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Abstract. We prove #W[1]-hardness of the following parameterized
counting problem: Given a simple undirected graph G and a parame-
ter k ∈ N, compute the number of matchings of size k in G.

It is known from [1] that, given an edge-weighted graph G, computing
a particular weighted sum over the matchings in G is #W[1]-hard. In the
present paper, we exhibit a reduction that does not require weights.

This solves an open problem from [5] and adds a natural parameter-
ized counting problem to the scarce list of #W[1]-hard problems. Since
the classical version of this problem is well-studied, we believe that our
result facilitates future #W[1]-hardness proofs for other problems.

1 Introduction

Let G = (V, E) be an undirected graph on n vertices. A matching M in G is a
set of vertex-disjoint edges M ⊆ E. For k ∈ N, a k-matching is a matching with
|M | = k, and (n/2)-matchings are commonly referred to as perfect matchings.

Counting (Perfect) Matchings: Two natural counting problems on matchings
are well-studied: The problem #PerfMatch of counting all perfect matchings
in an input graph G, and the problem #Match of counting all matchings in
G. The problem #PerfMatch already appeared along with the definition of the
complexity class #P in [10] and was among the first problems to be proven
#P-complete. In [11], the problem #Match was also proven #P-hard.

Subsequent work identified restricted graph classes on which the problems
#PerfMatch and #Match are already #P-hard, as well as some tractable graph
classes. For instance, #Match is already hard on planar 3-regular graphs [14],
while #PerfMatch admits a polynomial-time algorithm on planar graphs [9].
This last result, and matchings in general, are also central to the new theory of
holographic algorithms introduced in [12].

Parameterized Counting Complexity: In a relatively new approach to
#Match, and other #P-hard problems in general, counting problems are consid-
ered as parameterized problems, see [4]. In such problems, inputs x come with an
additional parameter k, and a parameterized counting problem is fixed-parameter
tractable (fpt) in k if it can be solved in time f(k)|x|O(1) for a computable func-
tion f . The class #W[1] and the notion of #W[1]-hardness were both defined in
[4], bridging classical counting complexity and parameterized complexity theory.

In parameterized counting problems on graphs, the parameter k typically ei-
ther measures some notion of intricacy of the input graph or the intricacy of the
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structures to be counted. Typical parameters associated with the input graph
are, e.g., its treewidth, cliquewidth or genus. For instance, a counting analogue
of Courcelle’s famous theorem [2] is known [7]: Given a graph G of treewidth
tw(G) and a formula φ(X) in monadic second-order logic over graphs with a free
set variable X , counting the sets X with G |= φ(X) is fpt in tw(G). This implies
that counting perfect (or general) matchings in G is fpt in tw(G).

A natural parameter associated with the structures to be counted is their size.
This includes the results that counting k-vertex covers is fpt in k, while counting
k-paths, k-cliques or k-cycles are each #W[1]-hard, all proven in [4].

Counting k-Matchings: It was conjectured in [4] that counting k-matchings
on bipartite graphs is #W[1]-hard in the parameter k. The problem for general
graphs is an open problem in [5]. The conjecture was later backed up by a proof
[1] that counting weighted k-matchings is indeed #W[1]-hard: Let G = (V, E, w)
be an edge-weighted bipartite graph and assign to every matching M ⊆ E the
weight w(M) :=

∏
e∈M w(e). It was shown that, for a particular w : E → Z,

computing the sum
∑

M w(M) over matchings M in G is #W[1]-hard.
Also, the best known algorithms for counting k-matchings exhibit time bounds

of the type f(k)nΘ(k). Among these is [13] with a runtime of O(2k+o(k)( n
k/2

)
).

Our Result: We show that counting k-matchings is #W[1]-hard on unweighted
graphs without multiple edges or self-loops. It is known that weights in the sense
of [1] can be simulated by parallel edges. This however creates multigraphs,
and standard reductions to simple graphs fail. Our proof relies on a particular
gadget construction, which is analyzed by tools from commutative algebra. This
technique can probably also be applied to other counting problems.

2 Preliminaries

Parameterized Counting: Let p#Clique be the problem of counting cliques
of size k in a graph G, parameterized by k. Define the class #W[1] as the set of
parameterized counting problems A with A ≤T

fpt p#Clique. Here, A ≤T
fpt B means

that A admits an fpt-algorithm that solves instances (x, k) of A with oracle access
to B, under the restriction that all oracle queries (y, k′) feature k′ ≤ g(k) for
some computable g : N → N. For a more formal definition, consider [4].

