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Figure 1: Image warp of a flexible, yet incompressible, elastic sphere pinched between two fingers. The effect was created
by providing spatially-varying compression resistance values to make the sphere significantly more area-preserving than its
compressible background.

Abstract

We present a deformation technique that constructs 2D warps by using spline curves to specify the starting and
target shapes of selected key contours. We generate a two-dimensional deformation map from these contours by
simulating a non-linear elastic membrane deforming in accordance with user-specified constraints. Although we
support and demonstrate elastic models inspired by physical membranes, we highlight a custom material model for
this specific application, which combines the benefits of harmonic interpolation and area-preserving deformations.
Our warps are represented via a standard Cartesian lattice and leverage the regularity of this description to
enable efficient computation. Specifically, our method resolves the targeting constraints imposed along arbitrarily
shaped contours with sub-grid cell precision, without requiring an explicit remeshing of the warp lattice around
the constraint curve. We describe how to obtain a well-conditioned discretization of our membrane model even
under elaborate constraints and strict area preservation demands, and present a multigrid solver for the efficient
numerical solution of the deformation problem.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Computational Geometry
and Object Modeling—Physically based modeling

1. Introduction

Image deformation techniques such as guided warping are
valuable tools in photographic editing and visual effects pro-
duction. The dramatic aesthetic effect of image deforma-
tions is evident even in early pioneering work in the field
[BN92] and remains a ubiquitous tool in post-production. To
a certain degree most image warping techniques are based
on the concept of the image domain as an elastic mem-
brane, which deforms subject to constraints while keeping

a shape that is as natural and regular as possible. This princi-
ple has been successfully demonstrated in numerous image
deformation techniques, targeting application areas such as
shape manipulation [ACOL00,SMW06, JBPS11], image re-
sizing [WTSL08], lens correction [CAA09] and video retar-
geting [WLSL10]. Nevertheless, several important aspects
of the deformable membrane concept for image deforma-
tion have not been thoroughly explored; these include the
use of nonlinear membrane models to capture complex be-
haviors such as local area preservation, the accommodation
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of irregularly-shaped geometric constraints within a regular
discretization data structure, and the utilization of efficient
multi-resolution techniques to solve the discrete equations
governing the computed deformation map. Our objective is
to improve the scope and utility of image deformation tech-
niques by developing a methodology that jointly addresses
these important algorithmic and modeling features.

Techniques which establish an affine relationship between
user specified constraints and the generated image defor-
mation have excellent potential for real-time performance
and interactive manipulation [JBPS11]. Certain applications,
however, benefit greatly from the inclusion of constraints
that are inherently nonlinear, such as bending resistance
for straight lines [CAA09] and global area preservation
[WXW∗06]. We specifically focus on the ability of nonlin-
ear models to enforce (local and global) area preservation;
this feature can be leveraged to efficiently generate squash-
and-stretch deformations and also avoid folding artifacts by
ensuring that any local region in the image does not deform
into a near-zero or negative-volume configuration. Folding
avoidance has previously been addressed by means of in-
equality constraints [Lip12, WTSL08]. Our proposed ap-
proach is to encode compression resistance directly into the
material model of the simulated deformable membrane. In
principle this is a soft constraint, although our method allows
setting its stiffness arbitrarily without adversely affecting the
numerical conditioning of the discrete governing equations
even for strongly compression-resistant cases. This treat-
ment enables graceful degradation when the user-imposed
constraints make folding unavoidable, and enables tuning of
deformation behaviors by specifying spatially-varying val-
ues of compression resistance (see Fig.1).

Our proposed methodology guides an image warp using
user-specified contour pairs, which indicate original and tar-
get shapes of important feature lines (see Fig.1). Central to
our method is our use of a standard, regular Cartesian grid
to compute the deformation field; however, we do not im-
pose any restrictions on the constraint curves, which are free
to pass through the interior of our grid elements, yet are
resolved at sub-grid resolution by our method. As a con-
sequence, we do not require the constraint curves to align
with edges of the discretization mesh, and therefore we do
not need to perform a remeshing step when the user intro-
duces (or adds to) the set of constraint curves. Using a regu-
lar grid to discretize the membrane dynamics promotes reg-
ularity of our data structures and provides a natural path to
efficient multiresolution numerical solvers. We leverage this
property by designing an efficient multigrid solver to com-
pute the solution of the membrane deformation problem. We
observe that the performance of our grid-based multigrid ap-
proach is superior to irregular meshes solved using highly-
optimized sparse direct solvers [SG06]. The differences are
even more significant when using multiple CPU cores, be-
cause our multigrid approach offers excellent potential for
parallelization.

