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6.045
Lecture 8:

Communication Complexity,
Start up Turing Machines

https://www.innovairre.com/super-tuesday/

https://www.innovairre.com/super-tuesday/
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6.045
Announcements:

- Pest 3 is due tomorrow
- Midterm: March 19
- Reminder: these slides on the web!



L has a streaming alg using ≤ 𝒔(𝒏) bits of space 
means:
Give an algorithm A and prove that on all inputs x, 
A determines 𝒙 ∈ L correctly and uses ≤ 𝒔( 𝒙 ) bits 
of memory
Give an upper bound!

Every streaming alg for L needs ≥ 𝒔(𝒏) bits of space 
means:
For any 𝒏, give a streaming distinguisher S for L 
(a set of strings such that all pairs can be 

distinguished in L) where |S| ≥ 𝟐𝒔 𝒏

Give a lower bound!
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Communication Complexity

A theoretical model of distributed computing

• Function f : {0,1}* £ {0,1}*! {0,1}

– Two inputs, 𝑥 ∈ {0,1}* and 𝑦 ∈ {0,1}*

– We assume |𝒙|=|𝒚|=𝒏. Think of 𝒏 as HUGE

• Two computers: Alice and Bob

– Alice only knows 𝑥, Bob only knows 𝑦

• Goal: Compute f(𝒙, 𝒚) by communicating as 
few bits as possible between Alice and Bob

We do not count computation cost. We only care 
about the number of bits communicated.
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Alice and Bob Have a Conversation

A(x,ε) = 0

B(y,0) = 1 

A(x,01) = 1

B(y,011) = 0

A(x,0110) = STOPx y

f(x,y)=0f(x,y)=0

In every step: A bit or STOP is sent, which is a function of 
the party’s input and all the bits communicated so far.

Communication cost = number of bits communicated
= 4 (in the example)

We assume Alice and Bob alternate in communicating, 
and the last BIT sent is the value of 𝒇(x,y)
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A(x,ε) = 0

B(y,0) = 1 

A(x,01) = 1

B(y,011) = 0

x y

f(x,y)=0f(x,y)=0

Def. A protocol computing f is a pair of functions
A, B : {0,1}* × {0,1}* → {0, 1, STOP} with the semantics:

On input (𝒙, 𝒚), let 𝒓 := 0, 𝒃𝟎 := ε. 
While (𝒃𝒓 ≠ STOP), 

𝒓 + +
If 𝒓 is odd, Alice sends 𝒃𝒓 = 𝑨 𝒙, 𝒃𝟏⋯𝒃𝒓−𝟏

else Bob sends 𝒃𝒓 = 𝑩 𝒚, 𝒃𝟏⋯𝒃𝒓−𝟏
Output 𝒃𝒓−𝟏 = f(𝒙, 𝒚). Number of rounds  = 𝒓 − 𝟏
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A(x,ε) = 0

B(y,0) = 1 

A(x,01) = 1

B(y,011) = 0

x y

f(x,y)=0f(x,y)=0

Def. The cost of a protocol (A,B) on 𝒏-bit strings is  

𝐦𝐚𝐱
𝒙,𝒚 ∈ 𝟎,𝟏 𝒏

[number of rounds taken by (A,B) on (𝒙, 𝒚)]

The communication complexity of f on 𝒏-bit strings, cc(f),
is min cost over all protocols computing f on 𝒏-bit strings
=  the minimum number of rounds used by any protocol 

computing f(𝒙, 𝒚), over all 𝒏-bit 𝒙, 𝒚
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A(x,ε) = 0

B(y,0) = 1 

A(x,01) = 1

B(y,011) = 0

x y

f(x,y)=0f(x,y)=0

Example. Let f : {0,1}* × {0,1}* → {0,1} be arbitrary

There is always a “trivial” protocol for f:
Alice sends the bits of her 𝒙 in odd-numbered rounds
Bob sends whatever bit in even rounds
After 𝟐𝒏 − 𝟏 rounds, Bob knows 𝒙 and can send 𝒇(𝒙, 𝒚)

Proposition: For every 𝒇, cc(𝒇) ≤ 𝟐𝒏
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A(x,ε) = 0

B(y,0) = 1 

A(x,01) = 1

B(y,011) = 0

x y

f(x,y)=0f(x,y)=0

Example. PARITY(𝒙, 𝒚) = σ𝒊𝒙𝒊 +  σ𝒊𝒚𝒊 mod 2. 