Polynomials: Let x = (x1, . . . , xs) be a tuple of indeterminates and let N
x

be the set of monomials over x. Given a multivariate polynomial p ∈ Z[x] and
ν ∈ N

x, write c(ν) ∈ Z for the coefficient of monomial ν in p. This gives p =∑
ν c(ν) · ν. Note that only finitely many c(ν) are non-zero.
Let x = y∪̇z be a partition of the indeterminates of p. We can equivalently

consider p ∈ (Z[z])[y]. For ν ∈ N
y, define [ν]p as the uniquely determined

polynomial Hν ∈ Z[z] in the expansion p(x) =
∑

θ∈Ny Hθ(z) · θ.

Matchings: Let G = (V, E) be a graph and k ∈ N. Define Mk[G] as the set
of k-matchings of G, let mk := |Mk[G]| and define M[G] :=

⋃
k∈N

Mk[G]. For
a formal indeterminate X , let M(G; X) :=

∑
k mkXk be the edge-generating
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matching polynomial of G. Given u ∈ V and M ∈ M[G], we write u ∈ sat(M)
and say that u is matched by M if {u, w} ∈ M for some w ∈ V .

2.1 Algebraic Independence

Crucial parts of our proof rely on algebraic independence, a notion from commu-
tative algebra. A general introduction to this topic is given in [6].
Definition 1. Let P = {p1, . . . , pt} ⊆ Z[x1, . . . , xs] be a set of polynomials and
let y = (ṗ1, . . . , ṗt) be a tuple of indeterminates. An annihilator for P is a
polynomial A ∈ Z[y] which annihilates P , i.e., A(p1, . . . , pt) ≡ 0. If the only
annihilator for P is the zero polynomial, we call P algebraically independent.

Remark 1. In the previous definition, we wrote y = (ṗ1, . . . , ṗt) to highlight the
correspondence between indeterminates and polynomials. In this paper, expres-
sions of the form ṗ always denote indeterminates.

Restricting the annihilator A to linear functions without mixed-variable terms
yields an alternative definition of linear independence. Algebraic independence
generalizes this by allowing “polynomial” instead of only linear combinations.

We require only two ingredients from the theory of algebraic independence:
The classical Jacobian criterion allows us to reduce algebraic independence to
linear independence, and Lemma 1 allows us to argue about annihilators of
“almost-independent” sets. A proof of Theorem 1 can be found in [3].
Theorem 1. Let P = {p1, . . . , pt} ⊆ Z[x]. Then P is algebraically independent
iff rank(JP ) = t, where JP denotes the Jacobian matrix (JP )i,j = ∂pi/∂xj.

Lemma 1. Let I = Z[x] and let P, Q ⊆ I with P = {p1, . . . , pr} and Q =
{q1, . . . , qt} such that P ∪ Q is algebraically independent. Let s = p1 + . . . + pr.

Define indeterminates ṡ, p = (ṗ1, . . . , ṗr) and q = (q̇1, . . . , q̇t), and define a
ring O := Z[ṡ, p, q]. Let A ∈ O be an arbitrary annihilator for the set {s}∪P ∪Q.

Let ν ∈ N
q be arbitrary, and consider [ν]A ∈ Z[ṡ, p]. Applying the substitution

ṡ := ṗ1 + . . . + ṗr to [ν]A yields a polynomial Aν ∈ Z[p] with Aν ≡ 0.

Proof. Since A annihilates {s} ∪ P ∪ Q, we have A(s, p1, . . . , pr, q1, . . . , qt) ≡ 0.
Considering A from (Z[ṡ, p])[q], this equation can be rewritten as

∑

ν∈Nq

([ν]A)(s, p1, . . . , pr) · ν(q1, . . . , qt) ≡ 0. (1)

Note that ([ν]A)(s, p1, . . . , pr) = Aν(p1, . . . , pr) since ṡ := ṗ1 + . . . + ṗr and
s = p1 + . . .+ pr. If Aν �≡ 0 for some ν, then (1) displays a nontrivial annihilator
for P ∪ Q after substitution of ṡ, contradicting its independence. 	