Importantly, the performance of our method comes with-
out restricting the set of desirable features. In particular, our
formulation can accommodate any elastic membrane model
from the typical repertoire of materials surveyed by engi-
neering disciplines. We do, however, define a custom ma-
terial model, labeled Compression-Resistant Poisson Mem-
brane (CRPM) which departs from “real-world” materials
in certain ways. In particular, our model allows local tun-
ing of the membrane’s tendency for area preservation; areas
of the membrane can be modeled as strongly incompress-
ible (thus preventing inversion), while other areas can be al-
lowed to compress without being forced to fold over. When
image constraints make volume loss inevitable, this allows
the membrane to gracefully compress without inverting, and
when folding or inversion does occur our method is able to
recover in a smooth fasion (once the constraints are lifted).

2. Previous work

Our work is related to the pioneering work of [BN92], espe-
cially the concept of guiding a warp by corresponding fea-
ture lines. A number of interpolation techniques have been
adapted to the specific task of generating image-space de-
formations. Methods based on as-rigid-as-possible transfor-
mations [ACOL00, IMH05] aim to minimize distortion and
preserve shape features. Moving least squares techniques
[SMW06, WSBZ08] can accommodate a range of trans-
formations, such as rigid, affine and similarity transforms.
Thin plate splines [Boo89] have been leveraged for shape
interpolation in both two and three dimensions. Bounded
biharmonic weights [JBPS11] allow real-time performance
and provide smoothness guarantees for the interpolation ba-
sis functions. However, linear methods trade off advanced
membrane models for efficient runtime computation.

In terms of nonlinear methods, bounded distortion maps
[Lip12] and locally injective mappings [SKPSH13] can
guarantee inversion-free deformations; in contrast to our
“soft” enforcement of area preservation they employ hard
bounds. In addition [Lip12] ensures certain distortion
bounds on triangle meshes. Hard constraints for inversion
avoidance have been employed in the context of content-
aware image resizing [WTSL08]. Other authors have in-
corporated constraints such as preservation of salient fea-
tures [WTSL08] or 3-dimensional consistency [SD96] into
the warp formulation, and employed warping techniques in
applications of image and video stabilization [LGJA09].

Several authors have cast the image deformation prob-
lem as an energy minimization task [RT07, KFG09] thus
avoiding folding and biasing the warp towards “natural” de-
formations. Terms of such an optimization functional can
be adapted to preserve straight lines in re-projection tasks
[CAA09], or enforce constraints at a sub-grid resolution for
video retargeting [WLSL10]. Feature preservation during
deformations is facilitated by using differential coordinates
[Ale03], or storing relative differences between vertices and
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their neighborhood [SK04] and can be complemented with
terms that encourage global area preservation [WXW∗06].
Optimization approaches have been applied to interpolation
tasks for vector graphics images [FSH11] with attention to
constraints and discontinuities.

The Finite Element Method, which represents the the-
oretical underpinning of our method, is relevant also in
many related topics, such as creation of free form vec-
tor graphics [BBG12]. Similarly to our technique, Schi-
wietz and colleagues [SGW07] proposed a grid-based Fi-
nite Element Method for image deformations. Our method
features the advantages of sub-grid accurate curve con-
straints and advanced material models. Multigrid for 3D
deformations on irregular meshes has been studied by Shi
and colleagues [SYBF06]. More recently, Kaufmann and
colleagues [KWSH∗13] study Finite Element-based image
warping on adaptive meshes, exploring many different non-
linear energies and shape functions. Recent methods such
as [KWSH∗13] and [SKPSH13] rely on highly optimized
sparse direct solvers for efficiency. Sparse direct solvers be-
came popular in computer graphics since the thorough study
by Botsch [BBK05]. However, we demonstrate that our pro-
posed multigrid approach features superior performance on
regular grids, especially when multiple CPU cores are avail-
able. Our work on elastic deformations expands on recent
results on grid-based discretizations, mostly for 3D mod-
els [MZS∗11, PMS12] while our treatment of constraints is
motivated by recent results on grid-embedded discretizations
of elliptic problems [BVBZ∗10].

3. Elastic image warping

We associate an image of dimensions Lx×Ly with the rect-
angular domain Ω0 = [0,Lx]×[0,Ly] ⊆ R2. Our computed
image warp transforms an input point x ∈ R2 on the image
to its new location x̂ ∈ R2. We encode this transform via a
displacement map u(x) = x̂− x, defined over the expanded
domain Ω = [−d,Lx +d]×[−d,Ly +d] obtained by padding
Ω0 with a margin of width d (of course d can be zero if de-
sired). We typically enforce a zero-displacement constraint
on the boundary of the padded image domain, i.e. u(x) = 0
if x∈ ∂Ω, therefore offering the boundary ∂Ω0 the flexibility
to deform to a certain degree (depending on the width of the
image margin) in order to meet any imposed constraints. Po-
sitional constraints are specified as a collection of source and
target spline pairs. Each spline pair Si(s) and Ŝi(s),s ∈ [0,1]
defines the constraint u(Si(s)) = Ŝi(s)−Si(s); thus Si(s)
corresponds to the original shape of a feature curve and Ŝi(s)
defines its warped target. We summarize the constraints as
u(x) = η(x), x ∈ Γ := ∪iSi where η(x) are user-specified
displacements on constraint curves.