What’s a good protocol for computing PARITY? 

Alice sends 𝒃𝟏 = (σ𝒊𝒙𝒊 mod 2)  
Bob sends 𝒃𝟐 = (𝒃𝟏 + σ𝒊𝒚𝒊 mod 2). Alice stops.

Proposition:  cc(PARITY) = 2
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x y

f(x,y)=0f(x,y)=0

Example. MAJORITY(𝒙, 𝒚) = most frequent bit in 𝒙𝒚
Models voting in two “remote” locations; they want to determine a winner

What’s a good protocol for computing MAJORITY? 

Alice sends 𝑵𝒙 = number of 1s in 𝒙
Bob computes 𝑵𝒚 = number of 1s in 𝒚, 

sends 1 iff 𝑵𝒙 +𝑵𝒚 is greater than (|x|+|y|)/2 = 𝒏

Proposition: cc(MAJORITY) ≤ O(log 𝐧)
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x y

f(x,y)=0f(x,y)=0

Example. EQUALS(𝒙, 𝒚) = 1  ⇔ 𝒙 = 𝒚
Useful for checking consistency of two far-apart databases!

What’s a good protocol for computing EQUALS? 

????

Communication complexity of EQUALS is at most 𝒏 + 𝟐
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x y

Examples:
𝑳 = { x | x has an odd number of 1s} 

⇒ 𝒇𝑳 𝒙, 𝒚 = PARITY(x,y) = σ𝒊𝒙𝒊 +  σ𝒊𝒚𝒊 mod 2
𝑳 = { x | x has at least as many 1s as 0s}

⇒ 𝒇𝑳 𝒙, 𝒚 = MAJORITY(x,y)
𝑳 = { xx | x ∈ {0,1}*} 

⇒ 𝒇𝑳 𝒙, 𝒚 = EQUALS(x,y)

Connection to Streaming Algs and DFAs

Let 𝑳 ⊆ {0,1}*
Def. 𝒇𝑳: {0,1}*×{0,1}*→ {0,1}

for 𝒙, 𝒚 with |𝒙|=|𝒚| as:
𝒇𝑳 𝒙, 𝒚 = 𝟏 ⇔ 𝒙𝒚 ∈ 𝑳
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Theorem: If 𝑳 has a streaming alg using ≤ 𝒔(𝒎) space on 
inputs of length ≤ 𝟐𝒎, then cc(𝒇𝑳) ≤ 𝑶(𝒔 𝒏 ).

Proof Idea: Alice runs streaming algorithm A on 𝒙, 
reaches a memory state 𝒎. She sends 𝒎 to Bob in 
𝑶(𝒔 𝒏 ) rounds. Then Bob starts up A from state 𝒎, 
runs A on 𝒚. Gets an output bit, sends bit to Alice.

x y

Let 𝑳 ⊆ {0,1}*
Def. 𝒇𝑳: {0,1}*×{0,1}*→ {0,1}

for 𝒙, 𝒚 with |𝒙|=|𝒚| as:
𝒇𝑳 𝒙, 𝒚 = 𝟏 ⇔ 𝒙𝒚 ∈ 𝑳

Connection to Streaming Algs and DFAs
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Theorem: If 𝑳 has a streaming alg using ≤ 𝒔(𝒎) space on 
inputs of length ≤ 𝟐𝒎, then cc(𝒇𝑳) ≤ 𝑶(𝒔 𝒏 ).

Corollary: For every regular 𝑳, cc(𝒇𝑳) ≤ O(1).

Example: cc(PARITY) = 2

Corollary: cc(MAJORITY) ≤ O(log n),
because there’s a streaming algorithm for 
{x  : x has more 1’s than 0’s} with O(log n) space

What about the Comm. Complexity of EQUALS?