2.2 Outline of the Reduction

We prove #W[1]-hardness of counting k-matchings by a reduction from the prob-
lem p#CC of counting k-partial cycle covers, whose #W[1]-hardness was shown
in [1]. Let us first define the notion of k-partial cycle covers:
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Definition 2. [1] Let G = (V, E) be a directed graph and let t ∈ N. A t-partial
path-cycle cover C in G is a set C ⊆ E with |C| = t that consists of a vertex-
disjoint union of simple paths and cycles.

Let ρ(C) be the number of paths in C. We call C a t-partial cycle cover if
ρ(C) = 0. The set of t-partial path-cycle covers in G with ρ paths is denoted by
PCt,ρ[G]. Define PCt[G] :=

⋃
ρ PCt,ρ[G] and extend this to PC[G] :=

⋃
t PCt[G].

For t, ρ ∈ N, let mt,ρ := |PCt,ρ[G]|, if G is clear from the context.

For compatibility with [1], define Ck[G] := PCk,0[G]. In the following sections,
only two parameterized counting problems will be relevant:

p#CC
Input: directed graph G, k ∈ N

Parameter: k

Output: |Ck[G]|

p#Match
Input: undirected graph G, k ∈ N

Parameter: k

Output: |Mk[G]|

It holds that p#Match ∈ #W[1], as it is subsumed by the more general prob-
lem of counting embeddings from [4]. In the following, we sketch the reduction
p#CC ≤T

fpt p#Match. The rest of this paper provides its details. We obtain:

Theorem 2. The problem p#Match is #W[1]-complete.

The reduction works as follows: To begin with, we are given a directed graph G
and k ∈ N as inputs, and we wish to count the number of k-partial cycle covers
in G. We are also given an oracle for p#Match that can be queried about the
numbers of K-matchings in arbitrary graphs, provided that K ≤ g(k), where g
is computable. It turns out that our queries even satisfy K ≤ 3k, and that the
reduction can be carried out in polynomial time.

The proof begins in Section 3 with the description of a particular graph
transformation: First, we construct an undirected graph G′ and a bijection S :
PCk[G] → Mk[G′]. Next, we apply gadgets to G′ to obtain a graph H = H(G)
and show that, for K = 3k, the quantity |MK [H ]| can be written as a particular
weighted sum over the matchings M ∈ Mk[G′]. The weight of M in this sum
depends on the number of paths in its associated path-cycle cover S−1(M).

We proceed to show in Sections 3 and 4 that the weights in this sum in fact
allow to distinguish matchings M ∈ Mk[G′] according to the number of paths
in S−1(M). Finally, we use this in Section 4.2 to recover the number of k-partial
path-cycle covers with zero paths in G by oracle calls to p#Match.

3 The Gadget Construction

3.1 Global Construction

We want to count k-partial cycle covers in a directed graph G with an oracle for
p#Match. Let n = |V |. First, we define a graph S(G) as in [1]:

Definition 3. [1] Given a directed graph G = (V, E), replace each vertex w ∈ V
by vertices win and wout, and replace each (u, v) ∈ E by the undirected edge
{uout, vin}. We call the resulting graph the split graph S(G). Let G′ = S(G).
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Fig. 1. (left) A partial path-cycle cover C. (middle) The matching M ′ = S(C).
(right) For w ∈ V , the gray area between {wout, win} symbolizes Vw. Cancelled edges
indicate edges in Vw that cannot be included into M ′ since {wout , win} is in-blocked,
out-blocked or blocked, as seen in the first, second and fourth pair, respectively.

The graph G′ is bipartite, and considering S as a function, it induces a bijection
between PCt[G] and Mt[G′] for all t ∈ N, as shown in [1]. Consider the left and
middle part of Fig. 1 for an example. We also observe the following:

Remark 2. Let C ∈ PCt,ρ[G]. Since C has ρ paths, there are ρ vertices incident
with only an incoming edge in C, another ρ vertices incident with only an out-
going edge, and t − ρ vertices incident with both an incoming and an outgoing
edge. The remaining n − t − ρ vertices are not incident with any edge in C.

This translates to M = S(C) as follows: Consider pairs {wout, win} ⊆ V (G′),
for w ∈ V (G). There are ρ such pairs with win ∈ sat(M) and wout /∈ sat(M).
We call such pairs in-blocked. There are another ρ pairs with wout ∈ sat(M)
and win /∈ sat(M), which we call out-blocked. There are t − ρ pairs with both
wout, win ∈ sat(M), which we call blocked. The remaining n − t − ρ pairs feature
sat(M) ∩ {wout, win} = ∅. We call these pairs free. 	

