Data abstraction

Constructor
Accessor/selector
Contract!
Operations
Pairs and list

cons
car
cdr
list
`()`

box and pointer diagram
(define nil `(()

```
Other accessors

Shortcuts: `c??????r`. ex:

```
(caddr X): (car (cdr (cdr X)))
```

List access:

`first, second etc.`

How could you define `first`, `second`, `third`, and `fourth` using the `c??????r` function?

- `first: car`
- `second: cadr`
- `third: caddr`
Order of growth?

(define (dummy x)
  (if (<= 1 x) x
      (+ (dummy (floor (/ x 2)))
         (dummy (- x (floor (/ x 2))))))

Linear complexity!
2 recursive calls (would suggest 2^\(n\))
But each reduces the problem to half the complexity, (log style)
Give a box/arrow diagram and the scheme printout

(cons 1 2)
(cons 1 (cons 2 nil))
(cons 1 nil)
(cons 1 (cons 2 3))
(cons (cons 1 2) nil)
(list 1 2 3 4)
(list 1 (cons 2 3) (list 4 5))
Draw a box and pointer diagram

(define a (list 1 2 3 4))
(define b
  (list 5 (cdr (cdr a)) (cons 6 7)))
Write a Scheme expression that will print each of the following. Also draw box and pointer diagrams.

\[ (\text{list} \ 1 \ 2 \ 3) \]
\[ > \ (1 \ 2 \ 3) \]
\[ (\text{cons} \ (\text{cons} \ 1 \ 2) \ 2) \]
\[ > \ ((1 \ . \ 2) \ . \ 2) \]
\[ (\text{cons} \ (\text{list} \ 1 \ (\text{list} \ 2)) \ 3) \]
\[ > \ ((1 \ (2)) \ . \ 3) \]
Write scheme expressions to get the following diagram

(define a (list 1 3 4))
(define b (cons 2 (cdr a)))
We saw that we have the primitive function pair? to see if an object is a pair. What if we wanted to write the function list? to see if an object is a list?

Assume you have a predicate null? to test the empty list

```scheme
(define list? (lambda (L)
 (or (null? L)
 (and (pair? L) (list? (cdr L))))))
```

What is the Order of Growth of pair? and list??

**pair?:** constant in time and space

**list?:** linear in time, constant in space.
Write a procedure to compute the length of a list

Recursive?

(define length (lambda(L)
  (if (null? L) 0
    (+ 1 (length (cdr L))))))

Iterative?

(define length (lambda(L)
  (define helper (lambda(L cur)
    (if (null? L) cur
      (helper (cdr L) (+ 1 cur)))))
  (helper L 0)))
Write a procedure `square-list` that takes a list of integers as input and returns the list of squared values.

```
(define square-list (lambda(L)
 (if (null? L) ()
 (cons (square (car L))
 (square-list (cdr L))))))
```
What if we wanted to reference the element of a list? Write the function list-ref that takes a list x and an integer n and returns the nth element of the list x.

(define list-ref (lambda(L n)
    (if (null? L) (error “list too small”)
        (if (= 0 n) (car L)
            (list-ref (cdr L) (- n 1))))))}
Consider the procedure `copy` which takes a list and returns a copy of the list. How do each of the following differ?

- `(define (copy-ident x) x)`
  
  This one does not create a new copy. It just points to the old one!

- `(define (copy-recurse x) (if (null? x) nil (cons (car x) (copy-recurse (cdr x)))))`
  
  This one does the job. It does actually create a new list which contains the same values.

Notice that `copy-recurse` is a recursive process. Write an iterative copy! Warning, it’s tough. See next slide.
Warning: the below is not copy!
(define (*copy-iter* x)
  (define (aux x ans)
    (if (null? x) ans
    (aux (cdr x)
      (cons (car x) ans))
  (aux x nil) )

The above is not copy. Actually, it's reverse!
Now let's define copy using reverse:
(reverse (reverse x))