinguisher S for L (a set of strings such that all pairs can be distinguished in L) where $|S| \geq 2^{s(n)}$ Give a lower bound!

6.045

Announcements:

- Pest 3 is due tomorrow
- Midterm: March 19

Communication Complexity

A theoretical model of distributed computing

- Function $f:\{0,1\}^{*} \times\{0,1\}^{*} \rightarrow\{0,1\}$
- Two inputs, $x \in\{0,1\}^{*}$ and $y \in\{0,1\}^{*}$
- We assume $|x|=|y|=n$. Think of n as HUGE
- Two computers: Alice and Bob
- Alice only knows x, Bob only knows y
- Goal: Compute $f(x, y)$ by communicating as few bits as possible between Alice and Bob
We do not count computation cost. We only care about the number of bits communicated.

Alice and Bob Have a Conversation

In every step: A bit or STOP is sent, which is a function of the party's input and all the bits communicated so far.
Communication cost $=$ number of bits communicated $=4$ (in the example)
We assume Alice and Bob alternate in communicating, and the last BIT sent is the value of $f(x, y)$

Def. A protocol computing f is a pair of functions
$A, B:\{0,1\}^{*} \times\{0,1\}^{*} \rightarrow\{0,1$, STOP $\}$ with the semantics:
On input (x, y), let $r:=0, b_{0}:=\varepsilon$.
While ($b_{r} \neq$ STOP),
$r++$
If r is odd, Alice sends $b_{r}=A\left(x, b_{1} \cdots b_{r-1}\right)$ else Bob sends $b_{r}=B\left(y, b_{1} \cdots b_{r-1}\right)$
Output $b_{r-1}=f(x, y) . \quad$ Number of rounds $=r-1$

Def. The cost of a protocol (A, B) on n-bit strings is $\max _{y \in\{0,1\}^{n}}$ [number of rounds taken by (A, B) on $\left.(x, y)\right]$

The communication complexity of f on n-bit strings, $c c(f)$, is min cost over all protocols computing f on n-bit strings
$=$ the minimum number of rounds used by any protocol computing $f(x, y)$, over all n-bit x, y

$$
\mathrm{X}
$$

y

Example. Let $f:\{0,1\}^{*} \times\{0,1\}^{*} \rightarrow\{0,1\}$ be arbitrary
There is always a "trivial" protocol for f :
Alice sends the bits of her x in odd-numbered rounds Bob sends whatever bit in even rounds After $2 \boldsymbol{n}-1$ rounds, Bob knows \boldsymbol{x} and can send $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$

Proposition: For every $f, \operatorname{cc}(f) \leq 2 n$

Example. $\operatorname{PARITY}(x, y)=\sum_{i} x_{i}+\sum_{i} y_{i} \bmod 2$.
What's a good protocol for computing PARITY?
Alice sends $b_{1}=\left(\sum_{i} x_{i} \bmod 2\right)$
Bob sends $b_{2}=\left(b_{1}+\sum_{i} y_{i} \bmod 2\right)$. Alice stops.
Proposition: cc(PARITY) $=\mathbf{2}$

X
$f(x, y)=0 \frac{3}{3}$

y

Example. MAJORITY $(x, y)=$ most frequent bit in $x y$
Models voting in two "remote" locations; they want to determine a winner What's a good protocol for computing MAJORITY?

Alice sends $N_{x}=$ number of 1 s in x
Bob computes $N_{y}=$ number of 1 s in y,
sends 1 iff $N_{x}+N_{y}$ is greater than $(|x|+|y|) / 2=n$
Proposition: cc(MAJORITY) $\leq \mathbf{O}(\log \mathbf{n})$

y
Example. $\operatorname{EQUALS}(x, y)=1 \Leftrightarrow x=y$
Useful for checking consistency of two far-apart databases! What's a good protocol for computing EQUALS?

> ????

Connection to Streaming Algs and DFAs

Let $L \subseteq\{0,1\}^{*}$

Def. $f_{L}:\{0,1\}^{*} \times\{0,1\}^{*} \rightarrow\{0,1\}$ for x, y with $|x|=|y|$ as: $f_{L}(x, y)=1 \Leftrightarrow x y \in L$

Examples:
$L=\{x \mid x$ has an odd number of 1s $\}$

$$
\Rightarrow f_{L}(x, y)=\operatorname{PARITY}(x, y)=\sum_{i} x_{i}+\sum_{i} y_{i} \bmod 2
$$