This roughly implies the following: If we can distinguish matchings M ∈ Mt[G′]
according to how many pairs {wout, win} occur in the above states, then we can
hope to distinguish t-partial path-cycle covers C = S−1(M) by ρ(C).

In the remaining section, we present a particular construction that achieves
exactly this, as will be proven in Section 4. The construction uses a gadget, i.e.,
an undirected graph V with two special vertices uout and uin that can be inserted
locally into G′ to yield a graph H = H(G).1

Definition 4. Given a graph G, define a graph H = H(G) as follows: First, let
G′ = S(G). For each w ∈ V (G), add a fresh copy Vw of V to G′, identifying
the vertex wout ∈ V (G′) with uout ∈ V (Vw), and identifying win ∈ V (G′) with
uin ∈ V (Vw). Note that, by construction, G′ appears as a subgraph in H.

Let s ∈ V (G′) with s ∈ {wout, win} for w ∈ V (G). If M ∈ M[H ] and s ∈
sat(M), then s ∈ e for some e ∈ M . Then either e ∈ E(Vw), in which case
we call s internally matched, or e ∈ E(G′) and s is externally matched. If
1 The actual definition of V is irrelevant for now and is treated in the next subsection.
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s is externally matched, then all edges in M that stem from E(Vw) must be
contained in E(Vw − s). Thus, when extending a matching N ∈ M[G′] to some
M ∈ M[H ] by including edges from Vw, we have to distinguish the state of the
pair {wout, win} in N .2 This is illustrated in the right part of Fig. 1.

We account for this by associating four restricted matching polynomials with
the gadget V . Recall that V features special vertices uout and uin. The restricted
polynomials MA(V) are indexed by A ⊆ {uout, uin} and are defined like M(V),
except that they count only matchings M ∈ M[V ] with sat(M)∩{uout, uin} ⊆ A.

Definition 5. Let V be a graph with uout, uin ∈ V (V). For A ⊆ {uout, uin}, let

MA(V ; X) :=
∑

M∈M[V]
sat(M)∩{uout ,uin}⊆A

X |M|.

We consider V fixed. Define B := M∅(V), U := M{uout}(V), V := M{uin}(V),
and F := M{uout ,uin}(V). Finally, for t, ρ ∈ N with ρ ≤ t and n − t − ρ ≥ 0,
define a polynomial Mix(t,ρ) ∈ Z[X ] by Mix(t,ρ) := Bt−ρ · Uρ · V ρ · F n−t−ρ.

The polynomials Mix(t,ρ) are crucial in Section 4 because the matching poly-
nomial M(H) can be written as a weighted sum over the path-cycle covers
C ∈ PC[G] such that C ∈ PCt,ρ[G] is weighted by Xt · Mix(t,ρ). This is stated
in the following lemma, which can be proved using standard combinatorial ar-
guments. Recall that mt,ρ(G) = |PCt,ρ[G]| by Definition 2.

Lemma 2. Let G be a graph and let H = H(G) as in Definition 4. Then

M(H) =
∑

0≤ρ≤t≤n

mt,ρ(G) · Xt · Mix(t,ρ).

We close this subsection with a remark about the coefficients of B, U, V, F :

Remark 3. Note that [X0]D = 1 for all D ∈ {B, U, V, F}. Furthermore, it can be
verified that [X1]F = [X1](U + V − B) if {u, v} /∈ E(V). The gadget introduced
in the next subsection will feature {u, v} /∈ E(V). 	


3.2 Local Construction: The Venn Gadget

We are ready to provide an explicit construction for the gadget V : The Venn
gadget V(x) is an undirected graph with special vertices uout and uin, as shown
in Fig. 2 on the next page. Its precise manifestation depends on a tuple

x = (a∅, au, av, auv, b∅, bu, bv, buv, cu, cv, cuv) ∈ N
11. (2)

The eleven parameters, which will be considered as indeterminates later, are
named so as to reflect the particular set system represented by the gadget.
2 This might evoke memories of matchgates in the readership of [12].
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Fig. 2. The Venn gadget V features named vertices uout , uin, a and b. The other vertices
are partitioned into the disjoint sets a∅, . . . , cuv. In this figure, an edge leading from a
special vertex w into a set S symbolizes that w is adjacent to all vertices in S.

