
Diagnosing Complex Systems with Software-Extended Behavior
using Constraint Optimization

Tsoline Mikaelian, Brian C. Williams and Martin Sachenbacher
Massachusetts Institute of Technology

Computer Science and Artificial Intelligence Laboratory
32 Vassar St. Room 32-275, Cambridge, MA 02139

{tsoline, williams, sachenba}@mit.edu

Abstract

Model-based diagnosis has traditionally operated
on hardware systems. However, in most complex
systems today, hardware is augmented with soft-
ware functions that influence the system’s behav-
ior. In this paper hardware models are extended to
include the behavior of associated embedded soft-
ware, resulting in more comprehensive diagnoses.
Capturing the behavior of software is much more
complex than that of hardware due to the poten-
tially enormous state space of a program. This
complexity is addressed by using probabilistic, hi-
erarchical, constraint-based automata (PHCA) that
allow the uniform and compact encoding of both
hardware and software behavior. We introduce a
novel approach that frames PHCA-based diagno-
sis as a soft constraint optimization problem over a
finite time horizon. The problem is solved using
efficient, decomposition-based optimization tech-
niques. The solutions correspond to the most likely
evolutions of the software-extended system.

1 Introduction
Model-based diagnosis of devices has traditionally oper-
ated on hardware systems[de Kleer and Williams, 1987;
Dressler and Struss, 1996]. For instance, given an observa-
tion sequence, the Livingstone[Williams and Nayak, 1996]
diagnostic engine estimates the state of hardware compo-
nents based on hidden Markov models that describe each
component’s behavior in terms of nominal and faulty modes.
Researchers at the other end of the spectrum have applied
model-based diagnosis to software debugging[Consoleet al.,
1993; Mayer and Stumptner, 2004]. This paper explores the
middle ground between the two, in particular the monitoring
and diagnosis of systems with combined hardware and soft-
ware behavior.

Many complex systems today, such as spacecraft, robotic
networks, automobiles and medical devices consist of hard-
ware components whose functionality is extended or con-
trolled by embedded software. Examples of devices with
software-extended behavior include a communications mod-
ule with an associated device driver, and an inertial naviga-
tion unit with embedded software for trajectory determina-

tion. The embedded software in each of these systems inter-
acts with the hardware components and influences their be-
havior. In order to correctly estimate the state of these de-
vices, it is essential to consider their software-extended be-
havior.

As an example of a complex system, consider vision-based
navigation for an autonomous rover exploring the surface of
a planet. The camera used within the navigation system is
an instance of a device that has software-extended behavior:
the image processing software embedded within the camera
module augments the functionality of the camera by process-
ing each image and determining whether it’s corrupt. A sen-
sor measuring the camera voltage may be used for estimat-
ing the physical state of the camera. A hardware model of
the camera describes its physical behavior in terms of inputs,
outputs and available sensor measurements. A diagnosis en-
gine such as Livingstone that uses only hardware models will
not be able to reason about a corrupt image. The embedded
software provides additional information on the quality of the
image that is essential for correctly diagnosing the naviga-
tion system. To see why this is the case, consider a scenario
in which the camera sensor measures a zero voltage. Based
solely on hardware models of the camera, the measurement
sensor and the battery, the most likely diagnoses will include
camera failure, low battery voltage and sensor fault. How-
ever, given a software-extended model of the camera that
models the process of obtaining a corrupt image, the diag-
nostic engine may use the information on the quality of the
image. Knowing that the processed image is not corrupt, the
most likely diagnosis that the measurement sensor is broken
may be deduced.

The above scenario demonstrates that a diagnostic system
for complex systems with software-extended behavior must:
1) monitor the behavior of both the hardware and its embed-
ded software so that the software state can be used for di-
agnosing the hardware, and 2) reason about the system state
given delayed symptoms. An instance of a delayed symptom
is the quality of the image determined by the camera software
after it has completed all stages of image processing.

In this paper we introduce a novel model-based monitoring
and diagnostic system that operates on software-extended be-
havior models, to meet requirements 1) and 2) listed above.
In contrast to previous work on model-based software debug-
ging [Mayer and Stumptner, 2004; Grosclaude, 2003], the

purpose of this work is to leverage information within the em-
bedded software to refine the diagnoses of physical systems.
As such, we are not addressing the problem of diagnosing
software bugs. Without loss of generality, we assume that
software bugs discovered at runtime are handled by a sepa-
rate exception handling mechanism.

