6.045

Lecture 9
 Turing Machines:

Recognizability, Decidability, The Church-Turing Thesis

Turing Machine (1936)

In each step:

- Reads a symbol
- Writes a symbol
- Changes state
- Moves Left or Right
"blanks"
tape head

INFINITE REWRITABLE TAPE

Turing Machine (1936)

ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO THE ENTSCHEIDUNGSPROBLEM

By A. M. Turing.
[Received 28 May, 1936.-Read 12 November, 1936.]
The "computable" numbers may be described briefly as the real numbers whose expressions as a decimal are calculable by finite means. Although the subject of this paper is ostensibly the computable numbers, it is almost equally easy to define and investigate computable functions of an integral variable or a real or computable variable, computable predicates, and so forth. The fundamental problems involved are, however, the same in each case, and I have chosen the computable numbers for explicit treatment as involving the least cumbrous technique. I hope shortly to give an account of the relations of the computable numbers,

https://www.cs.utah.edu/~draperg/cartoons/2005/turing.html

Turing Machines versus DFAs

The input is written on an infinite tape with "blank" symbols after the input

The "tape head" can move right and left
The TM can both write to and read from the tape, and can write symbols that aren't part of input

Accept and Reject take immediate effect

A TM for $L=\left\{w \# w \mid w \in\{0,1\}^{*}\right\}$ over $\Sigma=\{0,1, \#\}$

STATE

$q_{0, F} q_{1, \text { FIND } \#} q_{\#, F} q_{0, F} q_{1, \text { FIND } \square} q_{G O L E F T}$
and so on...

1. If there's no \# on the tape (or more than one \#), reject.
2. While there is a bit to the left of \#,

Replace the first bit b with \mathbf{X}, and check if the first bit b' to the right of the \# is identical to \mathbf{b}. (If not, reject.)
Replace that bit b' with an \mathbf{X} too.
3. If there's a bit to the right of \#, then reject else accept

Definition: A Turing Machine is a 7-tuple

 $T=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right)$, where:$Q$ is a finite set of states
Σ is the input alphabet, where $\square \nsubseteq \Sigma$
Γ is the tape alphabet, where $\square \in \Gamma$ and $\Sigma \subseteq \Gamma$
$\delta: \mathbf{Q} \times \Gamma \rightarrow \mathbf{Q} \times \Gamma \times\{L, \mathrm{R}\}$
$q_{0} \in \mathbf{Q}$ is the start state
$\mathbf{q}_{\text {accept }} \in \mathbf{Q}$ is the accept state
$q_{\text {reject }} \in \mathbf{Q}$ is the reject state, and $q_{\text {reject }} \neq q_{\text {accept }}$

This Turing machine decides the language $\{0\}$

This Turing machine recognizes the language $\{0\}$
Three kinds of behaviors: accepting, rejecting, and running forever!

Turing Machine Configurations

corresponds to the configuration:

$\mathbf{q}_{0} \mathbf{1 1 0 1 0 0 0 1 1 0} \in(Q \quad U \Gamma)^{*}$

Turing Machine Configurations

corresponds to the configuration:

$0 \mathrm{q}_{1} \mathbf{1 0 1 0 0 0 1 1 0} \in(\mathrm{Q}$ UГ)*

Turing Machine Configurations

corresponds to the configuration:

$0000011110 q_{7} \square \in(Q \cup \Gamma)^{*}$

Defining Acceptance and Rejection for TMs

Let C_{1} and C_{2} be configurations of a TM \mathbf{M}
Definition. C_{1} yields C_{2} if M is in configuration C_{2}
after running \mathbf{M} in configuration \mathbf{C}_{1} for one step
Example. Suppose $\delta\left(\mathrm{q}_{1}, \mathrm{~b}\right)=\left(\mathrm{a}_{2}, \mathrm{c}, \mathrm{L}\right)$
Then $\mathrm{aq}_{1} \mathrm{bb}$ yields $\mathrm{q}_{2} \mathrm{acb}$
Suppose $\delta\left(q_{1}, a\right)=\left(q_{2}, c, R\right)$

accepting

computation history of M on x
Then $\mathrm{abq}_{1} \mathrm{a}$ yields $\mathrm{abcq}_{2} \square$
Let $\mathbf{w} \in \mathbf{\Sigma}^{*}$ and \mathbf{M} be a Turing machine.
M accepts w if there are configs $\mathrm{C}_{0}, \mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{k}}$, s.t.