Definition 6. Given a tuple x ∈ N
11 as specified in (2), the Venn gadget V(x)

is constructed as follows from the empty graph:

1. Create (a∅ + au + av + auv) + (b∅ + bu + bv + buv) + (cu + cv + cuv) fresh and
unnamed vertices. Abusing notation slightly, group these vertices into sets
a∅, . . . , cuv in the obvious way.

2. Create a special vertex uout adjacent to all of (au∪auv)∪(bu∪buv)∪(cu∪cuv).
3. Create a special vertex uin adjacent to all of (av ∪auv)∪(bv ∪buv)∪(cv ∪cuv).
4. Create a vertex a adjacent to all of a∅ ∪ au ∪ av ∪ auv.
5. Create a vertex b adjacent to all of b∅ ∪ bu ∪ bv ∪ buv.

Remark 4. Note that constructing V(x) for different x ∈ N
11 yields different

graphs. Thus, using the gadget V(x) to construct the graph H in Definition 4 in
fact yields a graph H = H(x) that also depends on x.

Furthermore, when considering x as a tuple of indeterminates, the matching
polynomials B, U, V, F associated with V , introduced in Definition 5, are easily
seen to be elements in Z[X, x]. Equivalently, we can define I := Z[x] and say
that B, U, V, F ∈ I[X ], where X denotes a formal generating variable. 	

We now consider the coefficients of the polynomials B, U, V, F ∈ I[X ] from
Remark 4. Note that these coefficients are elements of I = Z[x], and thus in
turn polynomials. We show that the set of coefficients is “almost” algebraically
independent, in the sense that it allows Lemma 1 to be invoked.

First observe that deg(B) = 2, deg(U) = deg(V ) = 3 and deg(F ) = 4, as these
are the maximum cardinalities of matchings counted by B, U, V, F , respectively.
These four polynomials therefore feature at most 16 non-zero coefficients in total.
For D ∈ {B, U, V, F}, abbreviate Di := [X i]D ∈ I.

Furthermore, note that B0 = V0 = U0 = F0 = 1 by Remark 3. We will
ignore these four coefficients from now on, for reasons that will become clear in
Section 4. Let Y be the set of all other coefficients of B, U, V, F . For convenience:

Y := {B1, B2, U1, U2, U3, V 1, V 2, V 3, F1, F 2, F 3, F 4}.
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Additionally, let B := {B1, U1, V1, F1}. Note that F1 = U1+V1−B1 by Remark 3.
The set B is thus algebraically (and even linearly) dependent. We now consider
the set Y ′ := Y\{F1}. After computing the elements in Y ′ explicitly and verifying
that det(JY ′) �≡ 0, we obtain the following lemma as a corollary from Theorem 1:

Lemma 3. The set Y ′ ⊆ I is algebraically independent.

We can now apply Lemma 1 verbatim to obtain the following corollary. It states
a restriction on annihilators for Y which will be used in Section 4.1.

Corollary 1 (of Lemma 1). Let P := B \ {F1} and Q := Y \ B. By Lemma 3,
the set P ∪ Q = Y ′ is algebraically independent. Recall that F1 = U1 + V1 − B1.

Define indeterminates Ḟ1, p = (Ḃ1, U̇1, V̇1) and q, where q represents Q, and
let y = (Ḟ1, p, q). Let O = Z[y] and let A ∈ O annihilate Y = {F1} ∪ P ∪ Q.

Let θ∗ = Ḃb
2 with b > 0 and consider [θ∗]A ∈ Z[Ḟ1, p]. Applying the substitu-

tion Ḟ1 := U̇1 + V̇1 − Ḃ1 to [θ∗]A yields a polynomial Aθ∗ ∈ Z[p] with Aθ∗ ≡ 0.

4 Analysis of the Graph Construction

Recall that we wish to determine mk,0, where mt,ρ denotes the number of t-
partial path-cycle covers with ρ paths in G. We fix k and K := 3k. We also fix
y and O = Z[y] as in Corollary 1, as well as x and I = Z[x] as in Remark 4.

The indeterminates in y correspond to Y from Section 3.2. We extend this view
by considering the polynomials B, U, V, F and Mix(t,ρ) ∈ Z[X ] from Definition 5
formally as elements from O[X ], writing Mix(t,ρ)

O to make this explicit:

Definition 7. For D ∈ {B, U, V, F}, let DO =
∑deg(D)

i=1 ḊiX
i ∈ O[X ]. Define

Mix(t,ρ)
O ∈ O[X ] exactly as Mix(t,ρ) in Definition 5, but replace any D by DO.