First, we address modeling issues. Capturing the behavior
of software is much more complex than that of hardware due
to the hierarchical structure of a program and the potentially
large number of its execution paths. We address this com-
plexity by using probabilistic, hierarchical, constraint-based
automata (PHCA)[Williams et al., 2001] that can uniformly
and compactly encode both hardware and software behavior.
Building upon our previous work, we introduce a novel capa-
bility for diagnosing systems with software-extended behav-
ior in the presence of delayed symptoms. While Livingstone-
2 (L2) [Kurien and Nayak, 2000] handles delayed symptoms
for diagnosing hardware systems, our approach generalizes
this capability to software-extended behavior by posing the
PHCA-based diagnosis problem over a finite time horizon.
We frame diagnosis as constraint optimization problem based
on soft constraints that encode the structure and semantics of
PHCA. The problem is solved using efficient, decomposition-
based optimization techniques, resulting in the most likely di-
agnoses of the software-extended system.

2 Modeling Software-Extended Behavior
Figure 1 shows the software-extended camera module for the
vision-based navigation scenario described above. In this ex-
ample, the failure probabilities for each of the battery, camera
and sensor are 10%, 5% and 1% respectively. A typical be-
havioral model of the camera is shown on the left of Figure
2. The camera can be in one of 3 modes: on, off or broken.
The hardware behavior in each of the modes is specified in
terms of inputs to the camera such as the power and the be-
havior of camera components such as the shutter. The broken
mode is unconstrained in order to accommodate novel types
of failures. Mode transitions can occur probabilistically, or as
a result of issued commands. The battery and the sensor com-
ponents can be modeled in a similar way. For the scenario in-
troduced above, the most likely diagnoses of the module can
be generated based on the hardware models alone, as shown
on the right of Figure 2. However, the image processing soft-
ware provides extended functionality that is not described by
the model in Figure 2. The specification of the embedded
software can offer important evidence that substantially al-
ters the diagnosis. A sample specification of the behavior of
the image processing software may take the following form:

sensor

Battery

Camera

Sensor

Failure Probability

10%

5%

1%

Battery

Camera

Image

processing

Figure 1:Camera Module for Navigation System

Off

0.05 0.05

cmd = turnOn

On

Broken

cmd = turnOff

Unconstrained

(Power_in =

zero) AND

(shutter =

closed)

(Power_in =

nominal) AND

(shutter = open)

P
ro

b
ab

ility
Time0 1

Nominal

Cam=Broken

Battery=low

Power On and

Take Picture

2
Observe

Sensor

voltage = zero

Battery=low

Sensor=Broken

Cam=Broken

Sensor=Broken

Nominal

Figure 2: left: Behavior Model for the Camera Component.right:
Most likely diagnoses of the camera module based on hardware
component models. Nominal state = no failures.

NominalNominal Battery=low Sensor=Broken

Cam=Broken

Battery=low

Sensor=Broken

Cam=Broken

Sensor=Broken Battery=low

Cam=Broken

P
ro

b
ab

ility

10 Time2 …..……………. 6

S/W behavior =>

Image not corrupt

Observe

Sensor

voltage = zero

Power On and

Take Picture

Figure 3:Most likely diagnoses of the camera module based on the
software-extended behavior models.

If an image is taken by the camera, process it to
determine whether it’s corrupt. If algorithm X de-
termines that the image is corrupt, discard it and
reset the camera; retry until a non-corrupt image is
obtained for navigation. Once a high quality image
is stored, wait for new image request from naviga-
tion unit.

Such a specification abstracts the behavior of the image
processing software implemented in an embedded program-
ming language such as Esterel[Berry and Gonthier, 1992]
or RMPL [Williams et al., 2001]. For the above scenario, the
behavior of the embedded software provides diagnostic infor-
mation necessary to correctly estimate the state of the camera
module. Given that the image is not corrupt, the possibility
that the camera is broken becomes very unlikely. This is il-
lustrated in Figure 3.

Unlike a hardware component that can typically be de-
scribed by a single mode of behavior, monitoring software be-
havior necessitates tracking simultaneous hierarchical modes.
A modeling formalism that will allow the specification of
software behavior must support: 1) full concurrency for mod-
eling sequential and parallel threads of behavior, 2) condi-
tional behavior, 3) iteration, 4) preemption, 5) probabilistic
behavior for modeling uncertainty and 6) propositional logic
constraints for specifying co-temporal relationships among
variables. The following section reviews the modeling frame-
work for handling these requirements.

