
c© The Author 2005. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.
For Permissions, please email: journals.permissions@oupjournals.org

doi:10.1093/comjnl/bxh000

Parameterized complexity and

approximation algorithms

Dániel Marx

Institut für Informatik, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099, Berlin,
Germany.

Email: dmarx@informatik.hu-berlin.de

Approximation algorithms and parameterized complexity are usually considered

to be two separate ways of dealing with hard algorithmic problems. In this paper,

our aim is to investigate how these two fields can be combined to achieve better

algorithms than what any of the two theories could offer. We discuss the different

ways parameterized complexity can be extended to approximation algorithms,

survey results of this type, and propose directions for future research.

1. INTRODUCTION

Many of the computational problems that arise in
practice are optimization problems: the task is to find
a solution where the cost, quality, size, profit, or some
other measure is as large or small as possible. The
NP-hardness of an optimization problem implies that,
unless P = NP, there is no polynomial-time algorithm
that finds the exact value of the optimum.

Of course, the unfortunate fact that we cannot
find the optimum in polynomial time does not give
us an excuse to ignore the problem. After all,
in practice, some solution is required. If we want
to design and analyze algorithms for such problems
in a mathematically rigorous way, then there are
several options ahead of us. The field of exact
algorithms relaxes the requirement that the running
time is polynomial, and here our aim is to find
the algorithm with the fastest running time, which
is usually exponential in the size of the input. In
parameterized complexity the running time is analyzed
in finer detail: instead of expressing it as a function
of the input size, one or more parameters of the
instance are defined, and we investigate the effect of
these parameters on the running time. The goal is to
design algorithms that work efficiently if the parameters
of the input instance are small (even if the size of
the input is large). When designing approximation
algorithms, we relax the requirement that the algorithm
produces an optimum solution, and our aim is to devise
a polynomial-time algorithm such that the solution it
produces is not necessarily optimal, but there is some
worst-case bound on the solution quality.

The motivation for studying approximation algo-
rithms is twofold. Firstly, if we have an approximation
algorithm whose error guarantee is really good (say, the
maximum error is 1%), then in practice it can be as

good as an optimum solution. However, for many ap-
proximation algorithms in the literature, the error guar-
antee is much higher (50%, 100%, 1000%, 10000%, or
even worse). In this case we cannot argue that this ap-
proximation algorithm is almost as good as an exact
algorithm. Nevertheless, such algorithms are still im-
portant from the theoretical point of view, as they al-
low us to better understand and classify problems and
their variants.

In the literature on approximation algorithms, the
goal is almost always to find a polynomial-time
approximation algorithm. However, the question of
approximability makes sense also in the framework of
parameterized complexity. By applying ideas from both
theories, we might be able to tackle problems that are
intractable to both theories. There can be problems
that are both inapproximable and fixed-parameter
intractable, but have parameterized approximation
algorithms running in fpt-time.

The aim of this survey paper is to investigate the
various ways the notion of approximability can appear
in parameterized complexity. We review the results on
this topic from the literature, and try to interpret these
results in a common framework. To motivate further
research, we discuss the different directions that can be
pursued. The following four main issues are identified:

• Approximation with instance parameters.
Consider an optimization problem, where an integer
parameter k is associated with every input instance.
Is it possible to find an approximation algorithm
with running time f(k) · |x|O(1)? For example, in
the Partial Vertex Cover problem the task is
to cover as many edges as possible with k vertices
(where k is part of the input). Is it possible to find
a 2-approximation in time f(k) · |x|O(1)? Another
example: Graph Coloring is fixed-parameter
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intractable if the parameter is the genus of the graph.
However, there is a 2-approximation algorithm with
running time f(g) · |x|, if g is the genus of the graph
[38].

• Approximation parameterized by cost. The
most direct application of parameterized complexity
to optimization problems is to parameterize by the
optimum value. That is, we try to find an exact
algorithm that solves the problem in f(OPT) · |x|O(1)

time, where OPT is the value of the optimum
solution. The motivation is that such an algorithm
can work efficiently if the optimum value is very
small compared to the size of the input, which might
be a reasonable assumption in certain applications.
We can investigate the analogous question for
approximation algorithms as well. For example, we
might be interested in the question whether there is
a 2-approximation algorithm for Maximum Clique
with running time f(OPT) · |x|O(1).

• Performance functions instead of performance
ratios. The usual aim of approximation theory is to
find an algorithm such that the ratio of the optimum
value and the value of the solution provided by the
algorithm can be bounded. For example, in the case
of a minimization problem, the aim is to ensure that
the cost of the solution is at most c ≥ 1 times the
optimum, for a constant c as small as possible. We
investigate a more general notion of approximability:
instead of the requirement that the value of the
solution is at most c times the optimum, we require
that it is at most %(OPT) times the optimum for some
function %.

• Quality of approximation as parameter. For
certain problems, the approximation ratio can be as
close to 1 as we would like: for every ε > 0, there
is a polynomial-time algorithm with approximation
ratio 1+ ε. A polynomial-time approximation scheme
(PTAS) is an algorithm that has a parameter ε in the
input, and produces a 1 + ε-approximate solution in
time |x|f(1/ε). Typically, an approximation scheme

has running time such as |x|1/ε4 or 21/ε · |x|2. To
investigate the dependence of the running time on ε,
we study the parameterized version of the problem
with 1/ε being the parameter. We are especially
interested in the question whether 1/ε can be taken
out of the exponent of the input size (as in 21/ε · |x|2).

These four issues are not completely separate from each
other. There are many ways in which they overlap and
interact. However, we would like to emphasize here
that parameterized approximation is a complex field,
and there are many subareas to investigate.

Section 2 reviews the basic notions of parameterized
complexity and approximation algorithms. The four
issues are discussed in Sections 3–6. Conclusions are
given in Section 7. Most of the results presented in

this paper are taken from the literature. Some of the
cited results are mentioned only informally, while others
are presented as theorems. To maintain the flow of
the text, only those results are highlighted as theorems
that are directly related to both parameterization and
approximability.

2. PRELIMINARIES

Parameterized complexity. We follow [54] for the
standard definitions of parameterized complexity. Let
Σ be a finite alphabet. A decision problem is
represented by a set Q ⊆ Σ∗ of strings over Σ. A
parameterization of a problem is a polynomial-time
computable function κ : Σ∗ → N. A parameterized
decision problem is a pair (Q, κ), where Q ⊆ Σ∗ is an
arbitrary decision problem and κ is a parameterization.1

Intuitively, we can imagine a parameterized problem
as being a decision problem where each input instance
x ∈ Σ∗ has a positive integer κ(x) associated with
it. A parameterized problem (Q, κ) is fixed-parameter
tractable (FPT) if there is an algorithm that decides
whether x ∈ Q in time f(κ(x)) · |x|c for some constant
c and computable function f . An algorithm with
such running time is called an fpt-time algorithm or
simply fpt-algorithm. The theory can be extended to
problems having multiple parameterizations; in this
case we say that a problem (Q, κ1, . . . , κp) is fixed-
parameter tractable with combined parameters κ1, . . . ,
κp if it can be solved in time f(κ1(x), . . . , κp(x)) · |x|c.

Many NP-hard problems were investigated in the
parameterized complexity literature, with the goal of
identifying fixed-parameter tractable problems. It
turns out that several of these problems, e.g.,
Minimum Vertex Cover, Longest Path, Disjoint
Triangles, etc., are indeed fixed-parameter tractable.
There is a powerful toolbox of techniques for designing
fpt-algorithms: kernelization, bounded search trees,
color coding, well-quasi ordering, just to name some
of the more important ones. On the other hand,
certain problems resisted every attempt at obtaining
fpt-algorithms. Analogously to NP-completeness in
classical complexity, the theory of W[1]-hardness can be
used to give strong evidence that certain problems are
unlikely to be fixed-parameter tractable. W[1]-hardness
is usually proved by presenting a parameterized
reduction. For the technical details, the reader is
referred to [45, 54].

Optimization problems and approximation. For each
input instance of an optimization problem there is a set
of feasible solutions associated to it, and a cost measure
is defined for each feasible solution. The task is to

1Some authors (e.g., [45]) prefer to define parameterized
problems such that the parameter value is not a function of the
instance, but it is a number explicitly given in the instance. Each
approach has its strengths and weaknesses. We prefer to define
the parameter as a function, to emphasize that a problem can
have many possible parameterizations.
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find a feasible solution where the measure is as good as
possible. Following [10], an NP optimization problem is
formally defined as a 4-tuple (I, sol, cost, goal), where

• I is the set of instances.

• For an instance x ∈ I, sol(x) is the set of feasible
solutions of x. The length of each y ∈ sol(x) is
polynomially bounded in |x|, and it can be decided
in polynomial time whether y ∈ sol(x) holds for given
x and y.