3.1. Nonlinear membrane models

We seek to reconstruct a complete displacement field u(x)
that spans the entire image domain Ω, while satisfying user-

specified constraints. We cast this as an optimization prob-
lem: we seek the function u(x) that minimizes a regularity
functional E[u], subject to u(x) = η(x), x ∈ Γ and u(x) =
0, x ∈ ∂Ω. An intuitive form of such a regularity functional
can be derived from the potential energy stored in an elas-
tic membrane as a consequence of its deformation; we thus
“stretch” a hypothetical membrane with the image content
imprinted on it in such a way that the user-specified curves
are displaced to their prescribed targets. For a detailed dis-
cussion on elastic material models we refer the reader to the
classic textbook of Bonet and Wood [BW08] or the tutorial
of Sifakis and Barbič [SB12]. In this section, we review the
basic principles, with a focus on the specific material de-
scriptions appropriate for our warping task.

An elastic membrane can undergo deformations that vary
along its spatial extent. Thus, the deformation energy is typ-
ically defined locally, via an energy density function Ψ(x)
that conveys the potential energy per unit undeformed area
in the vicinity of location x. Once an appropriate defini-
tion of Ψ(x) has been adopted, the total membrane energy
can be obtained via integration as E =

∫
Ω

Ψ(x)dx. The en-
ergy density itself depends on the local shape of the dis-
placement field. Common material models define the en-
ergy density as a function Ψ(F) of the deformation gradi-
ent F := ∂x̂/∂x = I + ∂u/∂x. The formula for Ψ often in-
cludes auxiliary quantities such as the volume change ratio
J = det(F) that measures the degree of compression or ex-
pansion (J = 1 is a perfectly area-preserving deformation).
Our method can naturally support many different energy
functions; see [SB12, KWSH∗13] for a list of energies typ-
ically used in graphics. We found that the following mem-
brane model is particularly suitable for our purposes:

Ψ(F) =
µ
2
‖F‖2

F︸ ︷︷ ︸
ΨP

+
κ

2
(J−1)2︸ ︷︷ ︸

ΨI

(1)

The energy density in Eq. (1), which we refer to as
Compression-Resistant Poisson Membrane (CRPM), does
not directly correspond to a physical material, but offers
a number of useful properties. First, Ψ(F) is rotation-
invariant, which means that it can support large rotations
without artifacts. The term ΨP can be recognized as the en-
ergy equivalent of a harmonic membrane, i.e. one where the
displacements satisfy a Laplace equation ∆u = 0. Note that
the ΨP term alone leads to harmonic coordinates [JMD∗07],
relying completely on the boundary conditions to produce
a non-trivial solution. Intuitively, the ΨP term represents an
elastic membrane that wants to shrink to zero area, but is
not permitted to do so due to the fixed boundary. The ΨI
term is an adjustable control that favors element deforma-
tions that preserve area. In contrast to the popular as-rigid-
as-possible concept [IMH05], the ΨI term does not penalize
all non-rigid deformations and encourages natural squash-
and-stretch behavior. By adjusting the parameters µ and κ

we can produce behaviors ranging from an extremely taut
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material, to a moderately compressible or even highly in-
compressible membrane. This allows us to avoid folding or
wrinkling behaviors by adjusting the tension/compressibility
of the material, either for the entire image or for particular
regions. In contrast to incompressible models that employ
hard inversion barriers [SKPSH13], our newly introduced
CRPM model enjoys the following beneficial properties: it
remains well defined under folding or inversion (which may
be desired by the user), its energy has continuous gradi-
ents throughout the configuration space, and the gradient and
Hessian of the energy function can be computed with mini-
mal effort as shown in section 3.4. These properties enable
an efficient multigrid procedure, described in section 3.5.

3.2. Grid discretization and constraints

We discretize the elastic membrane models of the previ-
ous section on regular Cartesian grids. As a consequence,
the total membrane energy is given by the sum of the en-
ergies associated with each grid cell Ωk as E = ∑k Ek =

∑k
∫

Ωk
Ψ(x)dx. Ultimately, the energy Ek associated with

each grid cell will be expressed as a function of the dis-
placements u(k)00 ,u

(k)
10 ,u

(k)
01 ,u

(k)
11 discretely sampled at the four

cell vertices. Given this formulation, the question arises how
constraints of the form u(x) = η(x), x ∈ Γ can be resolved.
This would be trivial if the deformation u was sampled on
an irregular mesh that was specifically generated to con-
form to the shape of constraint curves; mesh vertices along
the constraint curve would be explicit degrees of freedom
and could be directly constrained. In our Cartesian grid ap-
proach, a different constraint strategy must be followed. A
seemingly natural option would be to collect a discrete sam-
pling of points along the constraint curve, embed them in the
lattice (as linear combinations of nodes), and enforce the dis-
placement constraints only at those locations. Unfortunately,
this approach would be highly sensitive to the number of
points generated along the constraint curve: too few points
introduce the possibility of continuity artifacts by letting the
material bulge through the curve. Too many points present
the danger of generating an over-constrained problem that
would not have a solution.