3 Probabilistic, Hierarchical
Constraint-based Automata (PHCA)

Probabilistic, hierarchical, constraint-based automata
(PHCA) were introduced in[Williams et al., 2001] as a
compact encoding of Hidden Markov Models (HMMs).
These automata have the required expressivity to uniformly
model both hardware and software behavior.

Definition 1 (PHCA)
A PHCA is a tuple< Σ, PΘ, Π, O, C, PT >, where:

• Σ is a set of locations, partitioned into primitive loca-
tions Σp and composite locationsΣc. Each composite
location denotes a hierarchical, constraint automaton. A
location may be marked or unmarked. A marked loca-
tion represents an active branch.

• PΘ(Θi) denotes the probability thatΘi ⊆ Σ is the set of
start locations (initial state). Each composite locationli
⊆ Σc may have a set of start locations that are marked
whenli is marked.

• Π is a set of variables with finite domains.C[Π] is the
set of all finite domain constraints overΠ.

• O ⊆ Π is the set of observable variables.

• C : Σ → C[Π] associates with each locationli ⊆ Σ a
finite domain constraintC(li).

• PT (li), for eachli ⊆ Σp, is a probability distribution

over a set of transition functionsT (li) : Σ(t)
p × C[Π](t)

→ 2Σ(t+1)
. Each transition function maps a marked lo-

cation into a set of locations to be marked at the next
time step, provided that the transition’s guard constraint
is entailed.

Definition 2 (PHCA State)
The state of a PHCA at timet is a set of marked locations
called a markingm(t) ⊂ Σ.

Figure 4 shows a PHCA model of the camera module in
Figure 1. The ”On” composite location contains three sub-
automata that correspond to primitive locations ”Initializ-
ing”, ”Idle” and ”Taking Picture”. Each composite or prim-
itive location of the PHCA may have behavioral constraints.
The behavioral constraint of a composite location, such as
(power in = nominal) for the ”On” location, is inherited
by each of the subautomata within that composite hierarchy.
In addition to the physical camera behavior, the model incor-
porates qualitative software behavior such as processing the
quality of an image. Furthermore, based on the image quality,
the possible camera configurations may be constrained by the
embedded software. For example, if the image is determined
to be corrupt, the software attempts to reset the camera. This
restricts the camera behavior to transition to the Initializing
location.

Recall that Figure 3 shows the most likely state trajectories
based on the software-extended PHCA model. At time step
2, as the sensor measurement indicates zero voltage, the most
likely diagnosis trajectories are 1) battery = low with 10%
probability, 2) camera = broken with 5% probability and 3)

Off

On

TakePicture

Initializing

Taking

Picture
TurnOn

TurnOff

Broken

0.05

Corrupt

Image

Valid

ImageIdle

TakePicture

Processing Image

0.05
0.001

0.999

Reset

0.001

0.999

(Power_in = zero)

AND

(shutter = closed)

(result(image, Algorithm

X) = corrupt)(Shutter = moving)
(Power_in = nominal)

Unconstrained shutter = open (result(image, Algorithm

X = not corrupt)

Figure 4: PHCA model for the camera/image processing module.
Circles represent primitive locations, boxes represent composite lo-
cations and small arrows represent start locations.

sensor is broken with 1% probability. For the first trajectory
that indicates that the battery is low, the power to the cam-
era is not nominal, hence the camera will stay in the ”Off”
location. For the second trajectory, the camera will be in the
”Broken” location. For the third trajectory that indicates that
the sensor is broken, the power input to the camera will be
unconstrained, and hence the PHCA state of the camera may
include a marking of the ”On” location. Although the evolu-
tions of this third trajectory have an initially low probability
of 1%, at time step 6 they become more likely than the oth-
ers as the embedded software determines that the image is
valid. The reason is because the second most likely trajec-
tory at time 2 with camera = ”Broken” location marked has
a 0.001 probability of generating a valid image, thus making
the probability of that trajectory 0.005% at time 6. This latter
trajectory is less probable than those trajectories stemming
from the sensor being broken with 1% probability. Similarly,
the first trajectory with battery = low and camera = Off be-
comes less likely at time step 6 as there is 0.001% probability
of processing a valid image while the camera is ”Off”.