• Given an instance x and a feasible solution y,
cost(x, y) is a polynomial-time computable positive
integer.

• goal is either min or max.

The goal is to find a feasible solution y that achieves
the best objective value, i.e.,

cost(x, y) = goal{cost(x, y′) : y′ ∈ sol(x)}.

The cost of the optimum solution for instance x is
denoted by opt(x). If y is a solution for instance x,
then the performance ratio of y is defined as

R(x, y) =

{

cost(x, y)/opt(x) if goal = min,

opt(x)/cost(x, y) if goal = max.

Thus R(x, y) is always at least 1; the closer it is to
1, the closer the solution is to the optimum. For
a real number c > 1, we say that an algorithm is
a c-approximation algorithm, if it always produces a
solution with performance ratio at most c.

Approximation schemes. It is a very common situa-
tion that after finding the first constant factor approx-
imation for some problem, improved algorithms with
better and better approximation ratios are published in
subsequent papers. For certain problems, an endless se-
ries of improvements is possible, as there is no “best”
approximation ratio. We say that a problem X ad-
mits a polynomial-time approximation scheme (PTAS)
if for every ε > 0, there is a polynomial-time (1 + ε)-
approximation algorithm for X . More precisely, we
want this to hold in a uniform way: there is one al-
gorithm that can produce an arbitrary good approx-
imation. That is, there is an algorithm A such that
given an instance x of X and an ε > 0, A produces a
(1 + ε)-approximate solution in time |x|f(1/ε) for some
function f . Clearly, such an algorithm runs in poly-
nomial time for every fixed value of ε. Approximation
schemes are very abundant for geometric problems, but
the literature contains many examples for other types of
problems as well, e.g., for scheduling, packing, or pat-
tern matching problems.

If ε is small then the exponent of the polynomial
|x|f(1/ε) can be very large. Two restricted classes of
approximation schemes were defined that avoid this

problem. An efficient polynomial-time approximation
scheme (EPTAS) is a PTAS with running time of
the form f(1/ε) · |x|O(1), while a fully polynomial-time
approximation scheme (FPTAS) runs in time (1/ε)O(1) ·
|x|O(1).

It is possible to prove negative results on the existence
of approximation schemes using APX-hardness. APX is
the class of optimization problems that have constant-
factor approximation algorithms. A PTAS for an APX-
hard problem would imply that there is a PTAS for
every problem in APX. The celebrated PCP theorem
(cf. [10]) states that this would also imply P =
NP. Consequently, for every APX-hard optimization
problem there exists a constant c0 > 1 such that there
is no polynomial-time c0-approximation algorithm for
the problem, unless P = NP. Often, there is a large
gap between this lower bound c0 and the best known
approximation ratio. However, for the problem Max
E3SAT, a tight bound of 8

7 is proved by H̊astad [67].

Decision problems. In many cases, it is easier to
work with decision problems than with optimization
problems: most of complexity theory is developed for
decision problems. There is a standard way in which
an optimization problem can be turned into a more or
less equivalent decision problem. If X is an optimization
problem, then we define decision problem X≤ as

X≤
Input: An instance x of X , an integer k.

Decide: opt(x) ≤ k

The problems X≥ and X= can be defined analogously.
If X can be solved optimally in polynomial time, then
clearly all these decision problems can be solved in
polynomial-time as well. The other direction is not
that clear. If we can solve X≤ in polynomial time,
then opt(x) can be determined in polynomial time using
binary search, but this does not give us a solution
with optimum cost. However, for many problems, if
we can determine the optimum, then we can actually
find an optimum solution by repeatedly determining
the optimum cost for slightly modified versions of the
instance, a strategy generally known as polynomial-time
self-reducibility.

In parameterized complexity, the problems X≤, X≥,
X= are studied with the parameter k. If X is a
minimization (resp., maximization) problem, then the
standard parameterization of X is the problem X≤
(resp., X≥) parameterized by k. If the standard
parameterization is fixed-parameter tractable, then
this means that we have an efficient algorithm for
determining the optimum for those instances where the
optimum is small.
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3. APPROXIMATION WITH INSTANCE
PARAMETERS

The first way of studying parameterized approximation
algorithms that we discuss here is to define a
parameterization of the optimization problem, and
instead of looking for a polynomial-time algorithm, our
goal is to find an fpt-time algorithm that produces
an approximate solution. That is, we define a
parameterization κ that assigns a positive integer to
each instance x ∈ I, and the approximation algorithm
should run in time f(κ(x)) · |x|O(1). In this case
we say that the algorithm is an fpt-approximation
algorithm with parameterization κ. If the performance
ratio of the algorithm is c, then we say that it is
an fpt c-approximation algorithm. Hopefully, such an
algorithm can achieve a better approximation ratio than
traditional polynomial-time approximation algorithms,
as it has more time at its disposal.

The following two results are examples of this type
of parameterized approximation algorithms (definitions
will be given later):

• Metric TSP with Deadlines (∆DlTSP) can be 2.5-
approximated in time O(|x|3 + k!k), where k is the
number of deadline vertices [14].

• Vertex Coloring can be 2-approximated in f(g) ·
|x| time for graphs with genus g [38].

Broadly speaking, there are two large categories
of parameterizations: the parameter is either some
obvious measure of the problem instance (e.g., the
number of deadline vertices in ∆DlTSP), or it is some
structural property of the input structure that describes
(in some well-defined sense) how complicated the input
is (e.g, tree width, genus, etc.) In both cases, it can be
interesting to find approximation algorithms that are
efficient for small parameter values. Sections 3.1 and
3.2 discuss results of these two types, respectively.

Parameterized approximation schemes can be defined
in a similar manner. An fpt-approximation scheme
(fpt-AS) with parameterization κ is an algorithm whose
input is an instance x ∈ I and an ε > 0, and it produces
a (1+ε)-approximate solution in time f(ε, κ(x)) · |x|O(1)

for some computable function f . For example, Har-
Peled and Mazumdar [66] present an f(ε, k, d) · |x| time
approximation scheme for the Minimum k-Median
problem in d dimensions, which means that the problem
has an fpt-AS with combined parameters k and d. This
can be considered as a generalization of EPTAS: the
constant factor depends not only on ε, but also on the
parameters of the instance. Sections 3.1 and 3.2 review
this type of approximation results as well.

3.1. Measure parameters

In this section we overview parameterized approxima-
tion results where the parameter is some obvious mea-
sure of the input instance.

The Traveling Salesperson Problem (TSP) is one of
the most studied optimization problems. The input
consists of n cities and a matrix describing the distances
between the cities (the distances can be arbitrary
nonnegative integers). The task is to start from one
of the cities, visit every city in some order, and then
return to the starting city. We have to find an ordering
of the cities such that the length of this tour is as
small as possible. The problem is NP-hard, in fact,
there is no c-approximation algorithm for any c ≥ 1
(unless P = NP). The Metric Traveling Salesperson
problem is a restricted version of TSP where we assume
that the distance matrix satisfies the triangle inequality
d(x, y) ≤ d(x, z) + d(z, y) for any three cities x, y, z.
This assumption obviously holds in applications where
we know that the direct route is never longer than
a route via multiple cities. Metric TSP can be 1.5-
approximated using Christofides’ Algorithm [31], but
has no polynomial-time approximation scheme, unless
P = NP [97].

Metric TSP with Deadlines (∆DlTSP) is
investigated in [14]. Here we have the further restriction
that some subset D of the vertices have deadlines
assigned to them, and we have to visit each such
vertex before its deadline. That is, each v ∈ D
has a deadline d(v), and the length of the tour from
the starting city to v must not exceed d(v). The
task is to find the shortest tour that satisfies all
the deadlines. The problem has no polynomial-time
constant factor approximation algorithm, unless P =
NP. Furthermore, it is not fixed-parameter tractable if
the parameter is the number |D| of deadline vertices;
in fact, it is NP-hard even if there is only one deadline
vertex. Thus neither approximation nor parameterized
complexity alone can tackle this problem. However, [14]
presents a O(|x|3 +k!k) time algorithm that produces a
2.5-approximate solution, if k is the number of deadline
vertices. Therefore, the combination of approximation
and parameterized complexity results in an efficient
approximation algorithm for small values of k.

Theorem 3.1. ([14]) Metric TSP with Dead-
lines parameterized by the number of deadline vertices
has an fpt 2.5-approximation algorithm.

The Vertex Cover problem (cover all the edges
of a graph with as few vertices as possible) is well-
studied both in the parameterized complexity and
approximation algorithms literature. Vertex Cover
is fixed-parameter tractable (see e.g., [29, 112]) and
has a simple 2-approximation algorithm. However, the
problem does not have a PTAS (unless P = NP); in
fact, some recent conjectures imply that the factor 2 is
best possible [76].