To avoid these difficulties, we propose to enforce dis-
placements at sub-grid resolution by satisfying constraints
on average within each cell. Given discrete displacement
values at the vertices of a cell Ωk, we can reconstruct a con-
tinuous displacement field ũ(k)(x) using bilinear interpola-
tion as ũ(k)(x) = ∑

1
i, j=0 u(k)i j Ni j(x), where Ni j(x) is the bi-

linear shape function associated with each vertex. Enforcing
the displacement constraint ũ(k)(x) = η(x) on average within
cell Ωk yields the following condition:∫

Γk

η(x)dx︸ ︷︷ ︸
bk

=
∫

Γk

ũ(k)(x)dx =∑
i, j

u(k)i j

∫
Γk

Ni j(x)dx︸ ︷︷ ︸
W (k)

i j

(2)

where Γk = Γ∩Ωk. This condition can be summarized by

flattening the four nodal displacements into a combined vec-
tor U (k) = (u(k)00 , . . . ,u

(k)
11 ) ∈ R8 and writing the above con-

straint equivalently as WkU (k) = bk, where Wk is a 2× 8
matrix. This averaged constraint approach is inspired by
the treatment of embedded Dirichlet conditions in 2D Pois-
son problems by Bedrossian et al [BVBZ∗10], where they
demonstrate that such constraints are compatible with an
energy minimization problem in the sense that they do not
lead to over-constrained systems, yet they achieve second
order convergence to the continuous formulation, under re-
finement. However, their overall methodology is notably dif-
ferent from ours, as they apply this technique to boundaries
surrounding the active domains, not curves that are interior
to them, and they modify the energy term to reflect the fact
that the active domain is bounded by the boundary curve.

3.3. Soft & hard constraints – saddle point formulation

Let us assume a given set of constraint functions C1, . . . ,Cm.
For example, the spline constraints discussed in the previous
section correspond to Ck(U) = ‖bk−WkU (k)‖2, but let us
first tackle constraints in full generality. Typically, we would
proceed by enforcing C1(U) = 0, . . . ,Cm(U) = 0 exactly by
using Lagrange multipliers (hard constraints). Another com-
mon strategy is to formulate a modified objective:

Ẽ(U) = E(U)+
m

∑
i=1

di

2
Ci(U)2 (3)

where E(U) is the original energy and di > 0 are weights
of the individual constraints. This formulation corresponds
to pursuing the constraints in a soft sense. Note that if all
di→∞, we would converge to the former case of hard con-
straints. While soft constraints offer additional flexibility,
the drawback is that very high weights di lead to stiff sys-
tems, adversely affecting the conditioning of the optimiza-
tion problem. Special numerical techniques such as the Aug-
mented Lagrangian Method have been developed to alleviate
this issue [NW06]. We propose a novel formulation that al-
lows us to smoothly transition from soft to hard constraints
while avoiding the trap of ill-conditioning. Specifically, we
propose to consider the following modified energy function:

Ê(U , p) = E(U)+
m

∑
i=1

αi piCi(U)−
m

∑
i=1

α
2
i p2

i
2di

(4)

where E,di are as before, pi are auxiliary parameters and αi
are arbitrary scaling coefficients which we can use to bal-
ance the magnitude of the individual components in order
to achieve good numerical conditioning. This is analogous
to improving the conditioning of a linear system by careful
row/column scaling, while leaving the solution unaffected.
Note that by setting all di :=∞, the last term falls out and Ê
becomes a classical Lagrangian, with p assuming the role
of Lagrange multipliers. However, our augmented energy
Ê still allows us to specify finite di, corresponding to soft
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constraints. The key property is that the critical points of Ẽ
(Eq. 3) correspond to the critical points of Ê (Eq. 4). By di-
rect differentiation, we can easily show that if (U∗, p∗) is a
critical point of Ê, then U∗ is a critical point of Ẽ (the sup-
plemental material gives a formal proof). We call this a “sad-
dle point formulation” because even for a convex energy E,
the critical points (U∗, p∗) of Ê will be saddle points due to
the last term which involves negative p2

i . This is the cost we
need to pay for the arbitrary scaling factors αi, used to ob-
tain a well-conditioned problem. Note that the equivalence
of the critical points of Ẽ and Ê does not depend in any way
on the particular values of αi. In section 3.5 we discuss how
the resulting indefinite systems can be solved efficiently.