PHCA models have the following advantages that support
their use for diagnosing systems with software-extended be-
havior. First, since HMMs may be intractable, PHCA en-
coding is essential to support real-time, model-based deduc-
tion. Second, PHCAs provide the expressivity to model the
behavior of embedded software by satisfying requirements
1)-6) above[Williams et al., 2001]. Third, the hierarchical
nature of the automata enables modeling of complex concur-
rent and sequential behaviors. As an example of concurrency,
the PHCA in Figure 4 allows the simultaneous marking of
the ”On” location of the camera, as well as the ”Initializing”,
”Idle”, or ”Taking Picture” locations. This is in contrast to
diagnosis based on non-hierarchical models that can estimate
each component to be in a single mode of operation. State es-
timates of components may be required at different levels of
granularity. For example, an image-based navigation function
may require high level camera state estimates such as ”On” or
”Off”. On the other hand, a function that coordinates imaging

activities may need more detailed camera state estimates such
as ”Initializing” or ”Taking Picture”. Simultaneous marking
of several camera locations such as ”On” and ”Initializing”,
allows their use within functions that require estimates at dif-
ferent levels of granularity.

The following sections introduce a novel diagnostic system
based on the PHCA modeling framework. We first introduce
our approach for diagnosis over a single time step, and then
extend it to handle delayed symptoms. Our approach results
in a capability for diagnosing systems with software-extended
behavior in the presence of delayed symptoms. Furthermore,
our formulation of the diagnosis problem enables the use of
decomposition techniques[Dechter, 2003] for efficient solu-
tion extraction.

4 Diagnosis as Constraint Optimization based
on PHCA Models

We frame diagnosis based on PHCA models as a soft
constraint optimization problem (COP)[Schiex et al.,
1995]. The COP encodes the PHCA models as probabilistic
constraints, such that the optimal solutions correspond to
the most likely PHCA state trajectories. The soft constraint
formulation allows a separation between probability specifi-
cation and variables to be solved for. Thus, we can associate
probabilities with constraints that encode transitions, while
solving for state variables.

Definition 3 (Constraint Optimization Problem)
A constraint optimization problem (COP) is a triple
(X, D,F) whereX = {X1, ..., Xn} is a set of variables
with corresponding set of finite domainsD = {D1, ..., Dn},
and F = {F1, ..., Fn} is a set of preference functionsFi

: (Si, Ri) → Ci where(Si, Ri) is a constraint andCi is a
set of preference (or cost) values. Each constraint(Si, Ri)
consists of a scopeSi = {Xi1, ..., Xik} representing a subset
of variablesX, and a relationRi ⊆ Di1 × ... × Dik on Si

that defines all tuples of values for variables inSi that are
compatible with each other. Each preference functionFi

maps the tuples of(Si, Ri) to values inCi. The solution
to variables of interest (solution variables)Y ⊆ X is an
assignment toY that is consistent with all constraints, has
a consistent extension to all variablesX, and minimizes (or
maximizes) a global objective function defined in terms of
preference functionsFi.

Given a PHCA state at timet and an assignment to observ-
able and command variables inΠ (see Definition 1) at times
t andt + 1, in order to estimate PHCA state at timet + 1,
we encode both the structure and execution semantics of the
PHCA as a COP, consisting of:

• Set of variablesXΣ ∪ Π ∪ XExec, where XΣ =
{L1, ..., Ln} is a set of variables that correspond to
PHCA locationsli ∈ Σ, Π is the set of PHCA variables,
andXExec = {E1, ..., En} is a set of auxiliary variables
used for encode the execution semantics of the PHCA.

• Set of finite, discrete-valued domainsDXΣ ∪ DΠ ∪
DXExec , whereDXΣ = {Marked, Unmarked} is the

domain for each variable inXΣ, DΠ is the set of do-
mains for PHCA variablesΠ, andDExec is a set of do-
mains for variablesXExec.

• Set of constraintsR that include the behavioral con-
straints associated with locations within the PHCA, as
well as encoding of the PHCA execution semantics.

• Preference functionsF in the form of probabilities as-
sociated with tuples of constraintsR. Tuples of hard
constraints that are disallowed by the constraint are as-
signed probability 0.0, while the tuples allowed by the
constraint are assigned probability 1.0. Tuples of soft
constraints are mapped to a range of probability values
based on the PHCA model. These probability values re-
flect the probability distributionPΘ of PHCA start states
and probabilities associated with PHCA transitionsPT .