Partial Vertex Cover is in some sense the dual
of Vertex Cover: given a graph G with an integer
k, the task is to cover as many edges as possible
with k vertices. It can be shown that this problem is
W[1]-hard with parameter k [65]. The straightforward
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greedy algorithm (repeatedly select a vertex that covers
as many uncovered edges as possible) gives a 1.582-
approximation [70], but the problem does not admit
a PTAS [98]. Here we show that the problem admits an
fpt-AS:

Theorem 3.2. Partial Vertex Cover admits an
fpt-AS with parameter k, the number of vertices in the
solution.

Proof. We present an f(ε, k) · |x|O(1) time algorithm
that produces a (1 + ε)-approximate solution for the
problem. Let D := 2

(

k
2

)

/ε and let v1, . . . , vn be the
vertices of the graph ordered by non-increasing degree,
i.e., d(vi) ≥ d(vj) for i < j. We consider two cases:

Case 1: d(v1) ≥ D. In this case the algorithm
outputs the set S = {v1, . . . , vk}. These k vertices cover

at least
∑k

i=1 d(vi) −
(

k
2

)

edges: there are at most
(

k
2

)

edges between the vertices of S, thus at most
(

k
2

)

edges
are counted twice when the degrees are summed. The
value of the optimum solution cannot be larger than
∑k

i=1 d(vi), hence the value of the constructed solution
S is at least

∑k
i=1 d(vi) −

(

k
2

)

∑k
i=1 d(vi)

≥ 1 −
(

k
2

)

D
= 1 − ε

2
≥ 1

1 + ε

times the optimum, that is, the performance ratio is at
most 1 + ε.

Case 2: d(v1) ≤ D. In this case the optimum value
is at most kD, and we are able to determine it exactly
in fpt-time. For each 1 ≤ ` ≤ kD, the algorithm checks
whether it is possible to cover at least ` edges with k
vertices. We use the method of color coding: random
colors between 1 and ` are assigned to the edges, and
we try to find a solution where the ` edges covered by
the vertices have distinct colors. As shown below, the
existence of such a solution can be checked in fpt-time
for a given coloring. If it is not possible to cover ` edges,
then obviously the algorithm does not find a solution
for any random coloring. On the other hand, if there is
a solution, then the random coloring assigns distinct
colors to the ` edges with probability at least `−`.
Therefore, we have to repeat the algorithm on average
at most `` times to find a solution. Note that `` can be
bounded by a function of ε and k only. The algorithm
can be derandomized using standard techniques, see [54,
Section 13.3], [45, Section 8.3], and [3].

For a particular coloring, we proceed as follows. We
consider every possible partition P = {P1, . . . , Pk} of
the color set {1, . . . , `} into k classes; there are at most
k` such partitions. For a given partition P, we try to
find vertices u1, . . . , uk such that for each color c ∈ Pi,
vertex ui covers at least one edge with color c. This can
be easily done in polynomial time.

One of the most fruitful areas for developing
approximation algorithms is the field of geometric
problems. The geometric nature of the problem

allows us to use all sorts of approximation techniques.
Very often, the problem even admits a PTAS. The
computational geometry community has been doing
parameterized approximation analysis for several years:
the quest for obtaining approximation algorithms where
certain constants do not appear in the exponent of the
input size is evident in the literature.

The Minimum k-Center problem arises as a
fundamental problem in many applications such as
facility location, clustering, and information retrieval.
Given a set of points in the plane and an integer k, the
task is to select k center points such that each input
point is close to some selected point. More precisely,
we have to minimize the maximum distance of a point
to the closest selected point.

Minimum k-Center
Input: A set S ⊆ R × R of points, an integer k.
Find: A subset C ⊆ S of size k.
Goal: Minimize maxs∈S minc∈C d(s, c).

There are several ways of interpreting distance
in the plane. Here we discuss the two most
common cases, where the distance means L2 metric
(d((x1, y1), (x2, y2)) =

√

|x1 − x2|2 + |y1 − y2|2) or L∞
metric (d((x1, y1), (x2, y2)) = max{|x1−x2|, |y1−y2|}).
In both cases, the problem can be 2-approximated in
polynomial time, but there is some constant α < 2
such that it is NP-hard to find an α-approximation [56].
If the number of centers is a fixed constant k, then
the problem can be solved exactly in time |x|O(k) by
brute force. This cannot be improved to f(k) · |x|O(1)

time: parameterized by the number k of centers, the
problem is W[1]-hard in the L∞ metric [83]. However,
there are efficient approximations for every fixed value
of k: [1] shows that for every fixed k there is a linear-
time approximation scheme, i.e., a (1 + ε)-approximate
solution can be found in f(ε, k) · n time. Using the
terminology of parameterized approximation,

Theorem 3.3. ([1]) Minimum k-Center admits an
fpt-AS with parameter k.

Minimum k-Median is the variant of the problem
where instead of minimizing the maximum distance to
the closest center point, the optimization goal is to
minimize the sum of these distances. Unlike Minimum
k-Center, this problem admits an EPTAS in the L2

metric (even if k is part of the input) [66].
Most geometric problems can be easily generalized to

higher dimensions. If the dimension of the input can
be arbitrarily large, then usually the problem becomes
as hard as on any general metric, since we lose the
nice geometric properties that make approximation easy
(cf. [114]). However, in many cases the geometric
approximation schemes can be generalized to any fixed
dimension d. The approximation schemes for Minimum
k-Center [1] and for Minimum k-Median [66] work
for an arbitrarily fixed dimension d, and the running
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time is f(ε, k, d)·|x|O(1) and f(ε, d)·|x|O(1), respectively.
Therefore,

Theorem 3.4. ([1, 66]) Minimum k-Median
admits an fpt-AS with parameter d. Minimum k-
Center admits an fpt-AS with combined parameters
d and k.

Dimension is a very natural parameter for the study
of geometric problems. In the examples above, fpt-
algorithms are possible if the dimension is taken as
parameter. Conceivably, there can be problems where
it is possible to show that the exponent of the input size
has to increase as the dimension increases. There is very
little work done in the literature on proving hardness
results for problems parameterized by the dimension of
the space. The only such result that we are aware of
is on the Subset Congruence problem. Given two
sets of points A, B ⊆ Rd, the task is to decide if there
is a distance-preserving transformation that makes A
equal to a subset of B. The problem is polynomial-time
solvable for every fixed d, but W[1]-hard parameterized
by the dimension d [21].

3.2. Structural parameters

In the previous section we discussed parameters
that measure the size of some part of the input
or the solution. These parameters were “obvious.”
Parameterization can be more subtle than that: it can
measure arbitrary properties of the input structures. In
many cases, the parameter measures how complicated
the input is, in some precise, well-defined sense.
The motivation is to obtain algorithms that are
efficient for less complex instances, where less complex
means that the parameter value is small. Such an
algorithm can be useful in applications where it is a
reasonable assumption that the input is not completely
unstructured, and the value of this particular parameter
is usually small.

Below we list some parameters that describe
complexity in graphs. The list is not exhaustive;
depending on the problem or application, many such
parameters can be defined.

• Maximum degree. The maximum degree of a
graph is the maximum number of neighbors a vertex
can have.

• Diameter. The diameter of a graph is the maximum
distance between any two vertices.

• Tree width. The tree width is a parameter that
describes how “tree-like” the graph is. We omit the
technical definition, see e.g., [16] for more details.
In many cases, problems on graphs with small tree
width can be handled with dynamic programming
techniques.

• Genus. The genus of a graph describes how close
the graph is to being a planar graph. A graph has

genus 0 if and only if it is planar (i.e., can be drawn
on the sphere without crossing edges). A graph has
genus at most k if it can be drawn on the sphere with
k “handles” attached to the sphere (cf. [41, Appendix
B]).

• Distance from a class F. Let F be an arbitrary
class of graphs (such as planar, bipartite, interval,
etc.) The class F + kv (resp., F + ke) contains those
graphs that can be constructed from some G ∈ F with
the addition of k new vertices2 (resp., edges). The
classes F − kv and F − ke are similarly defined. For
any problem and any class F, we can assume that the
input is in, say, F+kv for some k, and define this k to
be the parameter. This line of research was initiated
by Cai [22], and later pursued in e.g., [64, 86].

The first problem that we investigate here is Vertex
Coloring: given a graph G, find a coloring of the
vertices with minimal number of colors such that
adjacent vertices receive different colors. The minimum
number of colors that is required to color the vertices of
G is called the chromatic number of G and is denoted by
χ(G). Chromatic number is not approximable within
|V |1−ε for any ε > 0, unless ZPP = NP [49]. The
problem remains hard for planar graphs: it is NP-
complete to decide whether a planar graph is 3-colorable
[111]. However, by the celebrated Four Color Theorem
[5], four colors are sufficient for every planar graph, and
there is a polynomial-time algorithm that actually finds
this coloring [104]. As it is easy to check whether a
graph is 2-colorable, a 4

3 -approximate coloring can be
found in polynomial time for planar graphs.