$L=\{\mathrm{x} \mid \mathrm{x}$ has at least as many 1 s as 0 s$\}$

$$
\Rightarrow f_{L}(x, y)=\operatorname{MAJORITY}(x, y)
$$

$L=\left\{\mathrm{xx} \mid \mathrm{x} \in\{0,1\}^{*}\right\}$

$$
\Rightarrow f_{L}(x, y)=\operatorname{EQUALS}(x, y)
$$

Connection to Streaming Algs and DFAs

$$
\begin{gathered}
\text { Let } L \subseteq\{0,1\}^{*} \\
\text { Def. } f_{L}:\{0,1\}^{*} \times\{0,1\}^{*} \rightarrow\{0,1\}
\end{gathered}
$$

$$
\text { for } x, y \text { with }|x|=|y| \text { as: }
$$

$$
f_{L}(x, y)=1 \Leftrightarrow x y \in L
$$

Theorem: If L has a streaming alg using $\leq \boldsymbol{s}(\boldsymbol{m})$ space on inputs of length $\leq 2 m$, then $\mathrm{cc}\left(f_{L}\right) \leq \boldsymbol{O}(s(n))$.

Proof Idea: Alice runs streaming algorithm A on x, reaches a memory state \boldsymbol{m}. She sends \boldsymbol{m} to Bob in $\boldsymbol{O}(\boldsymbol{s}(\boldsymbol{n}))$ rounds. Then Bob starts up A from state \boldsymbol{m}, runs A on y. Gets an output bit, sends bit to Alice.

Connection to Streaming Algs and DFAs

$$
\text { Let } L \subseteq\{0,1\}^{*} \quad \text { Def. } f_{L}(x, y)=1 \Leftrightarrow x y \in L
$$

Theorem: If L has a streaming alg using $\leq \boldsymbol{s}(\boldsymbol{m})$ space on inputs of length $\leq 2 m$, then $\operatorname{cc}\left(f_{L}\right) \leq O(s(n))$.

Corollary: For every regular $L, \mathrm{cc}\left(f_{L}\right) \leq \mathbf{O}(1)$.
Example: cc(PARITY) = $\mathbf{2}$
Corollary: cc(MAJORITY) $\leq \mathrm{O}(\log n)$, because there's a streaming algorithm for \{x : x has more 1's than 0 's $\}$ with $O(\log n)$ space

What about the Comm. Complexity of EQUALS?

Communication Complexity of EQUALS

Theorem: cc(EQUALS) = $\mathbf{0}(\boldsymbol{n})$.
In particular, every communication protocol for EQUALS must send $\geq \boldsymbol{n}$ bits between Alice and Bob.

No communication protocol can do much better than "send your whole input"!

Corollary: $L=\left\{x x \mid x\right.$ in $\left.\{0,1\}^{*}\right\}$ is not regular.
Corollary: Every streaming algorithm for L needs $\boldsymbol{c} \boldsymbol{n}$ bits of memory, for some constant $\boldsymbol{c}>\mathbf{0}$!

$$
\Omega(n)
$$

Communication Complexity of EQUALS

Theorem: cc(EQUALS) = ©(n). In particular, every protocol for EQUALS needs $\geq \boldsymbol{n}$ bits of communication!

Idea: Consider all possible ways A \& B can communicate.
Definition: The communication pattern of a protocol on inputs (x, y) is the sequence of bits Alice \& Bob send.

x
Pattern: 0110
y

Key Lemma: If (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ have the same pattern P in a protocol, then $\left(x, y^{\prime}\right)$ and $\left(x^{\prime}, y\right)$ also have pattern P

Key Lemma: If (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ have the same pattern P in a protocol, then $\left(x, y^{\prime}\right)$ and $\left(x^{\prime}, y\right)$ also have pattern P

Key Lemma: If (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ have the same pattern P in a protocol, then $\left(x, y^{\prime}\right)$ and $\left(x^{\prime}, y\right)$ also have pattern P

Communication Complexity of EQUALS

Theorem: The comm. complexity of EQUALS is $0(n)$. In particular, every protocol for EQUALS needs $\geq \boldsymbol{n}$ bits of communication.

Proof: By contradiction. Suppose cc(EQUALS) $\leq n-1$. Then there are $\leq 2^{n}-1$ possible communication patterns of that protocol, over all pairs of inputs (x, y) with n bits each.
Claim: There are $x \neq y$ such that on (x, x) and on (y, y), the protocol uses the same pattern P.
By the Key Lemma, (x, y) and (y, x) also use pattern P
So Alice \& Bob output the same bit on $(\boldsymbol{x}, \boldsymbol{y})$ and $(\boldsymbol{x}, \boldsymbol{x})$. But $\operatorname{EQUALS}(x, y)=0$ and $\operatorname{EQUALS}(x, x)=1$. Contradiction!

Randomized Protocols Help!

EQUALS needs $\geq \boldsymbol{n}$ bits of communication, but...

Theorem: There is a randomized protocol for computing EQUALS (x, y) using only O(log n) bits of communication, which is correct with probability 99.9\%!