• The optimal solution to the COP is an assignment to so-
lution variablesXΣ that represent the state of the PHCA,
while maximizing the probability of the transitions that
lead to that state from the previous time step. This corre-
sponds to a state assignment that maximizes the product
of the probabilities of the enabled constraint tuples.

A key to framing PHCA-based diagnosis as COP is the
formulation of the constraintsR that capture the execution
semantics of the PHCA. PHCA execution involves determin-
ing the entailment of behavioral constraints, identifying en-
abled transitions from a current PHCA state, and taking those
transitions to determine the next state. Referring back to the
PHCA example in Figure 4, if we assume that at time t the
PHCA state is< On < Idle >> and that the transition guard
constraint(command = TakeP icture) is entailed, and at
time t+1 the behavioral constraint(shutter = moving) of
the transition’s target location is entailed, then the PHCA
state at time t+1 will be< On < TakingP icture >>.
To encode entailment of conditions such as(command =
TakeP icture), a variableET is introduced with domain
{Entailed, Not − Entailed} to denote whether the transi-
tion guard condition is entailed. Entailment of a condition is
then formulated as a COP constraint that allows the assign-
mentET = Entailed to be associated with tuples that list
all possible assignments to the variablecommand that en-
tail the condition(command = TakeP icture). Entailment
constraints are generated for all locations that have behavioral
constraints and for all transitions that have guard constraints.

The following example on the left of Figure 5 shows a
probabilistic choice between two transitions for a section of
the PHCA in Figure 4. In order to encode this probabilistic
choice, we first introduce a location variableX

(t)
Off for time

t, with domain{Marked, Unmarked}. Then auxiliary vari-
ablesE

(t)
T1 andE

(t)
T2 with domain{Enabled, Disabled} are

introduced for transitions T1 and T2 respectively.
The COP constraint that encodes the probabilistic choice

among the two transitions T1 and T2 is formulated logically:

X
(t)
Off = Marked≡ (∃ T ∈ {T1, T2} | : E(t)

T = Enabled

∧ (∀ T ′ ∈ {{T1, T2}−T} | : E(t)
T ′ = Disabled))

∧
X

(t)
Off =

Unmarked ≡ (∀ T ∈ {T1, T2} | : E
(t)
T = Disabled)

Off Broken
0.05

0.95

1.0DisabledDisabledUnmarked

0.05EnabledDisabledMarked

0.95DisabledEnabledMarked

Prob.ET 2
(t)ET1

(t)XOff
(t)

T1
T2

Figure 5: left: PHCA with two probabilistic transitions.right:
Probabilistic transition constraint.

This logical formula is compiled into a set of tuples with
associated probability values, as shown in Figure 5 (right).
The tuples are mapped to probability values by the following
preference function:

FT =
{

Prob(Ti) if (∃T (t)
i : E

(t)
Ti

= Enabled)
1.0 otherwise

The above constraint identifies the enabled transition, but
does not encode taking the transition. In general, the follow-
ing constraint encodes taking enabled transitions, unless the
behavior constraint of the transition’s target location is not
entailed:

(∀ L ∈ Σ | : ((∃ τ ∈ {T |Target(T) = L} | : E
(t−1)
τ =

Enabled)∧Behavior
(t)
L = Entailed)⇒X

(t)
L = Marked)

whereEτ represents a transition variable,BehaviorL is
an entailment variable for the behavior constraints of location
L ∪ its composite parent if L is within a hierarchy, andXL

is the location variable of L. The constraint is instantiated for
each location of the PHCA, as indicated by∀ L ∈ Σ.

Some semantic rules apply to PHCA hierarchies. For ex-
ample, when a composite location becomes marked, all of
its start locations become marked. Since ”Initializing” is a
start location of the composite ”On” location, a PHCA in state
< Off > may transition to state< On < Initializing >>.
Furthermore, a composite location should be marked if any of
its subautomata are marked. The COP constraints must cor-
rectly capture such PHCA semantics and encode mutual ex-
clusions to avoid interference and conflicting effects among
the constraints. For brevity, the complete encoding of con-
straints is not presented.