Is there a constant factor approximation algorithm
for graphs that are “almost” planar graphs? We
consider two classes of graphs that are close to being
planar: bounded genus graphs and planar+kv graphs.
For bounded genus graphs, the following result is
implicit in [38]:

Theorem 3.5. ([38]) Vertex Coloring has an fpt
2-approximation algorithm if the parameter is the genus
of the graph.

For planar+kv graphs, an easy brute force algorithm
gives a 7

3 -approximation:

Theorem 3.6. Vertex Coloring has an fpt 7
3 -

approximation algorithm for planar+kv graphs.

Proof. Let X = {v1, . . . , vk} be k vertices of G such that
G\X is planar (here we gloss over the question how this
set is found or whether it is given in the input together
with the planar+kv graph, cf. [88]). We can determine
χ(G[X ]) by trying all the kk possible colorings of G[X ].
As discussed above, a 4

3 -approximate coloring of the
planar graph G \ X can be found in polynomial time.
The coloring on G[X ] and the coloring on G \ X can

2More precisely, we add k new vertices and connect them with
each other and with the old vertices arbitrarily.
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be combined to obtain a coloring of the whole graph
with c = χ(G[X ]) + 4

3 · χ(G \ X) colors. It is easy
to check that c ≤ 7

3χ(G); the worst case occurs when
χ(G) = χ(G[X ]) = χ(G \ X) = 3, but the algorithm
produces a coloring with 3 + 4 = 7 colors.

Note that Theorems 3.5 and 3.6 are incomparable:
bounded genus graphs might not be planar+kv for any
k (e.g., large toroidal grids) and planar+1v graphs can
have unbounded genus (e.g., a grid with an additional
vertex connected to every vertex).

The Maximum Independent Set problem is NP-
hard for planar graphs [78], but has a linear-time
approximation scheme [79, 11]. It follows from [60]
and [36] that this can be generalized to bounded-genus
graphs:

Theorem 3.7. ([60, 36]) Maximum Independent
Set admits a linear-time fpt-AS if the parameter is the
genus of the graph.

For planar+kv graphs, a (1 + ε)-approximation of
Maximum Independent Set can be found by trying
all 2k possibilities on the k-extra vertices, and then by
finding a (1+ε)-approximation on the remaining graph.

Theorem 3.8. Maximum Independent Set ad-
mits a linear-time fpt-AS on planar+kv graphs.

In Vertex Coloring the goal is to minimize the
number of different colors used. In other words, if
we identify the set of colors with the set of positive
integers, then we try to minimize the maximum of
the colors assigned. In Minimum Sum Coloring,
the optimization goal is to minimize the sum of the
colors (positive integers) on the vertices. Besides
its combinatorial interest, the problem is motivated
by applications in scheduling and VLSI design [12,
92]. The Minimum Sum Edge Coloring problem
is defined analogously. Minimum Sum Coloring
is linear-time solvable on bounded tree width graphs
[73], but Minimum Sum Edge Coloring is one of
the few problems that are polynomial-time solvable on
trees [55, 107], but NP-hard already on graphs with
tree width 2 [81]. However, Minimum Sum Edge
Coloring has a linear-time PTAS for bounded tree
width graphs (in fact, this is true even for the much
more general multicoloring version):

Theorem 3.9. ([84]) Minimum Sum Edge Color-
ing admits an fpt-AS if the parameter is the tree width.

Note that without parameterization we cannot obtain
an approximation scheme for Minimum Sum Edge
Coloring, since the problem is APX-hard [81].

4. PARAMETERIZATION BY COST

In Section 3, our aim was to develop approximation
algorithms that work efficiently if some parameter of
the input is small. Perhaps the most obvious parameter
of an optimization problem instance is the optimum

cost. What we would like to have is an algorithm
that efficiently finds an approximation of the optimum,
if this optimum is small. Notice that many of the
standard, well-studied problems in the parameterized
complexity literature are standard parameterizations of
certain optimization problems (e.g., Minimum Vertex
Cover, Maximum Clique, Minimum Dominating
Set, Longest Path, etc.) By studying the fixed-
parameter tractability of these problems, we are
investigating the possibility of having efficient exact
algorithms for these problems in the case when the
optimum is small. When a W[1]-hardness result shows
that such an exact algorithm is unlikely to exist, then it
is natural to study whether it is possible to approximate
the optimum, if it is small.

Recently, at least three papers tried to extend
parameterized complexity into this directions [24,
30, 43]. In Section 3, the definition of fpt-
approximability (when the parameter is some property
of the optimization instance) was a straightforward
generalization of polynomial-time approximability. The
definition becomes technically more delicate if we want
to parameterize by cost. The first complication is that
we have to decide whether we want to parameterize by
the optimum cost (which is somewhat counterintuitive,
since presumably the cost is hard to determine), or
we assume that the input contains a parameter k
(the cost that should be reached), as in the standard
parameterization of the problem. Here we follow the
definition proposed by Chen et al.[30]:

Definition 4.1. Let X = (I, sol, cost, goal) be an
optimization problem. A standard fpt-approximation
algorithm with performance ratio c for X is an
algorithm that, given an input (x, k) ∈ Σ∗×N satisfying

{

opt(x) ≤ k if goal = min,

opt(x) ≥ k if goal = max,
(*)

computes a y ∈ sol(x) in time f(k) · |x|O(1) such that

{

cost(x, y) ≤ k · c if goal = min.

cost(x, y) ≥ k/c if goal = max,
(**)

For inputs not satisfying condition (*), the output can
be arbitrary.

The word “standard” signifies that this is the approx-
imation version of the standard parameterization, and
distinguishes it from the case when the parameter is
unrelated to the cost (as in Section 3).

Unfortunately, we do not have a good example for this
form of approximability, an example where a problem is
not fixed-parameter tractable, but has a standard fpt-
approximation algorithm with some performance ratio
c > 1. Nevertheless, there are some examples of fpt-
approximation algorithms appearing in the literature.
Tree width is fixed-parameter tractable, in fact for
every k, a tree decomposition of width k can be
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computed in linear time if exists [17]. This algorithm is
quite complicated and not practical. However, there
are much simpler fpt-algorithms that produce tree
decompositions having width at most a constant factor
larger than the optimum [105, 102, 103, 4]. In the
case of the rank width of graphs and branch width of
matroids represented over a fixed finite field, we have
the curious situation that it can be decided in fpt-time
whether the width is at most k [33, 68], but it is not
known whether a decomposition of width at most k
(if it exists) can be constructed in fpt-time. However,
standard fpt-approximation algorithms exist for these
problems [96, 95, 68]

One might be tempted to define the notion of
standard fpt-approximation scheme to capture the
situation where a problem has a standard fpt-
approximation algorithm for every c > 1. More
precisely, we would like to have an analog of EPTAS,
since approximation schemes where the exponent
of input size increases as ε decreases is not very
interesting from the parameterized complexity point of
view. Thus the natural definition for a standard fpt-
approximation scheme would be that for every ε > 0,
there is a standard fpt-approximation algorithm with
performance ratio 1+ε, and the running time is f(k, ε) ·
|x|O(1). However, this notion is not very interesting
to study, since it implies fixed-parameter tractability;
therefore, it does not extend the class of problems that
we can call tractable. The proof is essentially the same
as the proof of Prop. 2.

Proposition 1. Assume that there is an algorithm
that has an input parameter ε, and for every ε > 0 it
produces a (1+ε)-approximate solution for optimization
problem X in time f(k, ε) · |x|O(1). Then the standard
parameterization of X is in FPT.

5. NON-CONSTANT PERFORMANCE
FUNCTIONS

When designing approximation algorithms, the usual
aim is to ensure that the cost of the solution differs
from the optimum by at most a constant factor.
This means that the algorithm has to perform equally
well regardless of whether the optimum is “small”
or “large.” The analysis can be made more precise
if the performance of the algorithm is bounded by
a function of the optimum cost, rather than by an
absolute constant. This is especially natural in the case
of standard fpt-approximation (Section 4): if the goal
is to have an algorithm that is efficient for small cost
values, then it makes sense to require good performance
only if the optimum is small.

Let % : N → N be a nondecreasing function. We
say that an approximation algorithm for optimization
problem X has performance ratio function %(k) (or
it is a %(k)-approximation algorithm) if it produces a
solution with performance ratio at most %(opt(x)) for
every instance x. For example, if the solution has

cost opt(x) log opt(x), then it is an log-approximation
algorithm. Constant-factor approximability is the
special case where %(k) is a constant function.
The definition of parameterized fpt-approximation
(Section 3) can be extended similarly. To define
standard fpt-approximability with performance ratio
function %(k), (**) of Definition 4.1 has to be replaced
with

{

cost(x, y) ≤ k · %(k) if goal = min,

cost(x, y) ≥ k/%(k) if goal = max.