Turing Machines

Turing Machine (1936)

INFINITE REWRITABLE TAPE

Turing Machine (1936)

ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO THE ENTSCHEIDUNGSPROBLEM

By A. M. Turing.
[Received 28 May, 1936.-Read 12 November, 1936.]
The "computable" numbers may be described briefly as the real numbers whose expressions as a decimal are calculable by finite means. Although the subject of this paper is ostensibly the computable numbers, it is almost equally easy to define and investigate computable functions of an integral variable or a real or computable variable, computable predicates, and so forth. The fundamental problems involved are, however, the same in each case, and I have chosen the computable numbers for explicit treatment as involving the least cumbrous technique. I hope shortly to give an account of the relations of the computable numbers,

https://www.cs.utah.edu/~draperg/cartoons/2005/turing.html

Turing Machines versus DFAs

The input is written on an infinite tape with "blank" symbols after the input

The "tape head" can move right and left
The TM can both write to and read from the tape, and can write symbols that aren't part of input

Accept and Reject take immediate effect

A TM for $L=\left\{w \# w \mid w \in\{0,1\}^{*}\right\}$ over $\Sigma=\{0,1, \#\}$

1. If there's no \# on the tape (or more than one \#), reject.
2. While there is a bit to the left of \#,

Replace the first bit b with X, and check if the first bit b' to the right of the \# is identical to \mathbf{b}. (If not, reject.)
Replace that bit b' with an \mathbf{X} too.
3. If there's a bit to the right of \#, then reject else accept

Definition: A Turing Machine is a 7-tuple

 $T=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right)$, where:$Q$ is a finite set of states
Σ is the input alphabet, where $\square \nsubseteq \Sigma$
Γ is the tape alphabet, where $\square \in \Gamma$ and $\Sigma \subseteq \Gamma$
$\delta: \mathbf{Q} \times \Gamma \rightarrow \mathbf{Q} \times \Gamma \times\{L, R\}$
$q_{0} \in \mathbf{Q}$ is the start state
$\mathbf{q}_{\text {accept }} \in \mathbf{Q}$ is the accept state
$q_{\text {reject }} \in \mathbf{Q}$ is the reject state, and $q_{\text {reject }} \neq q_{\text {accept }}$

Turing Machine Configurations

corresponds to the configuration:

$q_{0} 1101000110 \in(Q \cup \Gamma)^{*}$

Turing Machine Configurations

corresponds to the configuration:

$\mathbf{0 q}_{1} \mathbf{1 0 1 0 0 0 1 1 0} \boldsymbol{\in}(\mathrm{Q} \cup \Gamma)^{*}$

Turing Machine Configurations

corresponds to the configuration:

$0000011110 q_{7} \square \in(Q \cup \Gamma)^{*}$

Defining Acceptance and Rejection for TMs

Let C_{1} and C_{2} be configurations of a TM \mathbf{M}
Definition. C_{1} yields C_{2} if M is in configuration C_{2}
after running \mathbf{M} in configuration \mathbf{C}_{1} for one step
Example. Suppose $\delta\left(\mathrm{q}_{1}, \mathrm{~b}\right)=\left(\mathrm{a}_{2}, \mathrm{c}, \mathrm{L}\right)$
Then $\mathrm{aq}_{1} \mathrm{bb}$ yields $\mathrm{q}_{2} \mathrm{acb}$
Suppose $\delta\left(q_{1}, a\right)=\left(q_{2}, c, R\right)$

accepting

computation history of M on x
Then $\mathrm{abq}_{1} \mathrm{a}$ yields $\mathrm{abcq}_{2} \square$
Let $\mathbf{w} \in \mathbf{\Sigma}^{*}$ and \mathbf{M} be a Turing machine.
M accepts w if there are configs $\mathrm{C}_{0}, \mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{k}}$, s.t.

- $\mathrm{C}_{0}=\mathrm{q}_{0} \mathbf{w}$ [the initial configuration]
- C_{i} yields C_{i+1} for $i=0, \ldots, k-1$, and
- C_{k} contains the accept state $\mathrm{q}_{\text {accept }}$

A TM M recognizes a language L if M accepts exactly those strings in L

> A language L is recognizable (a.k.a. recursively enumerable) if some TM recognizes L

A TM \boldsymbol{M} decides a language \mathbf{L} if \boldsymbol{M} accepts all strings in L and rejects all strings not in \mathbf{L}

A language L is decidable (a.k.a. recursive) if some TM decides L

A Turing machine for deciding $\left\{0^{2^{n}} \mid n \geq 0\right\}$

Turing Machine PSEUDOCODE:

1. Sweep from left to right, \mathbf{x}-out every other $\mathbf{0}$
2. If in step $\mathbf{1}$, the tape had only one $\mathbf{0}$, accept
3. If in step 1, the tape had an odd number of 0 's, reject
4. Move the head left to the first input symbol.
5. Go to step 1.

Why does this work?