Let us now discuss the specific form of Eq. 4 for our
CRPM energy. There are, in fact, two types of stiff terms in
the energy E(u) which could lead to problematic numerical
conditioning. The first has to do with the incompressibility
term ΨI , which becomes problematic when a large value for
κ is used. The second contributing factor would be the tar-
geting terms dk

2 ‖bk−WkU (k)‖2
2 introduced in the beginning

of this section, especially if their coefficients are set to high
values to emulate hard constraints. In essence, we treat both
of these categories of stiff terms using the same saddle point
formulation. Two different sets of auxiliary paramters will
be introduced: The first of them (p) is associated with in-
compressibility constraints, and forms a field that spans the
entire image; specifically, we associate one parameter for ev-
ery cell of the grid. The second set of parameters (q) relates
to targeting constraints, and is localized around the spline
curves guiding the deformation; here, we associate two pa-
rameters (one for each of the x,y coordinates) with every cell
that is intersected by the spline targeting curve. Let us denote
the set of all grid cells as G and the set of grid cells which
intersect a source spline curve as H. Typically, H is only a
small subset of G. Using this notation, the final form of our
saddle point formulation of the CRPM energy is:

Ê(U , p,q) = ∑
i∈G

Ê(1)
i (U , p)+ ∑

i∈H
Ê(2)

i (U ,q) (5)

where

Ê(1)
i (U , p)=

µi

2

∫
Ωi

‖F‖2
F︸ ︷︷ ︸

Ψ′
P

dx+αi pi

∫
Ωi

[J(x)−1]︸ ︷︷ ︸
Ψ′

I

dx− α
2
i

2κi
p2

i

Ê(2)
i (U ,q)=βiq

T
i (bi−WiU

(i))− β
2
i

2di
‖qi‖

2
2

Note that pi is a scalar and qi a 2D vector. Our examples use
constant values of αi,βi,di across the entire domain; how-
ever, in some examples we vary µi,κi using an image mask.

3.4. Numerical approximation and solution

Before we can find the critical points of Eq. (5) using a nu-
merical optimization algorithm, we need to define appropri-
ate discrete approximations of the two continuous integrals.

For brevity of notation, we shall use the nodal deformation
values x̂i j = ûi j +xi j, with the understanding that those are a
simple transformation of the displacement values in U . The
first term (Ψ′P) can be integrated exactly by computing a con-
tinuous expression of the deformation gradient F from the
bilinearly interpolated displacement values within the cell.
The final result is:∫

Ωk

‖F‖2
F dx =

1
2

(
‖x̂10− x̂00‖2

2 +‖x̂11− x̂01‖2
2+ (6)

+‖x̂01− x̂00‖2
2 +‖x̂11− x̂10‖2

2

)
The analytic calculation of this expression is facilitated by
the fact that the interpolated deformation field ũ(k)(x) is a
bilinear function; as a consequence, its gradient F(x) is a
linear function of nodal displacements within each cell Ωk.
Note that this convenient property is specific to 2D, while in
3D the trilinear nature of ũ(k)(x) would lead to a deformation
gradient with entries that could include products of two of
the monomials x, y and z. The same convenient property can
be used to compute Ψ

′
I exactly, by leveraging the fact that

the term J−1 = det(F)−1 includes only up to bilinear terms
and can thus be integrated exactly using a single quadrature
point at the center of Ωk. The final discrete expression is:∫

Ωk
[J(x)−1]dx = Area(Ωk)[det(F∗)−1],where (7)

F∗ = 1
2h
(

x̂10+x̂11−x̂00−x̂01 x̂01+x̂11−x̂00−x̂10
)

In the last expression, F∗ ∈ R2×2 denotes the deformation
gradient evaluated at the cell center, h is the grid spacing, and
x̂i j are interpreted as column vectors. The simplicity of the
CRPM material was essential in deriving these closed form
expressions. For more general materials such as Neohookean
membranes, we would have to resort to numerical quadrature
to obtain a discrete energy approximation [PMS12]; this is
one of the benefits of our proposed CRPM energy.

Having established the discrete form of Eq. (5), the next
step is to find a critical point close to the initial guess. Be-
cause our CRPM energy is of an order higher than quadratic,
we employ an iterative Newton-Raphson procedure. Inter-
estingly, the energy from Eq. 5 is only one order away from
quadratic; the only order three term comes from the deter-
minant J (quadratic in 2D) multiplied by the auxiliary vari-
ables p. Consequently, the calculation of the Hessian matrix
can be optimized by taking advantage of the fact that many
terms do not change between steps. The Hessian matrix is
symmetric, but indefinite by construction. Therefore, we can
use an appropriate Krylov subspace algorithm such as MIN-
RES [PS75] for an iterative solution. The following section
outlines an even more efficient multigrid solution process.