If our goal is only to obtain an approximation
algorithm with some performance function (no matter
how bad it is), then in the case of maximization
problems, fpt time does not give us more power than
polynomial time. This surprising result was observed
by Grohe and Grüber [61]:

Theorem 5.1. If a maximization problem X has a
standard fpt-approximation algorithm with performance
ratio function %(k), then there is a polynomial-time
%′(k)-approximation algorithm for X, for some function
%′(k).

Proof. Assume that X has a standard fpt-
approximation algorithm with running time f(k)·|x|O(1)

and performance ratio function %(k). There is a com-
putable nondecreasing function b(n) such that every
instance of X with size at most n has optimum at
most b(n). Denote by c(n) the largest i such that
i ≤ n, f(i) ≤ n and f(i) can be computed in time
O(n); clearly, c(n) is unbounded, nondecreasing, and
computable in time nO(1).

Given an instance x, the polynomial-time approx-
imation algorithm proceeds as follows. For every
k = 1, 2, . . . , max(c(|x|), 1), we run the assumed fpt-
approximation algorithm on x, and select the best solu-
tion returned by the different runs (since we try k = 1
and opt(x) ≥ 1 holds, some solution is always found).
From k ≤ max(c(|x|), 1) it follows that the f(k) · |x|O(1)

time fpt-algorithm runs in polynomial time, hence the
running time of the whole procedure is polynomial in
|x|.

If c(|x|) ≥ opt(x), then the fpt-approximation
algorithm is invoked with k = opt(x), which means
that a solution of cost at least opt(x)/%(opt(x)) is
produced. Assume therefore that c(|x|) < opt(x). Let
d(m) be the largest n such that b(n) < m. This
means that |x| > d(opt(x)) for every instance x, hence
c(|x|) ≥ c(d(opt(x)). Thus when the fpt-approximation
algorithm is invoked with k = c(d(opt(x))) < opt(x),
then it produces a solution with value at least
r(opt(x)) := c(d(opt(x)))/%(c(d(opt(x)))). It is easy
to see that r(opt(x)) is an unbounded computable
function of opt(x), hence the polynomial-time algorithm
is a approximation algorithm with performance ratio
function %′(k) = k/r(k).
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We remark that the analog of Theorem 5.1 does not
seem to hold for minimization problems.

5.1. Examples (polynomial-time).

Expressing the performance ratio of an algorithm as
a function of the optimum can be interesting even in
the case of polynomial-time approximation algorithms,
independently of parameterized complexity. We cite
here three results of this type. Determining tree width
is NP-hard [19], and no constant factor polynomial-time
approximation algorithm is known (it is an important
open question whether such an approximation is
possible). However, the following approximation result
was obtained recently by Feige et al. [48]:

Theorem 5.2. ([48]) Given a graph with tree width
k, a tree decomposition of width at most O(k

√
log k) can

be constructed in polynomial time.

That is, tree width can be O(
√

log k)-approximated
in polynomial time. (The previous best result was a
O(log k)-approximation [4, 20].)

Whether Minimum Directed Feedback Vertex
Set is in FPT or not is one of the most important
open question of parameterized complexity. In this
problem the task is to find a minimum set of vertices
whose deletion makes the given directed graph acyclic.
The undirected version of the problem is known to
be in FPT (cf. [45, 34]), but apparently none of the
techniques go through for the directed case. It seems
that a much deeper understanding of the structure of
directed graphs is required before this problem can be
settled. However, it is observed in [30] that the results
of [47, 108] imply an approximation algorithm with
bounded performance ratio function:

Theorem 5.3. ([30]) Minimum Directed Feed-
back Vertex Set has a polynomial-time approxima-
tion algorithm with performance ratio function O(log k ·
log log k).

In the Maximum Disjoint Cycles problem the
task is to find k pairwise vertex disjoint cycles in a
given graph. This problem is fixed-parameter tractable
(cf. [45, Section 8.1]). On the other hand, the directed
version of the problem is W[1]-hard [110, 30], but
polynomial-time solvable for every fixed value of k
[100]. Based on the theoretical results proved in [100],
Grohe and Grüber [61] presented an fpt-approximation
algorithm. By Theorem 5.1, the algorithm can be made
to work in polynomial time.

Theorem 5.4. ([61]) There is a polynomial-time
approximation algorithm for Maximum Disjoint
Directed Cycles with performance ratio function
%(k), for some computable function %(k).

The function %(k) is not given explicitely in [61],
but k/%(k) is very slowly growing (even in the fpt-time
version of the algorithm, before applying Theorem 5.1).

5.2. Examples (fpt-time).

Graph layout problems arise in many application
domains such as scheduling, VLSI design, and
archaeology [40]. A linear layout of a graph G(V, E)
is a one-to-one mapping σ between V and {1, . . . , |V |}.
The bandwidth of a layout is maxuv∈E |σ(u) − σ(v)|,
the maximum “length” of an edge in the layout. The
cutwidth of a layout is max1≤i<|V | |{uv ∈ E : σ(u) ≤
i and σ(v) > i}|, the maximum number of edges that
cross the cut formed by two neighboring vertices in the
layout. The bandwidth (resp., cutwidth) of a graph
is the minimum bandwidth (resp., cutwidth) over all
possible linear layouts of the graph. Bandwidth is W[1]-
hard [18], while cutwidth is fixed-parameter tractable
[113].

Subdividing an edge with a new degree two vertex
might decrease the bandwidth of the graph. Topological
bandwidth is the smallest bandwidth that can be
achieved by repeatedly subdividing edges. Topological
bandwidth is known to be W[1]-hard [15]. Fellows [50]
observed that if tbw(G) (resp., cw(G)) is the topological
bandwidth (resp., cutwidth) of graph G, then

tbw(G) ≤ cw(G) + 1 (1)

and
cw(G) < tbw(G)2 (2)

holds. This means that if a graph has topological
bandwidth at most k, then one can obtain a layout
with cutwidth less than k2 using the algorithm of [113].
Furthermore, using (1) (whose proof is algorithmic),
this layout can be turned into a layout for a subdivision
of G with bandwidth at most k2. Therefore,

Theorem 5.5. ([50]) Topological Bandwidth
has a standard fpt-approximation algorithm with
performance ratio function k.

The graph parameter clique width was introduced
by Courcelle et al. [32]. Similarly to tree width, it
measures the complexity of a graph with respect to
certain composition operators. A k-expression describes
a way of constructing the graph using these operations;
the clique width of a graph is the smallest k such
that it has a k-expression. Fellows et al. [52] have
shown that determining clique width is NP-hard, in
fact, it cannot be approximated with an absolute error
guarantee, unless P = NP. Seymour and Oum [96]
use the approximability of rank width to obtain an
approximation algorithm for clique width. They show
that if cw(G) is the clique width and rw(G) is the rank
width of a graph G, then

rw(G) ≤ cw(G) ≤ 2rw(G)+1 − 1

holds. The proof is algorithmic: given a rank
decomposition of width k, a (2k+1 − 1)-expression
can be obtained in polynomial time. There is an
fpt-approximation algorithm that computes a rank
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decomposition of width 3rw(G) + 1 [95]. Therefore,
clique width can be approximated by first computing
an approximate rank decomposition and then turning
it into a k-expression:

Theorem 5.6. ([95]) Clique Width has a stan-
dard fpt-approximation algorithm with performance ra-
tio function (23k+2 − 1)/k.

The significance of Theorem 5.6 comes from the
fact that certain optimization problems are linear-time
solvable for every k, if a k-expression of the graph is
given in the input. That is, these problems are fixed-
parameter tractable parameterized by clique width,
but only if the corresponding k-expression is given in
the input. Theorem 5.6 can be used to remove the
requirement that the k-expression is given in the input:
if we know that the graph has a k-expression, then
an f(k)-expression can be obtained in fpt-time, where
f(k) = 23k+2 − 1. Then, instead of using the algorithm
for k-expressions, we can use the algorithm for f(k)-
expressions: the running time might be much larger,
but it is still linear with a constant depending only on
k. Therefore, obtaining the approximation and then
solving the problem using the f(k)-expression can be
done in fpt-time.

5.3. Negative results.

For certain problems, it is possible to show that there
is no standard fpt-approximation algorithm for any
performance ratio function. Given a graph G(V, E),
an independent dominating set is an independent set
S ⊆ V of vertices such that for every v ∈ V , either
v ∈ S, or v is a neighbor of a member of S. The
Minimum Independent Dominating Set problem is
the corresponding optimization problem, where the goal
is to minimize the size of the set S. Downey et al. [43]
prove that this problem is completely inapproximable:

Theorem 5.7. ([43]) If Minimum Independent
Dominating Set has a standard fpt-approximation
algorithm with performance ratio function %(k) for some
computable function %(k), then W[2] = FPT.