Let 𝑳 ⊆ {0,1}* Def. 𝒇𝑳 𝒙, 𝒚 = 𝟏 ⇔ 𝒙𝒚 ∈ 𝑳

Connection to Streaming Algs and DFAs
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Theorem: cc(EQUALS) = 𝚯(𝒏).
In particular, every communication protocol for EQUALS 
must send ≥ 𝒏 bits between Alice and Bob.

No communication protocol can do much better than 
“send your whole input”!

Corollary: 𝑳 = {xx | x in {0,1}*} is not regular.

Corollary: Every streaming algorithm for 𝑳
needs 𝒄 𝒏 bits of memory, for some constant 𝒄 > 0!

𝛀(𝒏)

Communication Complexity of EQUALS
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Theorem: cc(EQUALS) = 𝚯(𝒏). In particular, every
protocol for EQUALS needs ≥ 𝒏 bits of communication!

Idea: Consider all possible ways A & B can communicate.

Definition: The communication pattern of a protocol on 
inputs (𝒙, 𝒚) is the sequence of bits Alice & Bob send.

0

1 

1

0

Pattern: 0110𝒙 𝒚

Communication Complexity of EQUALS
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A(x’,ε) = 0

B(y’,0) = 1 

A(x’,01) = 1

B(y’,011) = 0

𝒙’ 𝒚’

A(x,ε) = 0

B(y,0) = 1 

A(x,01) = 1

B(y,011) = 0

𝒙 𝒚

Key Lemma: If (𝒙, 𝒚) and (𝒙′, 𝒚′) have the same pattern 𝑷
in a protocol, then (𝒙, 𝒚′) and (𝒙′, 𝒚) also have pattern 𝑷
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A(x’,ε) = 0

B(y’,0) = 1 

A(x’,01) = 1

B(y’,011) = 0

𝒙’ 𝒚’

A(x,ε) = 0

B(y’,0) = 1 

A(x,01) = 1

B(y’,011) = 0

𝒙 𝒚

Key Lemma: If (𝒙, 𝒚) and (𝒙′, 𝒚′) have the same pattern 𝑷
in a protocol, then (𝒙, 𝒚′) and (𝒙′, 𝒚) also have pattern 𝑷
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Key Lemma: If (𝒙, 𝒚) and (𝒙′, 𝒚′) have the same pattern 𝑷
in a protocol, then (𝒙, 𝒚′) and (𝒙′, 𝒚) also have pattern 𝑷

A(x,ε) = 0

B(y’,0) = 1 

A(x,01) = 1

B(y’,011) = 0

𝒙’ 𝒚’

A(x,ε) = 0

B(y,0) = 1 

A(x,01) = 1

B(y,011) = 0

𝒙 𝒚
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Theorem: The comm. complexity of EQUALS is 𝚯(𝒏).
In particular, every protocol for EQUALS needs ≥ 𝒏 bits 
of communication.

Proof: By contradiction. Suppose cc(EQUALS) ≤ 𝒏 − 𝟏.
Then there are ≤ 𝟐𝒏 − 𝟏 possible communication patterns of 
that protocol, over all pairs of inputs (𝒙, 𝒚) with n bits each.

Claim: There are 𝒙 ≠ 𝒚 such that on (𝒙, 𝒙) and on (𝒚, 𝒚), 
the protocol uses the same pattern 𝑷.

By the Key Lemma, (𝒙, 𝒚) and 𝒚, 𝒙 also use pattern 𝑷

So Alice & Bob output the same bit on (𝒙, 𝒚) and (𝒙, 𝒙).
But EQUALS(𝒙, 𝒚) = 0 and EQUALS(𝒙, 𝒙) = 1. Contradiction!

Communication Complexity of EQUALS
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Randomized Protocols Help!

EQUALS needs ≥ 𝒏 bits of communication, 
but…

Theorem: There is a randomized protocol for 
computing EQUALS 𝒙, 𝒚 using only O(log 𝒏)

bits of communication, 
which is correct with probability 99.9%!
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Turing Machines



Turing Machine (1936)

FINITE 

STATE 

CONTROL

INFINITE REWRITABLE TAPE

I N P U T

q0q1

A …
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In each step:
- Reads a symbol
- Writes a symbol
- Changes state
- Moves Left or Right

“blanks”tape 
head



Turing Machine (1936)

INFINITE REWRITABLE TAPE

I N P U TA …
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