3.5. Multigrid solution

The regularity of our grid-based discretization combined
with good numerical conditioning produced by the saddle
point formulation (Eq. 5) have created favorable conditions
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Figure 2: Warp examples, from left to right: A toy figure is warped to articulate the arm in a different pose (a), A hand pose
is adjusted to increase the separation of some fingers, while bringing others closer together (b), Woody demonstrates large
rotations and sharp non-smooth target curves (c), Exaggerated squash-and-stretch deformation of a boxer face is facilitated by
our incompressibility constraints (d).

for using a multigrid solver [TOS01] which has the poten-
tial to have a solution cost that scales linearly with the to-
tal number of degrees of freedom (i.e. grid nodes). However
two special circumstances, namely the indefiniteness of the
Hessian matrix used in the Newton-Raphson iteration (re-
sulting from the saddle-point formulation), and the embed-
ded enforcement of constraints necessitate certain modifica-
tions to a classical multigrid approach. We start by review-
ing the fundamental methodology, and detail the interven-
tions necessitated by our particular application. For brevity
of notation, we use the single variable u which concate-
nates all discrete degrees of freedom including nodal dis-
placements (U), the auxiliary parameters associated with the
incompressibility constraints (p) and their counterparts as-
sociated with the embedded spline constraints (q). We also
write the entire Newton-Raphson system as Lu = f , where
L = ∂

2Ê(u)/∂u2 will be the Hessian of the energy in Eq. (5)
and f =−∂Ê(u)/∂u is the negated gradient.

The general formulation of the Multigrid V-Cycle we ap-
ply to this problem is given in Algorithm 1. We proceed to
describe all the individual algorithmic building blocks.

Operator hierarchy. We utilize a sequence of discrete
approximations of the operator L, denoted as Lh,L2h,L4h,
corresponding to different grid resolutions. In our case, con-
structing these operators is straightforward, since we can
simply discretize the elasticity potential at any given grid
resolution, and recompute the per-cell embedded spline con-
straints without altering the control splines themselves.

Smoother. The multigrid algorithm employs a smoother,
or relaxation routine. This is an iterative algorithm designed
to reduce the residual of the discrete equations (in some ap-
propriate norm) after repeated application. The exact variant

of a smoother is dependent on the numerical properties of
the operator L; if this was a symmetric and positive definite
matrix, Gauss-Seidel is the standard option, or a Damped Ja-
cobi iteration may be preferred for reasons of parallelism. In
our case, however, L is a symmetric yet indefinite matrix.
As a consequence, Gauss-Seidel or Jacobi iteration are not
guaranteed to converge. Instead, we employ the Kaczmarz
method [TOS01] which effectively performs a change of
variable u = LT y to convert the indefinite (and possibly non-
symmetric) system Lu = f into the symmetric positive def-
inite equivalent LLT y = f . The Kaczmarz technique lever-

Algorithm 1 Pseudocode for a V-Cycle of the Multigrid
Correction Scheme for the solution of the linear equation
Lu = f

1: procedure MG_VCYCLE(u0, f ,L) . u0: initial guess
2: uh← u0,b

h← f . total of L+1 levels
3: for l = 0 to L−1 do
4: Smooth(L2l h,u2l h,b2l h)
5: r2l h← b2l h−L2l hu2l h

6: b2l+1h←Restrict(r2l h)
7: u2l+1h← 0
8: end for
9: Solve u2Lh← (L2Lh)−1b2Lh . Using non-MG solver

10: for l = L−1 down to 0 do
11: u2l h← u2l h+Prolongate(u2l+1h)
12: Smooth(L2l h,u2l h,b2l h)
13: end for
14: φ← uh

15: end procedure
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ages the fact that Gauss-Seidel or Damped Jacobi (with ap-
propriate damping parameter) can be guaranteed to converge
on the modified system. In fact the change of variable never
takes place explicitly; its effect is instead emulated by updat-
ing the primary variable u directly. We use a Damped Jacobi
iteration for smoothing the entire domain, and additionally
sweep regions near position constraints with a Gauss-Seidel
traversal for a number of additional sweeps per smoother it-
eration. Both algorithms are summarized below.

1: procedure KACZMARZGAUSSSEIDEL(A,x,b)
2: for i = 1 to N do . total of N equations
3: δ← (bi−aT

i x)/‖ai‖2
2 . ai is the i-th row of A

4: x← x+δai
5: end for
6: end procedure
7: procedure KACZMARZDAMPEDJACOBI(A,x,b,δ,ω)
8: for i = 1 to N do . total of N equations
9: δi← (bi−aT

i x)/‖ai‖2
2 . ai is the i-th row of A

10: end for
11: x← x+ωAδ . ω ∈ (0,1] is the damping factor
12: end procedure

Transfer operators. Communication of data between
levels of the multigrid hierarchy is performed by two sub-
routines, the prolongation operator and the restriction op-
erator. Prolongation is essentially an upsampling operator;
once a correction has been produced by a coarse level of the
multigrid hierarchy, we prolongate it to the immediate finer
resolution and incorporate it into our current iterate. Con-
versely, the restriction operator downsamples the residual of
the equations of a given resolution, to produce right-hand-
sides for the equations of the immediate coarser level. In
our case, these transfer operations need, in principle, to be
applied to all discrete variables u = (U , p,q), and the resid-
uals of their respective equations. As far as the positional
degrees of freedom (U) and the incompressibility-associated
augmented variables (p) this process is intuitive and straight-
forward; all of these variables correspond to 2D spatial fields
and have a multi-resolution nature. For example, when a
converged solution has been achieved, each pk associated
with a given grid cell Ωk equals pk = (κ/α)(Jk − 1), i.e.
it measures the deviation of the cell volume from its unde-
formed value; if the p values of a 2× 2 block of cells are
averaged, the result will be the same measure evaluated on
their parent cell, on the immediate finer resolution. Thus, for
both U and p variables, we employ geometrically-inspired
transfer operators. The prolongation of U is performed by
bilinear interpolation, while p is prolongated by piecewise-
constant upsampling. The respective restriction operators are
their adjoint (transpose) operators.