Let MixO ∈ O(K+1)×(K+1) be the matrix whose entry at (t, ρ) is [XK−t]Mix(t,ρ)
O

for 0 ≤ ρ ≤ t ≤ K, and 0 else. Also write MixO for the set of its entries.

We similarly define MO(H) ∈ O[X ] by formally replacing coefficients of Venn
gadgets with indeterminates from y. Extending Lemma 2, we obtain:

Lemma 4. Let H = H(G) according to Definition 4. For matrices A, B of the
same dimensions, let A � B :=

∑
ij AijBij . Then

[XK ]MO(H) =

⎛

⎜
⎜
⎝

[XK ]Mix(0,0)
O . . . [X0]Mix(K,0)

O
. . .

...
[X0]Mix(K,K)

O

⎞

⎟
⎟
⎠

︸ ︷︷ ︸
=MixO

�

⎛

⎜
⎝

m0,0 . . . mK,0
. . .

...
mK,K

⎞

⎟
⎠ .

This yields a formal “linear combination” of the quantities mt,ρ with coefficients
from O. For t = k and 0 ≤ ρ ≤ k, the interesting quantities mk,ρ appear in it as

[XK ]MO(H) = . . . + mk,0[X2k]Mix(k,0)
O + . . . + mk,k[X2k]Mix(k,k)

O + . . . (3)
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In Section 4.1, we substitute the polynomials Y ⊆ I from Section 3.2 into the
indeterminates y, yielding a matrix MixI ∈ I(K+1)×(K+1). We show that, after
this substitution, the polynomial p∗ := [X2k]Mix(k,0)

I associated with mk,0 in (3)
is special, in the sense that it cannot be written as a linear combination (with
rational coefficients) of the other polynomials in MixI.

In Section 4.2, we show that a linear system of equations in the unknowns
mt,ρ can be set up from (3) by evaluating3 the entries of MixI on ξ ∈ N

11 and
using oracle calls on graphs derived by the gadget construction from Section 3.
This system will feature O(k11) linear equations, whose integer coefficients can
be computed in time nO(1). Furthermore, the specialness of p∗ will imply that
the system can be solved unambiguously for mk,0. This proves Theorem 2.

4.1 The Polynomial p∗ Is Special

We consider expansions of the polynomials p ∈ MixO into monomials over y.
This is used to show that, after substitution of Y from Section 3.2 into y, the
polynomial p∗ = [X2k]Mix(k,0)

I associated with mk,0 satisfies the following:

Theorem 3. Substitute Y into y in all of MixO to obtain the matrix MixI. Then
p∗ = [X2k]Mix(k,0)

I is not in the span of the other entries in MixI. Formally, if
∑

0≤ρ≤t≤K

αt,ρ · [XK−t]Mix(t,ρ)
I ≡ 0, (4)

with αt,ρ ∈ Q for all 0 ≤ ρ ≤ t ≤ K, then αk,0 = 0.

This theorem will be proven at the end of this subsection. We first consider poly-
nomials p ∈ MixO and require some notation for the set of monomials appearing
in p. Recall that O = Z[y], and note that [θ]p ∈ Z if p ∈ O and θ ∈ N

y.

Definition 8. For p ∈ O, let Mp = {θ ∈ N
y | [θ]p �= 0}. For P ⊆ O, define

MP =
⋃

p∈P Mp. If θ ∈ N
y and θ ∈ MP , we say that θ appears in P .

Our proof of Theorem 3 proceeds as follows: We first identify a special monomial
θ∗ ∈ N

y and show that, among all p ∈ MixO, the monomial θ∗ appears only in
p = p∗. Using this, we show that containment of p∗ in the span of the other
polynomials yields an annihilator for Y that contradicts Corollary 1.

To begin with, we define several quantities associated with monomials in N
y:

Definition 9. Let θ ∈ N
y and observe that θ is of the form

θ = (Ḃb1
1 Ḃb2

2 )(U̇u1
1 U̇u2

2 U̇u3
3 )(V̇ v1

1 V̇ v2
2 V̇ v3

3 )(Ḟ f1
1 Ḟ f2

2 Ḟ f3
3 Ḟ f4

4 ).