Chen et al. [30] presents inapproximability results
for satisfiability problems. In the Min-WSAT(CIRC)
problem a Boolean circuit is given and the task is to find
a satisfying assignment of minimum weight (where the
weight of an assignment is the number of true variables).

Theorem 5.8. ([30]) If Min-WSAT(CIRC) has a
standard fpt-approximation algorithm with performance
ratio function %(k) for some computable function %(k),
then W[P] = FPT.

Similar results hold for other variants of the
satisfiability problem and for the parameterized halting
problem [30].

All the inapproximability results presented above
are somewhat unsatisfying in the sense that the

problems considered are not monotone. Monotone
means that (in case of a minimization problem) if we
extend a feasible solution with additional vertices/true
variables, then it remains feasible. Clearly, this does
not necessarily hold in these examples. Therefore,
it can happen that the optimum is k, and every
feasible solution has cost k, which makes approximation
equivalent to finding an optimum solution. The
inapproximability proofs in these examples tell us more
about the hardness of finding exact solutions than
about the hardness of approximation. It would be
much more interesting (and possibly, more difficult)
to have analogous inapproximability results for the
monotone problems Maximum Clique and Minimum
Dominating Set, for example.

6. QUALITY OF APPROXIMATION AS
PARAMETER

A polynomial-time approximation scheme can produce
solutions with approximation ratio arbitrary close to
1. However, we have to pay a price for that: the
running time can be ridiculously large if ε is small.
Table 1 (reproduced from [44]) presents the running
time of some approximation schemes for ε = 0.2. As
we can see, running times of O(|x|1,000,000) or worse is
not uncommon if we require that the maximum error
is 20%. Obviously, such algorithms are not useful in
practice. Nevertheless, these results are important from
the theoretical point of view, as they show that there is
no lower bound on the approximation ratio that can be
achieved in polynomial time.

The notion of efficient polynomial-time approxima-
tion scheme (EPTAS) tries to formalize a restricted
class of approximation schemes, where the algorithm
might have a chance of being useful. If the running
time of the algorithm is of the form c1/ε ·n, and c is not
too large, then the algorithm can be efficient for, say,
ε = 0.2. In many cases, the first approximation scheme
obtained for a problem was not an EPTAS, but later
it was improved to an EPTAS. For example, Arora [6]
presented an |x|O(1/ε) time PTAS for Euclidean TSP,
which is not an EPTAS. However, in the journal ver-
sion of the paper [7], the running-time of the algorithm

is improved to |x| · logO(1/ε) |x| = 2O(1/ε2) · |x|2, hence
the problem admits an EPTAS. Arora et al. [8] pre-
sented an |x|O(1/ε) time approximation scheme for the
Euclidean k-median problem. Later this was improved
to an EPTAS with running time 2O(1/ε·log 1/ε) ·n [8, 66].
In certain cases, the effort to obtain an EPTAS was
only partially successful. For example, Hunt et al. [71]
show that Maximum Independent Set for unit disk
graphs admits an |x|O(1/ε) time PTAS. They are unable
to present an EPTAS for the problem in general, but for
the special case of λ-precision unit disk graphs (where
the centers of the disk are not closer than λ from each
other) they give a 2O(1/(ελ)2) · n time EPTAS.
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TABLE 1. The running time of some PTASs with 20% error.

Problem Reference Running time for 20% error

Euclidean TSP Arora [6] O(|x|15,000)
Multiple Knapsack Chekuri and Khanna [26] O(|x|9,375,000)
Maximum Subforest Shamir and Tsur [109] O(|x|958,267,391)
Maximum Independent Set Erlebach et al. [46] O(|x|523,804)
for disk graphs

If a problem resists every attempt to obtain an
EPTAS, then we should consider looking for some
negative evidence showing that no EPTAS is possible,
i.e., that it is not possible to get 1/ε out of the
exponent of the input size (modulo some complexity-
theoretic assumption). It is not very surprising that
parameterized complexity can provide such evidence,
since getting out certain parameters from the exponent
is the central issue of the theory. The basic tool
that can be used to prove negative results for the
existence of EPTASs is the following connection,
observed independently by Bazgan [13] and Cesati and
Trevisan [25]:

Proposition 2. If an optimization problem X
admits an EPTAS, then the standard parameterization
of X is fixed-parameter tractable.

Proof. Assume that we have an algorithm that produces
a (1 + ε)-approximate solution in time f(1/ε) ·
|x|O(1). Given an instance (x, k) of the standard
parameterization of X , we set ε := 1/(2k), and use
the EPTAS to find a (1 + ε)-approximate solution in
time f(1/ε) · |x|O(1) = f(2k) · |x|O(1). Assume first
that X is a minimization problem. If the optimum is
at most k, then the cost of the approximate solution
is at most (1 + ε)k ≤ k + 1/2 < k + 1. As the
cost is integer, the cost of the approximate solution
is at most k. If the optimum is greater than k, then
the cost of the approximate solution is also greater
than k. Therefore, by checking whether the cost of
the approximate solution is at most k, we can decide
whether the optimum is at most k. The proof is similar
in the case of maximization problems: if the optimum
is at least k, then the cost of an (1 + ε)-approximate
solution is at least k/(1+ε) = k−1/(2+1/k) > k−1.

We can use the contrapositive of Prop. 2 to show
that it is unlikely that a particular problem admits an
EPTAS:

Corollary 1. If the standard parameterization
of an optimization problem is W[1]-hard, then the
optimization problem does not have an EPTAS (unless
FPT = W[1]).

It has to be remarked that the converse of Prop. 2
is not true. For example, Minimum Vertex Cover
is fixed-parameter tractable, but it is APX-hard, hence

it does not even have a PTAS. Therefore, Prop. 2 has
limited applicability.

6.1. Examples.

Table 2 lists problems where the existence of an EPTAS
was ruled out using Prop. 2. The first four problems are
geometric problems. For a set V of geometric objects,
the intersection graph of V is a graph with vertex set
V where two vertices are connected if and only if the
two objects have non-empty intersection. Intersection
graphs of disks, rectangles, line segments and other
objects arise in applications such as facility location
[116], frequency assignment [80], and map labeling
[2]. The first four lines in Table 2 show that if we
restrict Maximum Independent Set and Minimum
Dominating Set to the intersection graphs of unit-
radius disks or unit-size squares, then the problem
admits a PTAS [71, 94, 93], but does not have an
EPTAS [83, 87]. Covering Points with Squares
is also a geometric problem, but it is not defined in
terms of intersection graphs. In this problem n points
are given in the plane, and the task is to cover all of
them with at most k (axis-parallel) unit squares. The
squares can be at arbitrary locations in the plane.

Distinguishing Substring Selection and Clos-
est Substring are two pattern matching problems
that are motivated by applications in computational bi-
ology. In the Closest Substring problem the task is
to find a string of length L that approximately appears
in each of the k input strings, where “approximately
appears” means that it appears with at most d mis-
matches. The goal is to minimize this number d. In
the Distinguishing Substring Selection problem
the input strings are divided into “good” strings and
“bad” strings, and we have to find a string of length L
that approximately appears in each of the good strings,
but does not appear (even approximately) in any of the
bad strings. We do not give a more detailed description
of these problems, as many variants, parameterizations,
and optimization goals are defined in the literature, see
[77, 59, 58, 82, 51].

Khanna and Motwani [75] defined classes of
optimization problems that have polynomial-time
approximation schemes. The key to approximability
in these problems is the underlying planar structure,
which allows us to use Baker’s layering technique [11]
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TABLE 2. Problems where a W[1]-hardness result rules out the possibility of an EPTAS.

Problem PTAS result W[1]-hardness

Maximum Independent Set for unit disks |x|O(1/ε) [71] [83]
Maximum Independent Set for unit squares |x|O(1/ε) [71] [83]

Minimum Dominating Set for unit disks |x|O(1/ε) [71] [87]
Minimum Dominating Set for unit squares |x|O(1/ε) [71] [87]

Covering Points with Squares |x|O(1/ε2) [69] [83]

Distinguishing Substring Selection |x|O(1/ε) [39] [57, 28]

Closest Substring |x|O(1/ε4) [77] [82]
Planar MPSAT |x|O(1/ε) [74] [23]

Planar TMIN |x|O(1/ε) [74] [23]

Planar TMAX |x|O(1/ε) [74] [23]
Planar Multivalued Max 3CSP |x|O(1/ε) [74] [25]

and algorithms for bounded tree width. The problems
are formulated using Boolean logical expressions. Recall
that a formula in disjunctive normal form (DNF) is a
disjunction of terms, e.g., (x1 ∧ x̄3)∨ (x̄1 ∧ x̄2∧ x̄4)∨ x̄3.
A DNF is positive (resp., negative), if every literal is
positive (resp., negated). The weight of an assignment
is the number of variables that are set to true.