The formulation of diagnosis as COP is performed offline.
Given a PHCA, we have implemented a compiler that auto-
matically generates the corresponding COP. The COP is then
used in an online solution phase by dynamically updating
it to incorporate constraints on new observations and issued
commands. The solutions to the COP can be generated up
to a given probability threshold using a constraint optimiza-
tion solver for soft constraints[Sachenbacher and Williams,
2004]. The solutions incorporate the probability distribution
on the initial states as encoded by the COP. The most likely
solutions generated at a time step t dynamically update the
COP to constrain the set of start states for solving the COP at
time step t+1. For example, as Figure 3 shows, state estimates
at time 2 may only be reached through those at time 1. Thus
limiting the number of state trajectories maintained at each
time step has implications for diagnosing faults that manifest
delayed symptoms.

5 Diagnosis with Delayed Symptoms
Ideally, diagnosis will maintain a complete probability distri-
bution of all possible system states. However, maintaining all
possible state trajectories at each time step is intractable be-
cause of exponential growth in state space. Thus at every time
step a limited number of trajectories are typically maintained.
A potential problem with this approach is that it may miss the
best diagnosis if a trajectory through a pruned state that is ini-
tially very unlikely becomes very likely after additional evi-
dence. Figure 6 illustrates this situation for the camera mod-
ule, where the initially unlikely state(Sensor = Broken)
is pruned, resulting in the best diagnosis to be unreachable
when additional evidence is available at time 6.

P
ro

b
ab

ility

Time0 1
Power On and Take Picture

…………..……………. 6

S/W behavior =>

Image not corrupt

Cam=Broken

Battery=low

Sensor=Broken

K-Best

NominalNominal Sensor=Broken

Best state

missed

Battery=low

Cam=Broken

Figure 6:Missed diagnosis as a result of tracking a limited number
of trajectories (K-Best)

Dealing with delayed symptoms is particularly important
for diagnosing systems with software-extended behavior, due
to typically delayed observations associated with software
processing. Livingstone-2 (L2)[Kurien and Nayak, 2000]
addresses the problem of delayed symptoms for diagnosing
hardware systems. We generalize the L2 capability to PHCA-
based diagnosis.

We extend our COP formulation of PHCA-based diagnosis
to provide flexibility for regenerating the most likely diag-
noses over a finite time horizon rather than a single previous
step. Thus, we frame the COP over a finite time horizon (N -
stages) and leverage theN -stage history of observations and
issued commands to generate the most likely diagnosis trajec-
tories over the horizon. This involves augmenting the COP
in the previous section to include model variables and con-
straints for each time step within theN -stage horizon. The
solutions to the COP become assignments to location vari-
ablesX

(t)
Σ , t ∈ {0..N}, representing PHCA state trajecto-

ries that have maximum probability within the horizon. This
probability corresponds to the product of transition probabili-
ties enabled within that trajectory, multiplied by the probabil-
ity of the initial state of the trajectory. As time progresses dur-
ing the online solution phase, theN -stage horizon is shifted
from (t → t + N) to (t + 1 → t + N + 1) and the COP
over the new horizon is dynamically updated by constrain-
ing its start states at time t+1 to match the solutions from the
previous iteration. This reformulation still limits the num-
ber of trajectories tracked to a given probability threshold, as
described in the previous section. Referring to Figure 6, if
we consider a time horizon (0 → 6), state trajectories will
be regenerated starting from the (Nominal) state at time 0.
Therefore, even though the number of trajectories is limited,

the trajectory ending at state (Sensor = Broken) at time
6 will have the highest probability based on the delayed ob-
servation. Consequently, the state(Sensor = Broken) at
time 2 will be maintained because it is part of the most likely
trajectory at time 6.

Decreasing the probability threshold for the trajectories be-
ing tracked solves the delayed-symptom problem by main-
taining a larger number of states at each time step. However,
for a system with many combinations of similar failure states
with high probability, the number of trajectories maintained
will have to be very large in order to be able to account for
a delayed symptom that supports an initially low probability
state. For such systems, considering even a small number of
previous time steps gives enough flexibility to regenerate the
correct diagnosis.

6 Implementation and Discussion
The PHCA model-based diagnosis capability, described
above, has been implemented in C++. Figure 7 shows the
offline compilation phase and the online solution phase of the
diagnosis process.