- $\mathrm{C}_{0}=\mathrm{q}_{0} \mathbf{w}$ [the initial configuration]
- C_{i} yields C_{i+1} for $i=0, \ldots, k-1$, and
- C_{k} contains the accept state $\mathrm{q}_{\text {accept }}$

A TM M recognizes a language \mathbf{L} if M accepts exactly those strings in L

> A language L is recognizable (a.k.a. recursively enumerable) if some TM recognizes L

A TM \boldsymbol{M} decides a language L if M accepts all strings in L and rejects all strings not in L

A language L is decidable (a.k.a. recursive) if some TM decides L

L(M) := set of strings M accepts

A Turing machine for deciding $\left\{0^{2^{n}} \mid n \geq 0\right\}$

Turing Machine PSEUDOCODE:

1. Sweep from left to right, \mathbf{x}-out every other $\mathbf{0}$
2. If in step $\mathbf{1}$, the tape had only one $\mathbf{0}$, accept
3. If in step 1, the tape had an odd number of 0 's (at least 3), reject
4. Move the head left to the first input symbol.
5. Go to step 1.

Why does this work?

MULT $=\left\{a^{i} b^{i} c^{k} \mid k=i^{*} j\right.$, and $\left.i, j, k \geq 1\right\}$

TURING MACHINE PSEUDOCODE:

1. If the input doesn't match $\mathbf{a}^{*} \mathbf{b}^{*} \mathrm{c}^{*}$, reject.
2. Move the head back to the leftmost symbol.
3. Cross off one \mathbf{a}, scan to the right until see \mathbf{b}.

Sweep between b's and c's, crossing off one of each until all b's are crossed off. If all c's get crossed off while doing this, reject.
4. Uncross all the b's.

If there is some a left, then repeat stage 3.
If all a's are crossed off,
Check if all c's are crossed off. If yes, then accept, else reject.

MULT $=\left\{a^{i} b^{i} c^{k} \mid k=i^{*} j\right.$, and $\left.i, j, k \geq 1\right\}$

Check matches a*b*c* ąbobcccccc
Cross off an a
Cross off one \mathbf{c}
for each b

ảabbbcccccc

 ảabbbḉḉḉccc ảabbbççççcccRepeat the
crossing, until all a's crossed (or reject early)
ảảbbbççççççç

Accept

Turing Machines are Robust!

Many variants and models can be defined. As long as your favorite model reads and writes a finite number of symbols in each step, it doesn't matter!

A good ole TM can still simulate it!

Multitape Turing Machines

Theorem: Every Multitape Turing Machine can be transformed into a single tape Turing Machine

FINITE STATE CONTROL

Theorem: Every Multitape Turing Machine can be transformed into a single tape Turing Machine

FINITE STATE CONTROL

Theorem: Every Multitape Turing Machine can be transformed into a single tape Turing Machine

FINITE STATE CONTROL

Theorem: Every Multitape Turing Machine can be transformed into a single tape Turing Machine

Theorem: Every Multitape Turing Machine can be transformed into a single tape Turing Machine

Nondeterministic Turing Machines

Have multiple transitions for a state, symbol pair
Theorem: Every nondeterministic Turing machine \mathbf{N} can be transformed into a Turing Machine M that accepts precisely the same strings as $\mathrm{N} .(\mathrm{L}(\mathrm{M})=\mathrm{L}(\mathrm{N}))$

Proof Idea (more details in Sipser p.178-179)
Pick a natural ordering on the strings in (Q $\cup\ulcorner\cup \#$)*
$\mathbf{M}(w)$: For all strings $\mathrm{D} \in(\mathrm{Q} \cup \Gamma \cup \#)^{*}$ in the ordering,
Check if $D=C_{0} \# \cdots \# C_{k}$ where C_{0}, \ldots, C_{k} is an accepting computation history for N on w . If so, accept.