Define td(θ) :=
∑4

i=1 i(bi + ui + vi + fi). Let Θ := MMixO. For 
 ∈ N, let
Θ� := Θ ∩ {θ | td(θ) = 
}. Let occ(θ) := (

∑
i bi,

∑
i ui,

∑
i vi,

∑
i fi) and write

occB(θ) for the first entry of occ(θ).
3 Recall that I = Z[x], where x is the tuple of 11 indeterminates from (2) in Section 3.2.

Thus, evaluating Mix(t,ρ)
I (ξ) at ξ ∈ N

11 yields an integer value.
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Example 1. Let θ = Ḃ1
1Ḃ2

2U̇4
2 V̇ 5

2 Ḟ 6
1 . Then td(θ) = 1 · (1 + 6) + 2 · (2 + 4 + 5) = 29

and occ(θ) = (3, 4, 5, 6). Furthermore, we have occB(θ) = 3.

This notation is used for the statement of the following lemma, which follows
from a relatively straightforward application of the multinomial theorem.

Lemma 5. Let 0 ≤ t ≤ K. For a, b1, . . . , b� ∈ N with s :=
∑

i bi ≤ a, let(
a

b1,...,b�

)
= a!

b1!...b�!(a−s)! . With θ ∈ N
y written as in Definition 9, we have

[XK−t]Mix(t,ρ)
O =

∑

θ∈ΘK−t

(
t − ρ

b1, b2

)(
ρ

u1, u2, u3

)(
ρ

v1, v2, v3

)(
n − t − ρ

f1, f2, f3, f4

)

︸ ︷︷ ︸
=:λt,ρ(θ)

θ.

Corollary 2. A monomial θ ∈ Θ appears in [XK−t]Mix(t,ρ)
O iff td(θ) = K − t

and λt,ρ(θ) �= 0. The second condition is true iff occ(θ) ≤ (t − ρ, ρ, ρ, n − t − ρ),
where ≤ is considered component-wise.

We now define the special monomial θ∗ := Ḃk
2 and show that it appears only in

the previously defined special polynomial p∗ = [X2k]Mix(k,0)
O .

Lemma 6. If θ ∈ Θ contains θ∗ = Ḃk
2 as a factor, then θ = θ∗. Furthermore,

if θ∗ appears in p ∈ MixO, then p = p∗. In fact, we have [θ∗]p∗ = 1.

Proof. If θ ∈ Θ contains Ḃk
2 , then td(θ) ≥ 2k. Since θ ∈ Θ, it must appear in

[XK−t]Mix(t,ρ)
O for some 0 ≤ ρ ≤ t ≤ K. Then K − t ≥ td(θ) by Corollary 2.

Recall that K = 3k, implying t ≤ k. Since θ contains Ḃk
2 , we have occB(θ) ≥ k.

But by Corollary 2, we also have occB(θ) ≤ t − ρ.
The last two inequalities and t ≤ k imply ρ = 0 and occB(θ) = k. Thus θ

appears only in p∗. But then td(θ) = 2k, and thus θ = θ∗. Finally, [θ∗]p∗ =
λk,0(θ∗) = 1 follows independently from Lemma 5. 	

This allows us to finish the subsection with the promised proof of Theorem 3.

Proof (of Theorem 3). Assume there were coefficients αt,ρ satisfying (4) with
αk,0 �= 0. With λt,ρ(θ) from Lemma 5, write [XK−t]Mix(t,ρ)

O =
∑

θ∈Θ λt,ρ(θ) · θ
and rearrange (4) to obtain

A :=

(

αk,0 ·
∑

θ∈Θ

λk,0(θ) · θ

)

+
∑

θ∈Θ

θ
∑

0≤ρ≤t≤K
(t,ρ) 
=(k,0)

αt,ρ · λt,ρ(θ) ≡ 0. (5)

By Lemma 6, the monomial θ∗ = Ḃk
2 appears only in the parentheses and has

λk,0(θ∗) = 1. Regrouping (5) yields A = αk,0 · θ∗ +
∑

θ 
=θ∗ μ(θ) · θ, for new
coefficients μ, with the property that A(B1, . . . , F4) ≡ 0.

