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Abstract

Wk present an approach for image retrieval using a very
large number of highly selective features and efficient on-
line learning. Our approach is predicated on the assump-
tion that each image is generated by a sparse set of vi-
sual “causes’ and that images which are visually similar
share causes. We propose a mechanism for computing a
very large number of highly selective features which cap-
ture some aspects of this causal structure (in our implemen-
tation there are over 45,000 highly selective features). At
guery time a user selects a few exampleimages, and a tech-
nique known as“ boosting” is used to learn a classification
function in this feature space. By construction, the boost-
ing procedure learns a simple classifier which only relies
on 20 of the features. As a result a very large database of
images can be scanned rapidly, perhaps a million images
per second. Finally we will describe a set of experiments
performed using our retrieval system on a database of 3000
images.

1. Introduction

In the image retrieval task a user must search a database
of many thousands, or millions, of images. User goalsvary,
in some cases the task is to find a particular image, in other
cases any image from a class will do. The optimal interface
would provide a very flexible query mechanism, perhaps
through a natural language interface. In fact, many “stock
photo houses’ currently provide such an interface to their
collections. Advertisers and publishers present a descrip-
tion of their requirements:. “an image of the beach with ath-
letic people playing volleyball”. Human clerks then scan
many images by hand using keywords.

Recently a large number of automated image retrieval
systems have appeared [8, 12, 15, 10]. Rather than describe
an image using text, in these systems an image query is de-
scribed using a set of example images. In some of these

systems a user’s only interaction with the retrieval engine
is through example images, in others the user is also asked
to weight a set of “intuitive” features, such as color, texture
and shape.

Image retrieval differs from the more common task of
classification which includes tasks such as face detection
and character recognition. In retrieval the number of po-
tential image classes is extremely large and the number of
example images is very small. For example, a user may
wish to retrieve example images of “cars on the road” us-
ing perhaps three example images. Conventional machine
learning methods, such as neural networks or support vector
machines, are not well suited to this task because they often
require a small number of classes and a large set of labeled
data (see[17, 14] for example).

An effective solution to this problem hinges on the dis-
covery of a simplifying structure in the distribution of im-
ages. A learning algorithm can then take advantage of this
structure to learn an image class from a small number of
examples.

When ahuman clerk is shown three exampleimages con-
taining “a car on the road”, he concludes that other images
must contain both “car” and “road”. A photograph chosen
at random from the Web might contain a “car”, a “road”,
the “Eiffel Tower”, the “Tgj Mahal”, or any one of athou-
sand other objects. But, while there are a very large number
of objects which might be present in any one image, any
particular image will contain at most afew of these objects.
This is not unlike the structure of English text: there are
over 100,000 possible English words, but any given sen-
tence will contain roughly six words. The clerk’s actionsin
the above example are justified because the probability of
a car and a road appearing by random chance in all three
imagesis quite low.

The distribution of natural images is simplified by the
fact that the objects which cause images are rare. In other
words the causal structure of imagesis sparse.

Placed in this context, previous feature based retrieval
approaches face a daunting task. There are usualy just a
few types of features used in such schemes, such as color,



and oriented edges. These features are likely to appear in
a large percentage of images. Since both the Eiffel Tower
and the Tej Mahal have vertical edges, these features clearly
cut across the boundaries of the causal structure. Learning
the concept of “Eiffel Tower” from example images using
these features will require the learning algorithm to stake
out a complex region in this feature space. Many systems
attempt to learn conjunctive concepts, such as a histogram.
Stated simply a histogram encodes the relative frequencies
of primitive properties(e.g., thereare 1.3 times as many ver-
tical edgesthan there are horizontal edges). Sinceitislikely
that the background of an image will also contain vertical
edges, these ratios are sensitive to changesin background.

In contrast we will defineavery large set of highly selec-
tive visual features. A highly selective feature will respond
to only asmall percentage of images in the database — such
a feature might return a large numerical value for only 5%
of images. One could not hope to define such a large set
of features by hand, instead an algorithm for automatically
generating plausible features is given. Because these fea-
tures are so rare, they are also very unlikely to occur at ran-
dom in the background of an image.

Given a set of highly selective features query learning
can be greatly simplified. Only a few features will re-
spond to the set of example images. A learning algorithm
which can rapidly select a set of 20-50 features which dis-
tinguishes these images is presented. The algorithm is an
adaptation of “AdaBoost’[9]. After query learning, each
image in the database can be evaluated rapidly by examin-
ing only 20-50features. Asaresult over onemillionimages
can be scanned per second.