What else can Turing Machines do?

They can analyze and simulate other TMs

To do that, we need to encode TMs as strings.

Fact: We can encode Turing Machines as bit strings
n states
N $0^{\mathrm{n}} 10^{\mathrm{m}} 10^{\mathrm{k}} 10^{\mathrm{s}} 10^{\mathrm{t}} 10^{\mathrm{r}} 10^{\mathrm{u}} 1 .$.
m tape symbols (first k are input symbols)
accept state

($(p, i),(q, j, R))=0{ }^{p 10100^{10101001}}$
Can map every TM M to a string 〈M〉

We can also encode DFAs and NFAs as bit strings, and $w \in \Sigma^{*}$ as bit strings

For $x \in \Sigma^{*}$ define $b_{\Sigma}(x)$ to be its binary encoding For $x, y \in \Sigma^{*}$, define the pair of x and y as
a binary string encoding both x and y

$$
\langle x, y\rangle:=0^{\left|b_{z}(x)\right|} 1 b_{z}(x) b_{z}(y)
$$

Then we define the following languages over $\{0,1\}$:

$$
\begin{gathered}
A_{D F A}=\{\langle D, w\rangle \mid D \text { encodes a DFA over some } \Sigma, \\
\text { and } \left.D \text { accepts } w \in \Sigma^{*}\right\}
\end{gathered}
$$

$$
A_{\text {NFA }}=\{\langle N, w\rangle \mid N \text { encodes an NFA, } N \text { accepts } w\}
$$

$$
A_{T M}=\{\langle M, w\rangle \mid M \text { encodes a TM, } M \text { accepts } w\}
$$

Universal Turing Machines

Theorem: There is a Turing machine U which takes as input:

- the code of an arbitrary TM M
- and an input string w
such that \mathbf{U} accepts $\langle\mathbf{M}, \mathbf{w}\rangle \Leftrightarrow \mathbf{M}$ accepts \mathbf{w}.
This is a fundamental property of TMs:
There is a Turing Machine that can run arbitrary Turing Machine code!

Note that DFAs/NFAs do not have this property.
That is, $A_{\text {DFA }}$ and $A_{\text {NFA }}$ are not regular.

Want: U accepts $\langle\mathbf{M}, \mathbf{w}\rangle \Leftrightarrow \mathbf{M}$ accepts w. Can make a multitape TM U with four tapes:

1. Input tape: receives $\langle\mathbf{M}, \mathbf{w}\rangle$
2. State tape: holds the current state of M
3. Machine code tape: holds transitions of M
4. Simulation tape: content is identical to M's tape

For each step of M : U looks up the matching transition in machine code tape, updates the state and simulation tape

$A_{D F A}=\{\langle D, w\rangle \mid D$ is a DFA that accepts string $w\}$

Theorem: $A_{\text {DFA }}$ is decidable
Proof: A DFA is a special case of a TM.
Run the universal U on $\langle\mathrm{D}, \mathrm{w}\rangle$ and output its answer!
$\mathbf{A}_{\text {NFA }}=\{\langle\mathbf{N}, \mathbf{w}\rangle \mid \mathbf{N}$ is an NFA that accepts string $\mathbf{w}\}$
Theorem: $\mathrm{A}_{\mathrm{NFA}}$ is decidable. (Why?)
$A_{T M}=\{\langle M, w\rangle \mid M$ is a TM that accepts string $w\}$
Theorem: $A_{\text {тм }}$ is recognizable (Why?)

The Church-Turing Thesis

Everyone's

Intuitive Notion = Turing Machines of Algorithms

This is not a theorem -
it is a falsifiable scientific hypothesis.
And it has been thoroughly tested!