Also by Lemma 6, the only monomial in A that contains θ∗ is θ∗ itself. There-
fore, A is a nontrivial annihilator for the set Y from Section 3.2, with the property
that [θ∗]A = αk,0 ∈ Q is non-zero. Corollary 1 then leads to a contradiction:
Since [θ∗]A �= 0 is constant, it is unaffected by the substitution Ḟ1 := U̇1+V̇1−Ḃ1,
thus contradicting Aθ∗ ≡ 0 from Corollary 1. 	
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4.2 Deriving Linear Equations from Mix

In this subsection, we complete the proof of Theorem 2. For this, we substitute
the elements in Y from Section 3.2 into MixO. Using the gadget V(x), we can
evaluate the resulting polynomials Mix(t,ρ)

I to yield integer values.

Definition 10. For ξ ∈ N
11, let Mix(ξ) ∈ Z

(K+1)×(K+1) be the matrix obtained
from MixI by evaluating each of its entries p ∈ I at ξ.

For Ξ = (ξ1, . . . , ξD) with ξi ∈ N
11, let Mix(Ξ) ∈ Z

D×(K+1)2 be such that
the i-th row of Mix(Ξ) contains the entries of Mix(ξi) as a row vector. Consider
columns of Mix(Ξ) to be indexed by pairs (t, ρ) and write A(t,ρ) for column (t, ρ).

Remark 5. If |Ξ| ≤ nO(1) and all entries of Ξ have bit-length nO(1), then Mix(Ξ)
can be computed in time nO(1): It holds by Definition 5 that Mix(t,ρ)

O ∈ O[X ]
is the product of n polynomials, each of degree ≤ 4. Any [X�]Mix(t,ρ)

O ∈ O can
therefore be computed, the elements in Y can be substituted into it, and the
resulting p ∈ I can be evaluated at any ξi, all in time nO(1).

In the following, we fix Ξ = (ξ1, . . . , ξD), with D = (K + 1)11, to some enu-
meration of the grid {0, . . . , K}11. Furthermore, if B ∈ Z

�×b2 is a matrix whose
columns are indexed by pairs (i, j), and C ∈ Z

b×b, let B � C ∈ Z
� be defined by

(B � C)t =
∑

ij Bt,(i,j)Cij . It can be checked that Lemma 4 implies

Mix(Ξ) �

⎛

⎜
⎝

m0,0 . . . mK,0
. . .

...
mK,K

⎞

⎟
⎠ =

⎛

⎜
⎝

[XK ]M(H(ξ1))
...

[XK ]M(H(ξD))

⎞

⎟
⎠ , (6)

with H(ξ) for ξ ∈ N
11 as in Remark 4. Recall that [XK ]M(H(ξ)) ∈ N counts

the K-matchings in H(ξ). Since K = 3k, we can thus evaluate the right-hand
side of (6) by D oracle queries of the form (H(ξ), K) to p#Match.

We consider (6) as a linear system of equations in the unknowns mt,ρ. By
Remark 5, Mix(Ξ) can be evaluated in time nO(1). This implies that a solution
to (6) can also be found in time nO(1). The final and crucial step towards the
proof of Theorem 2 now consists of showing that all solutions to (6) agree on
their values for mk,0. For this, we build upon Theorem 3 to show that column
(k, 0) of Mix(Ξ) is not contained in the linear span of its other columns.

First, we require a generalization of the fact that every univariate polynomial
p ∈ Z[x] of degree d that vanishes at d + 1 points has p ≡ 0. This is stated in
the following lemma, a corollary of the classical Schwartz-Zippel lemma [8,15].

Lemma 7. Let p ∈ Z[x1, . . . , xs] be a polynomial with deg(p) ≤ d. If p(ξ) = 0
holds for all ξ ∈ {0, . . . , d}s, then p ≡ 0. 	

From this, we obtain the last missing step for the proof of Theorem 2.

Lemma 8. If
∑

t,ρ αt,ρ · A(t,ρ) = 0 for coefficients αt,ρ ∈ Q, then αk,0 = 0.
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Proof. Observe that deg(p) ≤ K for p ∈ MixI: All monomials θ appearing in
p ∈ MixO have td(θ) ≤ K, and it can be verified that substituting Y into y then
yields polynomials of degree ≤ K. Also recall that I = Z[x] with |x| = 11.

Assume there were coefficients αt,ρ with αk,0 �= 0 and
∑

t,ρ αt,ρ · A(t,ρ) = 0.
Then q =

∑
t,ρ αt,ρ · [XK−t]Mix(t,ρ)

I vanishes on {0, . . . , K}11. Thus q ≡ 0 by
Lemma 7, contradicting Theorem 3 because αk,0 �= 0. 	
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