An Invitation to Discuss Computer Depiction

Frédéric Durand
MIT Lab for Computer Science

“Philosophical” interrogations
- What are the goals/context of NPR?
- What are the goals of computer graphics?
- Are photos photorealistic?
- After the Grail, then what?
- Does Pr=NPr?
- What is picture making?

- Interdisciplinary class The Art and Science of Depiction
- SIGGRAPH course Perceptual and Artistic Principles for Effective Computer Depiction (Sunday)

How is NPR different?
- Style
 - Imitation of traditional media (pencil, oil, etc.)
- Interaction
 - Less automatic, more user control

Emphasis on aesthetic, legibility
Subjective assessment

What are the frustrating points?
- Not satisfying name
- What are the issues?
 - Hard to explain what we do
 - Hard to set goals
- Modularity
- Lack of common language

Outline
- NOT photorealism vs. non-photorealism
- General issue of depiction
- Control & interaction are overlooked
- Look for a language
 - So far, we have written complex sentences
 - We need to discuss the basic vocabulary and grammar
- Plan
 - Picture making is more complex than we think
 - Framework

One-way graphics pipeline
- Common framework, paradigm [Kuhn]
- Modularity
- Common and clear goals

Real scene:
- 3D geometry
- Material
- Light

Projection
- Hidden-surface removal
- Local shading
- Lighting simulation

Image
Problems

- Requires extension for richer styles
- User feedback loop
 - Reverse-engineers the image

Depiction as an inverse of inverse

- Picture that conveys same impression as reality

Realistic image simulation

- From 3D to 2D via interpretation

3D and 2D attributes

- Show a die to children (~6-7)
- They usually draw a rectangle
- The rectangle could stand for one face

- Show coloured or numbered die to children (6-7)
- The still draw a rectangle
- But different colours or many points
- The rectangle stands for the whole die
- The notion of 3D object with corners is translated as a 2D object with corners
Inversing our view of Depiction

- 2D sometimes rules

2D/3D dualism

- 3D-driven picture: architectural visualization
- 2D-driven picture
 - Horizontal organization & magnitude
 - 2D gradients for spheres

Mixed 2D-/3D-driven: group photo

- 3D position are determined by 2D goals
- See also the technique of trenching

Summary

- One-way pipeline is powerful yet limited
- Requires user feedback loop
- Depiction is an inverse of inverse
- Can go from 3D to 2D via interpretation and/or from 2D to 3D

Depiction as optimization

- “Best” picture reaching goals and respecting constraints
Realistic image simulation

- Realistic image simulation: There is an analytical direct formulation

The computer solves the optimization

- Route maps [Agrawala 01]
- Lighting optimization [Schacked 01]
- Composition [Gooch 01]
- Paint with relaxation [Haeberli 91, Hertzman 01]

- Define the energy function
- Exploration of a highly-non-linear parameter space
- Or come up with a set of direct rules [He 96]

When the human solves

- Fast feedback
- Relevant degrees of freedom
- Uniform and meaningful parameter space
- Controls in image space
- High-level controls related to goals & constraints
- Pictorial techniques to alter the picture

General case: computer+human

- The computer solves some issues, the human has control and adds the “magic”
- Decouple relevant dimensions of depiction

- Exciting challenge: Convergence of games and movies

Framework: Representation systems

- Adaptation of Willats [1997]
- With inspiration from cartography

- Decompose depiction into orthogonal issues
- Vocabulary
- Modularity
- Coarse-grain definition of style

Representation systems

- Spatial
 - Eye-balled perspective
- Primitives
 - Lines
- Attributes
 - Color, thickness
- Marks
 - Physical stroke
Classification with dimensions
- Inputs and outputs
- 3D: object space
 - (3D colors, intrinsic colors, light intensity)
- 2D: picture space (2D coordinates, extrinsic color)
- 2.5D: Intermediate representations
 - Z-buffer, normal maps, G-buffer, etc.
- Perspective matrix: 3D→2D spatial system
- Realistic local shading: 3D→2D attribute system
- Painting with light: 2D→3D attribute system

Spatial systems
- Map 3D spatial properties and 2D spatial properties
 - perspective, orthographic, topological, symbolic

Examples of spatial techniques
- 3D → 2D
 - 4*4 perspective matrices
 - Non-linear projections
- 2.5D → 2D
 - View warping [Chen 93]
- 2D → 2D
 - Correcting perspective distortions [Zorin 95]
- 2D → 3D
 - Image-based modeling [e.g. Debevec 96]
 - Sketch-based modeling [Zelznik 96]
 - View-dependent geometry [Rademacher 99]

Imaging vs. interaction
- Direct picture making always decreases dimension
 - Globally, 3D→2D
- Interaction might require to increase to propagate picture-space goals & constraints

Primitive systems
- Map 3D primitives (points, lines, surfaces, volumes) to 2D primitives (points, lines, regions)
- Can be complex
 - Arm: Elongated 3D volume
 → 1D line primitive

Primitive systems
- Map 3D primitives (points, lines, surfaces, volumes) to 2D primitives (points, lines, regions)
Examples of primitive techniques

- Classical graphics: continuous point
- Silhouette rendering:
 - 3D → 2D: e.g. [Markosian 97]
 - 2.5D → 2D z-buffer-based, e.g. [Saito 90, Raskar 99]
 - 2D → 2D edge detection, e.g. [Canny 86, Pearson 90]

Attributes systems

- Assign visual properties to primitives
 - E.g. Color, texture, thickness, wiggleness, orientation

Examples of attribute techniques

- 3D → 2D
 - Realistic shading
 - NPR shading [Gooch 98]
 - Line shading [Gooch 99]
- 2.5D → 2D
 - Comprehensible rendering [Saito 96]
 - Lumo [Johnston 02]
- 2D → 2D
 - Painting/drawing systems
 - Brightness/contrast/saturation

Mark systems

- Implementation of the primitives placed at their spatial location with their attributes
- Medium simulation, physical strokes

Marks vs. primitives

- Discrete 0D marks, but 1D line primitives

NPR marks

- Most NPR papers have a mark component
- Watercolor [Curtis 97]
- Engraving [Ostromoukhov 99]
- Issue of temporal coherence
Meier’s painterly animation

Invitation

- Express PR & NPR techniques in this framework
- Find-out missing categories
- Use it for modularity
- Extension to animation
- Complex coupling between representation systems
- Finer notion of style
- Abstraction
- Different pictures, different users, different contexts
- Back to art history & perception

Further reading

Thanks

- The reviewers
 - Julie Dorsey
 - Victor Ostromoukhov
 - Pat Hanrahan
 - Maneesh Agrawala
 - Fabrice Neyrat
- Joëlle Thollot
- Byong Mok Oh
- The students of the 4.209 course
 - The Art and Science of Depiction

Mapping of curvature

- Convex: positive curvature
 - 3D example: Egg
 - 2D: Convex contour
- Concave: negative curvature
 - 3D example: Interior of cup
 - 2D: Nothing, hidden contour
- Saddle: mix of positive and negative curvature
 - 3D example: Saddle (surprising!)
 - 2D: Concave contour

Mapping of curvature

- Small plate under the cup
Mapping of curvature

- But some artists map 3D concave objects to 2D concave outlines
- This maps the property of concavity
- The left view of the plate is more “correct” but does not convey the notion of concavity

Summary

- Images: direct optical recording/simulation
- Pictures: more general visual representation
- Depiction is more than direct rendering
- Complex interaction/mapping between 3D and 2D
- Depiction is an optimization problem