Tree

Decomposition

N-Stage COP

Constraint

Graph

PHCA
H/W models

S/W specs

(code)

Optimal

Constraint

Solver

Dynamic update

of COP;

Horizon shifting
t0 t1 t2 t3

observations commands

Offline compilation phase Online solution phase

Figure 7:Process diagram for PHCA-based diagnosis

In the offline phase, theN -Stage COP is generated auto-
matically, given a PHCA model and parameterN . To en-
hance the efficiency of the online solution phase, tree decom-
position [Gottlob et al., 2000] is applied to decompose the
COP into independent subproblems. This enables backtrack-
free solution extraction during the online phase[Dechter,
2003]. In our implementation, the COP is decomposed using
a tree decomposition package that implements bucket elimi-
nation[Kasket al., 2003].

The online monitoring and diagnosis process uses both the
COP and its corresponding tree decomposition. The online
phase consists of a loop that shifts the time horizon, up-
dates and solves the COP at each iteration. The COP is
updated by incorporating new observations and commands,
and constraining the start states to track the trajectories ob-
tained within the previous horizon. At each iteration of the
loop, the updated COP is solved using an implementation of
the decomposition-based constraint optimization algorithm in
[Sachenbacher and Williams, 2004] that can generate diag-
noses up to a given probability threshold.

For the camera model withN = 2, the COP has∼ 150
variables and∼ 100 constraints and is solved online in∼ 1
sec, resulting in more comprehensive diagnoses than previ-
ous hardware models. Future work includes evaluating the
efficiency of the COP formulation using several complex sce-
narios, optimizing the COP formulation by minimizing the

number of variables and constraints generated, investigating
the optimal size of the diagnosis horizon and its relationship
to the number of trajectories tracked.

7 Acknowledgments
This research is sponsored in part by NASA CETDP under
contract NNA04CK91A and by the DARPA SRS program
under contract FA8750-04-2-0243.

References
[Berry and Gonthier, 1992] G. Berry and G. Gonthier. The

esterel programming language: design, semantics and
implementation. Science of Computer Programming,
19(2):87–152, Nov. 1992.

[Consoleet al., 1993] L. Console, G. Friedrich, and D. The-
seider Dupre. Model-based diagnosis meets error diagno-
sis in logic programs. InProc. IJCAI-93, 1993.

[de Kleer and Williams, 1987] J. de Kleer and B. C.
Williams. Diagnosing multiple faults.Artificial Intelli-
gence, 32(1):97–130, 1987.

[Dechter, 2003] R. Dechter.Constraint Processing. Morgan
Kaufmann, 2003.

[Dressler and Struss, 1996] O. Dressler and P. Struss. The
consistency-based approach to automated diagnosis of de-
vices. Principles of Knowledge Representation, pages
267–311, 1996.

[Gottlobet al., 2000] G. Gottlob, N. Leone, and F. Scarcello.
A comparison of structural csp decomposition methods.
Artificial Intelligence, 124(2):243–282, 2000.

[Grosclaude, 2003] I. Grosclaude. Model-based monitoring
of component-based software systems. InProc. DX-03,
2003.

[Kasket al., 2003] K. Kask, R. Dechter, and J. Larrosa. Uni-
fying cluster-tree decompositions for automated reason-
ing. Technical report, U. of California at Irvine, 2003.

[Kurien and Nayak, 2000] J. Kurien and P. Nayak. Back to
the future for consistency-based trajectory tracking. In
Proc. AAAI-00, 2000.

[Mayer and Stumptner, 2004] W. Mayer and M. Stumptner.
Approximate modeling for debugging of program loops.
In Proc. DX-04, 2004.

[Sachenbacher and Williams, 2004] M. Sachenbacher and
B. C. Williams. Diagnosis as semiring-based constraint
optimization. InProc. ECAI-04, 2004.

[Schiexet al., 1995] Thomas Schiex, H́elène Fargier, and
Gerard Verfaillie. Valued constraint satisfaction prob-
lems:hard and easy problems. InProc. IJCAI-95, 1995.

[Williams and Nayak, 1996] B. C. Williams and P. Nayak.
A model-based approach to reactive self-configuring sys-
tems. InProc. AAAI-96, pages 971–978, 1996.

[Williams et al., 2001] B. C. Williams, S. Chung, and
V. Gupta. Mode estimation of model-based programs:
monitoring systems with complex behavior. InProc.
IJCAI-01, 2001.

