

https://www.innovairre.com/super-tuesday/

Lecture 8: Communication Complexity, Start up Turing Machines

Announcements:

- Pest 3 is due tomorrow
- Midterm: March 19
- Reminder: these slides on the web!

L has a streaming alg using $\leq s(n)$ bits of space *means:*

Give an algorithm A and prove that on all inputs x, A determines $x \in L$ correctly and uses $\leq s(|x|)$ bits of memory Give an upper bound!

Every streaming alg for L needs $\geq s(n)$ bits of space *means:*

For any *n*, give a streaming distinguisher S for L (a set of strings such that all pairs can be distinguished in L) where $|S| \ge 2^{s(n)}$ Give a lower bound!

Communication Complexity

A theoretical model of distributed computing

• Function $f: \{0,1\}^* \times \{0,1\}^* \rightarrow \{0,1\}$

– Two inputs, $x \in \{0,1\}^*$ and $y \in \{0,1\}^*$

- We assume |x| = |y| = n. Think of n as HUGE

- Two computers: Alice and Bob
 Alice only knows x, Bob only knows y
- Goal: Compute f(x, y) by communicating as few bits as possible between Alice and Bob

We do not count computation cost. We only care about the number of bits communicated.

Alice and Bob Have a Conversation

In every step: A bit or STOP is sent, which is a function of the party's input and all the bits communicated so far. Communication cost = number of bits communicated = 4 (in the example) We assume Alice and Bob alternate in communicating, and the last BIT sent is the value of f(x,y)

Def. A protocol computing f is a pair of functions A, B: $\{0,1\}^* \times \{0,1\}^* \rightarrow \{0, 1, \text{STOP}\}$ with the semantics: On input (x, y), let r := 0, $b_0 := \varepsilon$. While $(b_r \neq \text{STOP})$, r + +If r is odd, Alice sends $b_r = A(x, b_1 \cdots b_{r-1})$ else Bob sends $b_r = B(y, b_1 \cdots b_{r-1})$ Output $b_{r-1} = f(x, y)$. Number of rounds = r - 1

Def. The cost of a protocol (A,B) on *n*-bit strings is $\max_{x,y \in \{0,1\}^n} [\text{number of rounds taken by (A,B) on } (x, y)]$

The communication complexity of f on n-bit strings, cc(f), is min cost over all protocols computing f on n-bit strings = the minimum number of rounds used by any protocol computing f(x, y), over all n-bit x, y

Example. Let $f: \{0,1\}^* \rightarrow \{0,1\}^* \rightarrow \{0,1\}$ be arbitrary

There is always a "trivial" protocol for f: Alice sends the bits of her x in odd-numbered rounds Bob sends whatever bit in even rounds After 2n - 1 rounds, Bob knows x and can send f(x, y)

Proposition: For every f, $cc(f) \le 2n$

Example. PARITY(x, y) = $\sum_i x_i + \sum_i y_i \mod 2$.

What's a good protocol for computing PARITY?

Alice sends $b_1 = (\sum_i x_i \mod 2)$ Bob sends $b_2 = (b_1 + \sum_i y_i \mod 2)$. Alice stops.

Proposition: cc(PARITY) = 2

X

Y

Example. MAJORITY(x, y) = most frequent bit in xy Models voting in two "remote" locations; they want to determine a winner What's a good protocol for computing MAJORITY?

Alice sends N_x = number of 1s in x Bob computes N_y = number of 1s in y, sends 1 iff $N_x + N_y$ is greater than (|x|+|y|)/2 = n

Proposition: $cc(MAJORITY) \le O(\log n)$

Example. EQUALS $(x, y) = 1 \iff x = y$

Useful for checking consistency of two far-apart databases! What's a good protocol for computing EQUALS?

Communication complexity of EQUALS is at most n + 2

Connection to Streaming Algs and DFAs

Let $L \subseteq \{0,1\}^*$ Def. $f_L: \{0,1\}^* \times \{0,1\}^* \rightarrow \{0,1\}$ for x, y with |x| = |y| as: $f_L(x, y) = 1 \Leftrightarrow xy \in L$

Examples: $L = \{ x \mid x \text{ has an odd number of 1s} \}$ $\Rightarrow f_L(x, y) = PARITY(x, y) = \sum_i x_i + \sum_i y_i \mod 2$ $L = \{ x \mid x \text{ has at least as many 1s as 0s} \}$ $\Rightarrow f_L(x, y) = MAJORITY(x, y)$ $L = \{ xx \mid x \in \{0, 1\}^* \}$ $\Rightarrow f_L(x, y) = EQUALS(x, y)$

Connection to Streaming Algs and DFAs

Let $L \subseteq \{0,1\}^*$ Def. $f_L: \{0,1\}^* \times \{0,1\}^* \rightarrow \{0,1\}$ for x, y with |x| = |y| as: $f_L(x, y) = 1 \Leftrightarrow xy \in L$

Theorem: If *L* has a streaming alg using $\leq s(m)$ space on inputs of length $\leq 2m$, then $cc(f_L) \leq O(s(n))$.