MPSAT
Input: A collection C = {φ1, . . . , φn} of DNFs.
Find: An assignment ψ.
Goal: Maximize the number of DNFs satisfied by ψ.

TMIN
Input: A collection C = {φ1, . . . , φn} of positive DNFs.
Find: An assignment ψ that satisfies every DNF in C.
Goal: Minimize the weight of ψ.

TMAX
Input: A collection C = {φ1, . . . , φn} of negative DNFs.
Find: An assignment ψ that satisfies every DNF in C.
Goal: Maximize the weight of ψ.

These problems generalize many of the standard
optimization problems: for example, it is easy to see
that Max Cut can be reduced to MPSAT; Maximum
Independent Set can be reduced to TMAX; and
Minimum Vertex Cover can be reduced to TMIN.
(In all three reductions, we associate a variable with
each vertex and a DNF with each edge.) Cesati
and Trevisan [25] study a problem of similar flavor,
where the variables are not necessarily Boolean, they
can have arbitrary domains. Let x1, . . . , xn be
variables and let Di be the domain of variable xi. A
constraint over x1, . . . , xn is an arbitrary relation over
D1, . . . , Dn, i.e., each possible combination of values
assigned to the variables either satisfies the constraint
or not. A constraint is given in the input by listing the
combination of values that satisfy the constraint.

Multivalued Max kCSP
Input: A collection C = {C1, . . . , Cm} of constraints;

each constraint is on k variables.
Find: An assignment ψ.
Goal: Maximize the number of constraints

satisfied by ψ.

Given an instance of the above problems, the
incidence graph is a bipartite graph defined by
associating a vertex to each variable and each clause
(constraint), and by connecting each variable to every
clause (constraint) where it appears. Khanna and
Motwani [74] show that MPSAT, TMIN, TMAX,
Multivalued Max kCSP all admit a PTAS if the
incidence graph is planar. The running time is |x|O(1/ε),
hence it is not an EPTAS. Cesati and Trevisan [25] have
shown that the standard parameterization of Planar
Multivalued Max 3CSP is W[1]-hard, hence by
Prop 2, the PTAS cannot be improved to an EPTAS,
unless W[1] = FPT. Similar results were obtained for
MPSAT, TMIN, TMAX by Cai et al. [23].

Theorem 6.1. ([23, 25]) The problems MPSAT,
TMIN, TMAX, Planar Multivalued Max 3CSP
do not admit an EPTAS, unless W[1] = FPT.

6.2. Parameterization by 1/ε.

All the negative results in Table 2 were obtained using
Prop. 2. While this method is simple and apparently
works, there is something unnatural about it. Our
aim is to prove that 1/ε cannot be taken out of the
exponent of the input size. In order to show this, we
consider the standard parameterization, and prove that
k cannot be taken out of the exponent. But couldn’t it
be done somehow more directly, by defining 1/ε to be
the parameter? Intuitively, it is clear that what we are
trying to determine is whether the problem is fixed-
parameter tractable, with 1/ε being the parameter.
However, it is not entirely clear what “defining 1/ε
to be the parameter” means. The problem is that
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parameterized complexity theory is not developed for
optimization problems, and optimization problems are
usually studied via the standard parameterization. In
the decision version, however, it is not immediately clear
what the meaning of ε is, as we do not have to produce
a solution. To make the idea of parameterization by
1/ε technically rigorous, we introduce a “gap” version
of the standard parameterization: the input comes with
a promise stating that there is a gap between the yes-
instances and the no-instances. Parameterization by
1/ε is parameterization by this gap size. If X is an
optimization problem, then we define

Gap-X
Input: An instance x of X , an integer k,

and a rational ε > 0 such that






















either opt(x) ≤ k or opt(x) > (1 + ε)k

if goal = min,

either opt(x) ≥ k or opt(x) <
k

1 + ε
if goal = max.

Parameter: d1/εe

Decide:

{

opt(x) ≤ k if goal = min,

opt(x) ≥ k if goal = max.

An approximation scheme for optimization problem
X can be used to decide Gap-X . Let X be a
minimization problem (the argument for maximization
problems is similar). If (x, k, ε) is a yes-instance of Gap-
X , then opt(x) ≤ k, and the approximation scheme can
produce a (1+ε)-approximate solution with cost at most
(1+ ε)k. On the other hand, if (x, k, ε) is a no-instance,
then by assumption opt(x) > (1 + ε)k holds, thus the
cost of the solution produced by the approximation
scheme is strictly greater than (1 + ε)k. This means
that deciding an instance (x, k, ε) of Gap-X is not more
difficult than obtaining a (1 + ε)-approximate solution.
Therefore, we have

Proposition 3. If optimization problem X admits a
PTAS, then Gap-X is in XP. If X admits an EPTAS,
then Gap-X is in FPT.

Recall that XP is the class of parameterized problems
that can be decided in polynomial time for every fixed
value of the parameter. Prop. 3 can be used to show
that a problem X does not have an EPTAS: if Gap-
X is W[1]-hard, then X does not have an EPTAS
unless FPT = W[1]. This technique is potentially more
powerful than using Prop. 2: it might apply even to
problems whose standard parameterizations are fixed-
parameter tractable, since k is not a parameter of Gap-
X .

To demonstrate the use of Prop. 3, we reprove a result
of [23] and show that Planar TMIN does not admit
an EPTAS. The reduction is based on the framework
of matrix-type reductions introduced in [87], but the
presentation here is self-contained.

B1,3

φ3,1

φ1,3φ1,2

φ3,2 φ3,3

φ2,3φ2,2φ2,1

B3,3B3,2B3,1

A3,0 A3,1 A3,2 A3,3

A2,3A2,2A2,1A2,0

B2,3B2,2B2,1

φ1,1

A1,2 A1,2A1,1A1,0

B0,3B0,2B0,1

B1,1 B1,2

FIGURE 1. Structure of the instance constructed in
Theorem 6.2 (n = 4, t = 3).

Theorem 6.2. Gap-Planar-TMIN is W[1]-hard.
Thus Planar TMIN does not have an EPTAS, unless
FPT = W[1].

Proof. The reduction is from Maximum Clique.
Given a graph G and an integer t, we construct an
instance of Gap-Planar-TMIN with k = 2t(t + 1)
and ε = 1/(2k) such that

• If G has a clique of size t, then the constructed
instance has a solution with weight at most k.

• If G does not have a clique of size t, then the
constructed instance does not have a solution with
weight at most (1 + ε)k.

Assume that G has n vertices {1, 2, . . . , n}. The
constructed instance has 2t(t + 1)n variables. The
variables are arranged into blocks Ai,j (1 ≤ i ≤ t,
0 ≤ j ≤ t) and Bi,j (0 ≤ i ≤ t, 1 ≤ j ≤ t), where
each block contains n variables. The variables in block
Ai,j (resp., Bi,j) will be denoted by ai,j,s (resp., bi,j,s)
for s = 1, . . . , n.

We construct t2 DNFs such that φi,j (1 ≤ i, j ≤ t)
contains variables only from blocks Ai,j−1, Ai,j , Bi−1,j ,
Bi,j . As shown in in Figure 1, the incidence graph is
planar. The formulas are defined as

φi,j =



















∨n
s=1(ai,j−1,s ∧ ai,j,s ∧ bi−1,j,s ∧ bi,j,s)

if i = j,
∨

(x,y)∈E(G)(ai,j−1,x ∧ ai,j,x ∧ bi−1,j,y ∧ bi,j,y)

otherwise.

This completes the description of the instance. The
optimum is either at most k, or at least k + 1 >
(1 + ε)k = (1 + 1/(2k))k = k + 1/2. Therefore, the
gap size requirement is satisfied.

Assume that G has a clique v1, . . . , vt. For every i, j,
we set ai,j,vi of block Ai,j and bi,j,vj of block Bi,j to
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true. We claim that this assignment of weight 2t(t + 1)
satisfies every formula. Indeed, if i = j = r, then φi,j is
satisfied by the term ai,j−1,vr ∧ai,j,vr ∧bi−1,j,vr ∧bi,j,vr ;
if i 6= j, then φi,j is satisfied by the term ai,j−1,vi ∧
ai,j,vi ∧ bi−1,j,vj ∧ bi,j,vj (note that (vi, vj) is an edge of
G, hence φi,j has such a term).