2. Creating Highly Selective Features

Highly selective features are a natural extension of the
simple features used in other image database systems.
Given a set of “first order” features such as oriented edges
or color (see Figure 1), highly selective features measure
how these first order features are geometrically related. By
finding arrangements of first order features, a set of sec-
ond order features can be defined. Arrangements of second
order features form third order features. Our approach is
based on earlier work by [6] and, is similar in spirit to the
features used by [1].

The process starts out by extracting a feature map for
each type of smple feature (there are 25 simple linear
features including “oriented edges’, “center surround” and
“bar” filters shown in Figure 1). Each features map is then
rectified and down-sampled by two. The 25 feature maps
are then used as the input to another round of feature ex-
traction (yielding 25 x 25 = 625 feature maps). The process
isrepeated again to yield 15,625 feature maps (over the red,
green, and blue color channels, this yields 46,875 feature
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Figure 1. The 25 primitive filters used in com-
puting the feature maps. In practice, these
are efficiently computed with separable hori-
zontal and vertical convolutions.

maps). Three levels of filtering were possible for the reso-
[ution of our images. Finally each feature map is summed
toyield asingle feature value.

Each level of processing discovers arrangements of fea
tures in the previous level. Thus a second order feature
might be sensitive to diagonal arrangements of horizontal
features—afeaturevisible as a staircase pattern. One exam-
ple feature is shown in Figure 2. It might be called atiger
stripe feature. The first low-pass filter smoothes the image
and removes high-frequency noise. The second order fea-
ture finds vertical edges. The third order feature detects a
horizontal arrangement of these vertical edges. The feature
map demonstrates the selectivity of a particular feature on
theimage of atiger and awaterfall. Notice that the response
in the final feature map is peaked over the tiger’'s stripes,
while there is no discernible peak in the waterfall image.
Figure 3 shows another filtering sequence that is more dif-
ficult to explain intuitively. Neverthelessit is selective for
images of churches and responds very weakly to the image
of thefield.

More formally these features are computed from an im-
ageas.

Gigoe = D Mijpe D

pizels

where M, ; 1. is the feature map associated with primitive
filters4, j and k, and c is the color channel. The definition
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Figure 2. Responses of an image of a tiger
and a waterfall to a particular filter sequence.
The final feature map has a strong peak at the
arrangement of the stripes on the body of the
tiger, whereas thereis aweak response to the
waterfall image.

of Mi,j,k is:
Mk = l2 (|fx ® M;;|) 2
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where X istheimage, f is a primitive filter and | is the
down-sample by two operation. Because the feature maps
are down-sampled before the next level of filtering, the sup-
port of the filters on the image plane are effectively en-
larged. This enables the features to capture complex ar-
rangements of low-level features (i.e. global structure).

We conjecture that these features do in fact reflect some
of the sparse causal structure of the image formation pro-
cess. One piece of evidence which supports this conclu-
sion isthe statistical distribution of the highly selective fea-
ture values. Evaluated across an image database containing
3000 images, these features are very sparse. The average
kurtosisis approximately 8 and some of the features have a
kurtosis as high as 120 (the Gaussian has a kurtosis of 3).
Observing this type of distribution in afilter is extremely
unusual and hence highly meaningful. It iswell known that
the response of certain linear filters (such as Laplacian or
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Figure 3. Responses of an image of a church
and a field to a particular filter sequence.
The final feature map selectively responds
strongly to the church image and weakly to
the field image.

wavelet filters) are somewhat sparse and have higher kurto-
sisthan Gaussian [2, 19]. The sparse response of the highly
selective featuresis much more significant. Recall that each
highly selective feature response is a summation across the
entire image, and that the sum of a number of independent
random variablestends quickly toward Gaussian. The pixel-
wise kurtosis of the feature maps, before this summation,
can be ashigh as 304 * . In contrast, the distribution of the
summation of a rectified Laplacian filter across the image
database is Gaussian.

Figure 4 shows a histogram of the tiger stripe feature's
response to 500 images. Notice that observation of the
tiger's strong response (light dot) would be considered
much more statistically significant than observation of the
waterfall’s weak response (dark dot). Figure 5 shows the
histogram of a more kurtotic feature that responds strongly
to images of churches and weakly to images of fields.

Further evidence for the significance of these highly se-
lective features is a theorem from the projection pursuit lit-
erature, which states that random projections of a high di-
mensional random variable are almost aways Gaussian [7].
This holds even when the high dimensional random vari-
able does in fact have significant statistical structure, as is
the case for natural images.