Proof Idea: Alice runs streaming algorithm A on x, reaches a memory state m. She sends m to Bob in O(s(n)) rounds. Then Bob starts up A from state m, runs A on y. Gets an output bit, sends bit to Alice.

Connection to Streaming Algs and DFAs Let $L \subseteq \{0,1\}^*$ Def. $f_L(x,y) = 1 \Leftrightarrow xy \in L$ **Theorem:** If L has a streaming alg using $\leq s(m)$ space on inputs of length $\leq 2m$, then $cc(f_L) \leq O(s(n))$. **Corollary:** For every regular \overline{L} , cc(f_L) \leq O(1). Example: cc(PARITY) = 2 **Corollary:** $cc(MAJORITY) \leq O(log n)$, because there's a streaming algorithm for {x : x has more 1's than 0's} with O(log n) space

What about the Comm. Complexity of EQUALS?

Communication Complexity of EQUALS

Theorem: $cc(EQUALS) = \Theta(n)$.

In particular, *every* communication protocol for EQUALS must send $\geq n$ bits between Alice and Bob.

No communication protocol can do much better than "send your whole input"!

Corollary: $L = \{xx \mid x \text{ in } \{0,1\}^*\}$ is not regular.

Corollary: Every streaming algorithm for **L** needs **c n** bits of memory, for some constant c > 0! $\Omega(n)$

Communication Complexity of EQUALS

Theorem: cc(EQUALS) = $\Theta(n)$. In particular, *every* protocol for EQUALS needs $\ge n$ bits of communication!

Idea: Consider all possible ways A & B can communicate.

Definition: The *communication pattern* of a protocol on inputs (*x*, *y*) is the sequence of bits Alice & Bob send.

Key Lemma: If (x, y) and (x', y') have the same pattern P in a protocol, then (x, y') and (x', y) also have pattern P

Key Lemma: If (x, y) and (x', y') have the same pattern P in a protocol, then (x, y') and (x', y) also have pattern P

Key Lemma: If (x, y) and (x', y') have the same pattern P in a protocol, then (x, y') and (x', y) also have pattern P

Communication Complexity of EQUALS

Theorem: The comm. complexity of EQUALS is O(n). In particular, every protocol for EQUALS needs $\ge n$ bits of communication.

Proof: By contradiction. Suppose $cc(EQUALS) \le n - 1$. Then there are $\le 2^n - 1$ possible communication *patterns* of that protocol, over all pairs of inputs (x, y) with n bits each. Claim: There are $x \ne y$ such that on (x, x) and on (y, y), the protocol uses the *same* pattern *P*.

By the Key Lemma, (x, y) and (y, x) also use pattern **P**

So Alice & Bob *output the same bit* on (x, y) and (x, x). But EQUALS(x, y) = 0 and EQUALS(x, x) = 1. *Contradiction!*

Randomized Protocols Help!

EQUALS needs $\geq n$ bits of communication, but...

Theorem: There is a *randomized* protocol for computing EQUALS(*x*, *y*) using only O(log *n*) bits of communication, which is correct with probability 99.9%!

Turing Machines

Turing Machine (1936)

INFINITE REWRITABLE TAPE

Turing Machine (1936)

230

A. M. TURING

[Nov. 12,

ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO THE ENTSCHEIDUNGSPROBLEM

By A. M. TURING.

[Received 28 May, 1936.-Read 12 November, 1936.]

The "computable" numbers may be described briefly as the real numbers whose expressions as a decimal are calculable by finite means. Although the subject of this paper is ostensibly the computable *numbers*, it is almost equally easy to define and investigate computable functions of an integral variable or a real or computable variable, computable predicates, and so forth. The fundamental problems involved are, however, the same in each case, and I have chosen the computable numbers for explicit treatment as involving the least cumbrous technique. I hope shortly to give an account of the relations of the computable numbers,