The situation is more complicated with the degrees of
freedom q associated with the embedded positional con-
straints. In contrast with U and p which form 2D fields, q
resides on a lower dimensionality subdomain (along cells in-

tersected by the boundary). Multigrid theory dictates that a
proper restriction/prolongation of these values should hap-
pen along their native domain. A further complication arises
from the fact that different cells intersect the constraint
curve for different arc lengths, and consequently variables
and their associated equations are “unevenly” weighted. As
a consequence, proper restriction/prolongation would need
to employ intricate weighting schemes. Instead of craft-
ing intricate transfer operators that cope with these issues,
we employ a simpler (and theoretically very well estab-
lished, see [TOS01]) alternative. Multigrid theory suggests
that good convergence can be preserved even without pro-
longating/restricting such variables, if we can devote ex-
tra smoothing effort in their vicinity (i.e. near spline con-
straints). Intuitively, the reason why this approach works can
be described as follows: if we have intensively smoothed
equations in regions associated with q variables, the resid-
uals of their equations are near-zero. Thus, irrespective of
the weights that a transfer operator would use, the restricted
value would also be near-zero. By smoothing with higher
intensity near constraint curves we can exclude these vari-
ables from inter-grid transfer completely. The reason why
this additional smoothing is practically tractable, is that the
measure of the region that requires extra smoothing asymp-
totically vanishes under refinement, when we transition to
higher resolutions. In practice, our aggregate smoother rou-
tine sweeps 5 times near the constraint curve, then iterates
twice across the entire domain, and concludes with 5 ad-
ditional sweeps near constraint-intersected cells again. The
boundary smoothing effort typically dominates for resolu-
tions lower than 322, but becomes less and less significant
as we transition to more refined grids.

4. Results

We tested our technique on a number of images (figure 2),
observing that our CRPM energy typically results in quite in-
tuitive behavior. As can be seen in the toy figure example in
figure 2 and the roundabout in figure 6, our method is robust
to large rotations, where linear methods may exhibit folding
artifacts (figure 6). The combination of harmonic membrane
with incompressibility results in natural squash-and-stretch
effects, as demonstrated in figures 1 and 2 (boxer face). Our
embedded sub-grid spline constraints allow for accurate tar-
geting, as shown in 4.

We compare our grid-based multigrid solver to recent im-
age deformation techniques that employ irregular meshes
and sparse direct solvers [KWSH∗13, SKPSH13]. General
triangle meshes offer higher flexibility by allowing us to
place vertices and edges at particular places in the image,
making our embedded constraints unnecessary. On the flip
side, if the constraint locations or the resolution change, it is
necessary to recompute the triangulation. This exposes this
approach to the danger of undesired discontinuities (“pop-
ping”). Our constraints discussed in section 3.2 are simply
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Grid size 800 × 800 400 × 400 300 × 300 200 × 200 150 × 150 100 × 100 50 × 50
Multigrid time (six cores) [s] 0.832 0.271 0.178 0.096 0.076 0.055 0.029
Multigrid time (one core) [s] 4.19 1.37 0.932 0.544 0.37 0.233 0.11
Multigrid memory [MB] 85 21 12 5.3 3 1.3 0.3
Number of mesh vertices 640192 155752 86610 40999 21690 11316 2517
PARDISO time (six cores) [s] 5.15 1.34 0.689 0.381 0.229 0.168 0.119
PARDISO time (one core) [s] 10.29 2.48 1.30 0.615 0.341 0.216 0.123
PARDISO memory [MB] 762 190 100 43.4 21.1 10.5 1.81

Table 1: Performance comparison between our multigrid solver on a regular grid and sparse direct solver (PARDISO) on an
irregular triangle mesh with approximately the same number of degrees of freedom.

smooth splines, oblivious to the fact that we are working
with a discretized deformation field. Also, construction of
well-behaved meshes is a non-trivial task which typically re-
sults in dependency on external software packages [She96];
construction of regular grids is trivial. However, the chief ad-
vantage of our multigrid approach is performance, studied in
the following example.

Figure 3: Stretchy sponge used for performance tests. Orig-
inal image (left), resulting deformation (right).