Lt is not unusual to observe high kurtosis in the distribution of a non-
linear feature. For example one could easily square a variable with Gaus-
sian distribution in order to yield a higher kurtosis. The highly selective
features do not contain these sorts of non-linearities. At each level only the
absolute value of the feature map is computed.
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Figure 4. A histogram of the tiger stripe fea-
tureresponses to aset of 500 images. The re-
sponse for the tiger image (light dot) is more
than twice that of the waterfall image (dark
dot).
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Figure 5. A histogram of feature responses
to a set of 500 images. One particular image
of a church has a strong response (light dot),
while an image of afield has aweak response
(dark dot). The histogram is super-Gaussian
with a kurtosis of 7.8.
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2.1. Relationship to Wavelets

There is a superficial similarity between the highly se-
lective feature approach and retrieval based upon a set of
wavelet coefficients[11]. In awavelet approach images are
represented and retrieved using their wavelet coefficients.
Like our features, many of the wavelet coefficients of an
image are close zero. But unlike our approach, these coeffi-
cients are very sensitive to changesin the image. For exam-
ple, wavelet coefficientsare very sensitiveto asmall shiftin
the image plane. A wavelet based approach is best thought
of as a very efficient approximation to template matching
(because distancein theimage space is a simple function of
the distance in wavel et feature space).

3 Query Learning with Boosting

At first it might seem that the introduction of tens of
thousands of features could only make the query learning
process infeasible. How can a problem which is difficult
given 1020 features become tractable with 10,000? Two
recent resultsin machine learning argue that thisis not nec-
essarily aterrible mistake: support vector machines (SVM)
[4] and boosting [9]. Both approaches have been shown
to generalize well in very high dimensional spaces because
they maximize the margin between positive and negative
examples. Boosting provides the closer fit to our problem
because we can use it to greedily select a small number of
features from avery large number of potential features.

In its original form, the AdaBoost learning algorithm
is used to boost the classification performance of a sim-
ple learning algorithm (e.g., it might be used to boost the
performance of a simple perceptron). It does this by com-
bining a collection of weak classification functions to form
astronger classifier. In the language of boosting the simple
learning algorithm is called a weak learner. So, for exam-
ple the perceptron learning algorithm searches over the set
of possible perceptrons and returns the perceptron with the
lowest classification error. The learner is called weak be-
cause we do not expect any single perceptron to classify the
training data well (perhaps the perceptron may only clas-
sify the training data correctly 51% of the time). In order
for the weak learner to be boosted, it is called upon to solve
a sequence of learning problems. In each subsequent prob-
lem examples are reweighted in order to emphasize those
which wereincorrectly classified by the previousweak clas-
sifier. The final strong classifier is a weighted combination
of weak classifiers.

One important goal for image database query learning is
that the final classifier depend only on a small number of
features. A classifier which depends on few features will
be more efficient to evaluate on a very large database. In



addition, a simple classifier which depends on few features
will be more likely to generalize well.

In support of this goal, we design our weak learning al-
gorithm to select the single highly selective feature along
which the positive examples are most distinct from the neg-
ative examples. For each feature, the weak learner com-
putes a Gaussian model for the positives and negatives, and
returns the feature for which the two class Gaussian model
is most effective. In practice no single feature can per-
form the classification task with 100% accuracy. Subse-
quent weak learners are forced to focus on the remaining
errorsthrough example reweighting. In the experiments be-
low, the algorithmistypically run for 20 iterations, yielding
astrong classifier which depends upon 20 features. Table 1
shows the learning algorithm.

e Given example images (z1,91),--. , (zn,yn) Where
y; = 0,1 for negative and positive examples respec-
tively.

o Initidlize weights w; ; = 2m, 21 fory; = 0,1 respec-
tively, where m and [ are the number of negatives and
positives respectively.

e Fort=1,...,T:

1. Train one hypothesis h; for each feature j using
wy, Witherror e; = Pr"* [h; () # il

2. Choose h(-) = hy(-) suchthat Vj # k,ex < ¢;
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3. Update:

1—e;
Wiy1, = WPy

where ¢; = 0,1 for example z; classified cor—
rectly or incorrectly respectively, and 5; =

Wtd-1,4
No.rmf?\hzg Wet1,4 < 72;;:1 oy
adistribution.

Et

S0 that wtﬂ is

e Thefinal hypothesisis:

T
= g Oétht
t=1

zlog%

1 T
232
where o

Table 1. The boosting algorithm for learning a
query online. T hypotheses are constructed
each using a single feature. The final hypoth-
esis is alinear combination of the T hypothe-
ses where the weights are inversely propor-
tional to the training errors.

4. Query Specification

The user interface of our query engine has two phases:
aninitial browsing phase, and a relevance feedback stage.