For the other direction, suppose that G has no clique
of size t, but there is a satisfying assignment of weight
at most (1 + ε)k. Notice that (1 + ε)k < k + 1, hence
the weight of the assignment is at most k. Furthermore,
each block of variables has to contain at least one true
variable, otherwise the adjacent formulas could not be
satisfied. Therefore, the weight of the assignment is
exactly k, and there is exactly one true variable in each
block.

For every term of φi,j , there is an s such that the term
contains both ai,j−1,s and ai,j,s. This means that if φi,j

is satisfied, then the true variables in blocks Ai,j−1 and
Ai,j have the same index. Furthermore, this is true for
all the blocks in row i, hence there is a value vi such that
ai,j,vi is true for every 1 ≤ j ≤ t. Similarly, for every
column j, there is a value v′j such that variable bi,j,v′

j
is

true. We claim that vi = v′i for every 1 ≤ i ≤ t. Indeed,
if a term of φi,i is satisfied, then both ai,i,s and bi,i,s

have to be true for some s, which implies s = vi = v′i.
Now the vertices v1, . . . , vt form a clique: if vi and vj

are not connected by an edge, then none of the terms
in φi,j are satisfied. This proves the correctness of the
reduction.

6.3. Proving lower bounds.

The fact that an optimization problem does not have
an EPTAS (unless FPT = W[1]) does not rule
out the possibility of having a PTAS of running
time |x|O(log log log 1/ε), for example. Such a running
time would be almost as good as a polynomial-time
algorithm. However, by a more careful analysis and
by having a somewhat stronger complexity theoretic
assumption, we can actually prove lower bounds on the
exponent of |x|.

Maximum Clique can be solved in |x|O(k) time
by brute force. It is believed that this is essentially
best possible; in fact, Chen et al. [28] show that an
f(k) · |x|o(k) time algorithm would imply that 3SAT can
be solved in 2o(n) time. The fastest known algorithm
for n-variable 3-SAT runs in randomized time 1.32216n

[106] (improving on the 2n brute force algorithm). It
is believed the running time of every algorithm must
be exponential in n, i.e., no algorithm with running
time 2o(n) exists. This assumption is known as the
Exponential Time Hypothesis (ETH) [72], and it is
equivalent to the parameterized complexity conjecture
FPT 6= M[1] (see [42, 54]).

This lower bound on Maximum Clique can
be transfered to other parameterized problems via
reductions. Assume that a problem Q is proved W[1]-
hard by a parameterized reduction from Maximum

Clique, and the reduction constructs instances where
the parameter is at most p(k) (for some function p),
where k is the parameter of the Maximum Clique
instance. (The definition of parameterized reduction
requires that such a function p(k) exists.) If Q can
be solved in time f(k) · |x|g(k), then the reduction
implies that Maximum Clique can be solved in time
f ′(k) · |x|g(p(k)). Therefore, problem Q cannot be solved

in time f ′′(k) · |x|o(p−1(k)) for any function f ′′(k), unless
ETH fails.

Prop. 2 shows that if an optimization problem admits
an approximation scheme with running time f(1/ε) ·
|x|g(1/ε), then the standard parameterization can be
solved in f(2k) · |x|g(2k) time. Therefore, a lower
bound on the standard parameterization can be used
to bound the efficiency of any PTAS for the problem.
The W[1]-hardness results in Table 2 are obtained by a
parameterized reduction from Maximum Clique, and
these reductions increase the parameter at most by
some polynomial function p(k). Therefore, assuming
ETH, for each of these problems there is an integer c

such that there is no f(k) · |x|o(k1/c) time algorithm for
the standard parameterization, which implies that there

is no f(1/ε)·|x|o((1/ε)1/c) time PTAS. The only exception
is Closest Substring: the reduction presented in [82]
increases the parameter exponentially, thus all we can
prove is that there is no f(1/ε) · |x|o(log 1/ε) time PTAS.

In a similar way, we can obtain lower bounds using
Prop. 3. For example, the reduction in Theorem 6.2
constructs instances where the parameter 1/ε is O(t2).
Therefore, we have

Corollary 2. There is no f(1/ε) · |x|o(
√

1/ε) time
PTAS for Planar TMIN, unless ETH fails.

This result is somewhat better than the f(1/ε) ·
|x|o((1/ε)1/4) bound that follows from the proof in [23].
However, there is still a gap between this lower bound
and the |x|O(1/ε) upper bound given by [74]. It
would be interesting to close this gap, possibly by
proving stronger lower bounds. Using bidimensionality
theory [37, 35], one may show that the standard
parameterization of Planar TMIN can be solved in

time f(k) · |x|O(
√

k). This means that no bound better

than f(1/ε)|x|o(
√

1/ε) can be obtained for Planar
TMIN by using Prop. 2. Note that if we are using
Prop. 3, then there is no such apparent barrier. It
seems that we have to abandon Prop. 2 and directly
parameterize by 1/ε, if we want to prove tight lower
bounds on the efficiency of approximation schemes.

7. CONCLUSIONS

We have investigated several ways in which parameter-
ized complexity and the theory of approximation algo-
rithms can benefit from each other. It is not clear at
the moment which directions will lead to fruitful ar-
eas of research. It seems that there are many examples
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of fpt-approximability for parameterized instances (as
discussed in Section 3), and it can be reasonably ex-
pected that many such results will follow. It is much
less clear to what extent standard fpt-approximability
(Section 4, 5) will be important. The relative lack of
examples might be the sign that we are missing some
fundamental method. Evaluating the efficiency of ap-
proximation schemes (Section 6) has become a standard
technique, with results of this type steadily accumulat-
ing. Besides obtaining such results for a wider range of
problems, here the challenge is to prove tight results.

There are some further connections between param-
eterized complexity and approximation algorithms that
we have not touched upon. Kernelization of a parame-
terized problem is a polynomial-time preprocessing al-
gorithm that constructs an equivalent instance such
that the size of the new instance can be bounded by
a function of the parameter. For example, Nemhauser
and Trotter [91] present a preprocessing algorithm for
the Minimum Vertex Cover problem that constructs
an instance with at most 2k vertices (where k is the pa-
rameter of the new instance). In many cases, such a
linear-size kernelization algorithm can be used to obtain
a constant-factor approximation algorithm. Therefore,
any lower bound on the approximation ratio (obtained
by the PCP theorems) immediately translates into a
lower bound on the kernel size. (A different approach
for obtaining kernelization lower bounds is proposed in
[27].)

Another interesting connection appears in the use
of the iterative compression technique. The main
idea of iterative compression is that instead of solving
the search problem “find a solution of size k,” we
solve the possibly easier compression problem “given
a solution of size k + 1, find a solution of size k.”
It turns out that for certain minimization problems
if we can solve the compression problem, then we
can solve the search problem as well by iteratively
solving larger and larger problems [101, 34, 85, 62,
63, 88]. Furthermore, as observed in [63], if we can
solve the compression problem and have a constant-
factor approximation algorithm, then the approximate
solution can be compressed, and there is no need for
the iterative trick. In fact, an approximation algorithm
with arbitrary performance ratio function (Section 5)
would be sufficient for this application.

In counting problems the task is not only to check
if there is a solution, but we have to determine
the total number of solutions to the problem. The
counting problem can be hard even for those problems
where the existence of a solution is polynomial-time
decidable. For example, checking whether a graph has
a perfect matching can be done in polynomial time,
but Valiant has shown that counting the number of
perfect matching is complete for the complexity class
#P [115]. A similar increase in complexity appears
in the case of parameterized problems: finding a path
of length k is fixed-parameter tractable [3, 90, 99],

but counting the number of these paths is #W[1]-
hard [53]. Given the hardness of exact counting,
it is very natural to investigate the possibility of
approximate counting. In the parameterized complexity
framework, Arvind and Raman [9] present an fpt-
time randomized approximation scheme for counting
the number of subgraphs isomorphic to a bounded
tree width graph H (thus, in particular, the algorithm
can be used to approximate the number of paths of
length k). Recently, Müller [89] proved a parameterized
complexity analog of a classical result of Stockmeyer
by showing that approximately counting the number
of solutions for a problem in W[P] can be done in
randomized fpt-time with a W[P] oracle.

Finally, to motivate further research, we propose four
open questions, related to the four main issues discussed
in the paper:

• Investigate the approximability of geometric prob-
lems, parameterized by the dimension.

• Find a convincing example where no fpt-time exact
algorithm is known for a problem, but it has a
standard fpt-approximation algorithm with constant
performance ratio.

• Is there a standard fpt-approximation algorithm for
Maximum Clique or Minimum Dominating Set
with some performance ratio function?

• Prove tight lower bounds (assuming ETH) on the
efficiency of the PTAS for some natural problem
(MPSAT, TMIN, geometric problems, etc.)
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paramétrée. Technical report, Université Paris Sud,
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