Using the deformation shown in figure 3 as an example,
we compare our grid-based solver to triangle meshes. We use
the same CRPM energy with triangle meshes and, following
[KWSH∗13, SKPSH13], we employ a sparse direct solver.
Specifically, we use the highly optimized multi-threaded
PARDISO solver [SG06]. Our triangle meshes adapt to the
targeting curves, and we took effort to create meshes with
approximately the same number of degrees of freedom as
our regular grids, see table 1. With modest resolutions, sin-
gle core runs of PARDISO and our multigrid solver achieve
about the same speed. However, memory consumption is
significantly higher for the direct solver. This translates to
a performance advantage for the multigrid solver, especially
at higher resolutions, where the direct solver needs to use
a lot of memory. Random access to large blocks of RAM
typically incurs performance penalties due to the limitations
of fast hardware caches. We register an even more signifi-
cant difference by comparing the multi-threaded versions of
our multigrid solver and PARDISO, because sparse direct
solvers are difficult to parallelize. In our experiment, we see
that PARDISO enjoys only limited benefit (up to 2×) from
multiple cores (we used a 6-core CPU). On the other hand,
our multigrid solver is easy to parallelize, and its perfor-
mance improves significantly (up to 5×) on multiple cores.
We conclude that multigrid methods represent an important

alternative to direct solvers, given the demand for high reso-
lutions and ever increasing numbers of CPU cores.

We also experimented with reproducing an image warp-
ing example from Locally Injective Mappings [SKPSH13],
specifically, Figure 12 (Mona Lisa). We mimic the LIM en-
ergy in our framework by using:

Ψ(F) =
µ
2
‖F−R‖2

F +
κ

2
(min(0,J− ε))2 (8)

where R is a best-fit rotation, corresponding to an as-rigid-
as-possible energy. With high κ, this energy introduces
strong resistance when relative element areas drop below
ε (we used ε = 0.2, i.e., we start penalizing shrinkage be-
low 20% of the original area). An important difference to
the infinite barriers employed in [SKPSH13] is that our for-
mulation allows for inverted elements, even though they are
of course highly penalized. We believe that in typical im-
age deformation scenarios, allowing for inverted elements
is in fact more practical, because the user-specified target-
ing curves may require inversion; in this case, the strict bar-
rier functions force LIM to ignore some of the user-provided
constraints [SKPSH13]. Such behavior is not acceptable in
image warping – in certain special circumstances the user

Figure 4: Closing of the mouth is facilitated by precisely tar-
geted curves, designed to move the lip upwards while keep-
ing the teeth in place.
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may actually desire foldovers. If an inversion-free result ex-
ists, our solver is likely to find it because our saddle point
formulation allows for arbitrarily high κ in Eq. 8. As we can
see in the example in figure 5, inversion occurs within the
first few iterations, but is resolved in subsequent iterations.
While both LIM and our method converge to the same fi-
nal result, the paths of individual iterations are different. In-
terestingly, the performance of both methods is comparable
for single-thread execution (all iterations of our method take
65.3s with the MINRES solver compared to 73.8s for LIM),
however, our multi-threaded implementation requires only
12.2s. We did not attempt to measure the multi-threaded per-
formance of LIM because the publicly available implemen-
tation [SKPSH13] was not optimized for parallel processing,
i.e., the comparison would not be fair.

5. Limitations and Future Work

The premise of our work is that high-quality image warp-
ing can be achieved by modeling the image as an elastic
medium that is (a) endowed with nonlinear material prop-
erties and (b) discretized on a regular Cartesian grid. These
traits provide benefits in terms of modeling flexibility and
numerical efficiency, but also give rise to certain limitations.
Specifically, our use of nonlinear membrane models allows
us to reproduce interesting behaviors such as area preserv-
ing warps. Nonlinear materials, however, are inherently sus-
ceptible to non-unique solutions. Linear models such as the
Poisson equation, or interpolation techniques such as thin
plate splines and RBF networks can guarantee a unique so-
lution. Also, using nonlinear membrane models necessitates
the use of nonlinear numerical solvers; our use of a multigrid
scheme helps lessen the cost of such nonlinear problems, but
purely linear formulations will always have the potential for
faster performance. In our future work we aim to investi-
gate adaptivity in the context of methods that use regular
elements, e.g. quadtrees.

Our image warps are represented on regular Cartesian
grids. This eliminates the need for remeshing and improves
the regularity of data structures, generating opportunities for
parallel acceleration. However, by adopting this approach
we forgo the direct and precise control one would enjoy by
remeshing around constraint curves, as we only enforce con-
straints on a cell-averaged basis. Non-regular meshes can
leverage adaptivity to provide greater detail around geomet-
rically intricate features, while our approach commits to a
uniform resolution across the entire image.

Finally, although our method promotes properties such as
area preservation, there is currently no mechanism to pre-
serve salient features [WTSL08] or to consider the 3D nature
of the scene [SD96]. As future work, we would like to inves-
tigate incorporating constraints such as length preservation
for guide curves, or using bending resistance to discourage
distortion of straight-line features.

Figure 6: The island at the center of a roundabout is rotated
by 90 degrees while keeping the elevated overpass fixed. Our
method (top) produces swirling motion free of folding or
inversions, as shown by the checkerboard pattern (bottom
right). Thin-plate spline warping leads to unnatural defor-
mation (bottom left).
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