The user begins a new query by browsing the database
to select a few positive examples. Users found that it was
somewhat tedious to hand pick negative examples. Instead
we randomly choose 100 images from the database to form
a set of generic negative examples. This is a reasonable
policy because the the number of images which satisfy any
particular query is very small. Nevertheless, this policy for
selecting negatives is somewhat risky because it is possi-
ble that the negative set may contain true positives. Typ-
ically we run AdaBoost for 20 iterations which is usually
sufficient to achieve zero training error?. Since the num-
ber of positive training examples is typically smaller than
the number of negative examples, we initially weight them
higher so that the sum of the weights of the positives and
negatives are equal. This encourages correct classification
of the positive examples at the outset.

Each image in the database can then be classified by the
strong classifier. Alternatively, since the strong classifier
is itself a perceptron, the images can be ranked by their
margin. The first goal of an image retrieval program is to
present the user with useful images which are related to the
guery. Since the learning algorithm is most certain about
images with a large positive margin, a set of these images
are presented. Without further refinement this set of images
often contains many false positives.

Retrieval results can be improved greatly if the user
is given the opportunity to select new training examples
[13, 5]. Recall that images are classified as positive if the
fina hypothesis (i.e., weighted combination of the weak
learners) exceeds the AdaBoost threshold (i.e., decision
boundary): 1 3°7_, a (see Table 1). This defines a mar-
gin such that images highly above threshold are considered
most positivewhileimageswell below threshold are labeled
most negative.

Following a query, three sets of images are presented to
the user: (i) test set images with large positive margin; ii)
the randomly selected negative images which are close to
the decision boundary; and (iii) test set images which are
close to the boundary. The first set isintended to allow the
user to select new negativetraining exampleswhich are cur-
rently labeled as strongly positive. The landscape and |eop-
ard image in Figure 7 are obvious false positives that the
user can add as negative examples. The second set allows
the user to discard randomly chosen negativeswhich are not
true negatives. Thethird set allows the user to refine the de-

20ne might be concerned that attaining zero training error would lead
to poor performance on thetest set. Infact for the boosting algorithm thisis
usually not the case, since the margin between the negatives and positives
typically increases even after there is zero error on the training set [18].



cision boundary by labeling examples which determine the
margin. In Figure 7, the last row contains three images of
carswhich are close to the decision boundary. The user can
add these as positive examples to update the query.

In every case the final query is produced by running
AdaBoost for 20 iterations. This yields a strong classifier
which is a simple function of 20 discriminating features.
Since image databases are very large, the computational
complexity of the final classifier is a critical aspect of re-
trieval performance.

5. Reaults

Experimental verification of imageretrieval systemsisa
very difficult task. There are few if any standard datasets,
and there are no widely agreed upon evaluation metrics.

To test the retrieval performance of the system we con-
structed five classes of natural images (sunsets, |akes, water-
falls, fields, and mountains) using the Corel Stock Photo 2
image sets 1, 26, 27, 28, and 114 respectively [3, 16]. Each
class contains 100 images.

Figure 6 shows the average recall and average precision
for the five classes of natural images. Recall is the ratio of
the number of relevant images returned to the total number
of relevant images. Precision is the ratio of the number of
relevant images returned to the total number of images re-
turned.

Figures 7-9 show results from queries for race cars,
flowers, and waterfalls, cloudy skies, and jet planesin a
3000 image data set (using Corel image sets 1-30).

Empirically we have found that using different sets of
primitive filters gives comparable results as long as they
are used to create highly selective features in the manner
described. Using a Mahalanobis distance as in [6] instead
of boosting is also possible but requires computations with
many more features. This slows down the entire retrieval
process especially when the databaseislarge. Boosting also
provides a more natural method for relevance feedback.

6. Summary

We have presented aframework for image retrieval based
on representing imageswith avery large set of highly selec-
tive features. Queries are interactively learned online with
a simple boosting algorithm. The selectivity of the features
allow effective queries to be formulated using just a small
set of features and a small number of training examples.
This supports our observation of the “sparse” causal struc-
ture of images. It also makes training the classifier smple,
and retrieval on alarge database efficient.

3This publication includes images from the Corel Stock Photo images
which are protected by the copyright laws of the U.S., Canada and else-
where. Used under license.

Figure 7. Race cars: The top row shows the
positive examples followed by the top twenty
retrieved images in the middle portion. The
first row of the bottom portion shows the neg-
ative images in the training set which are
close to the decision boundary. The second
row shows images in the test set which are
near the boundary.
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Figure 6. Average recall and average precision for the five classes of natural images. Essentially
perfect performance was achieved on the mountains (mt) class. Closer inspection shows that the
images in this class are fairly homogeneous especially when compared to images in the fields (fd)
and lakes (Ik) classes. These results were averaged over five trials, each using five randomly selected
positive and four negative training examples (one from each negative class).
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