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Abstract

TopCat (Topic Categories) is a technique for identifying topics that recur in articles
in a text corpus. Natural language processing techniques are used to identify key
entities in individual articles, allowing us to represent an article as a set of items.
This allows us to view the problem in a database/data mining context: Identifying
related groups of items. This paper presents a novel method for identifying related
items based on “traditional” data mining techniques. Frequent itemsets are generated
from the groups of items, followed by clusters formed with a hypergraph partitioning
scheme. We present an evaluation against a manually-categorized “ground truth” news
corpus showing this technique is effective in identifying “topics” in collections of news
articles.

1 Introduction

Data mining has emerged to address problems of understanding ever-growing volumes of

information, finding patterns within the data that are used to develop useful knowledge. In

particular, on-line textual data is growing rapidly, creating the need for automated analysis.

There has been some work in this area [1, 2, 3], focusing on tasks such as:

• Association rules among items in text [4],

• Rules from semi-structured documents [5], and

∗This work supported by the Community Management Staff’s Massive Digital Data Systems Program.
Work for this paper was performed while authors were at the MITRE Corporation.
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• Understanding use of language [6, 7].

In this paper the desired knowledge is major topics in a collection; data mining is used to

discover patterns that disclose those topics.

The basic problem is as follows: Given a collection of documents, what topics are fre-

quently discussed in the collection? The goal is to help a human understand the collection,

so a good solution must identify topics in some manner that is meaningful to a human. In

addition, we want results that can be used for further exploration. This gives a require-

ment that we be able to identify source texts relevant to a given topic. This is related to

document clustering [8], but the requirement for a topic identifier brings it closer to rule

discovery mechanisms.

The way we apply data mining technology on this problem is to treat a document as a

“collection of entities”, allowing us to map this into a market basket problem. We use natural

language technology to extract named entities from a document. We then look for frequent

itemsets : groups of named entities that commonly occur together. Beginning with these

frequent itemsets, we then cluster named entities based on their document inter-relations.

This allows us to capture closely-related entities that may not actually occur in the same

document. The result is a refined set of clusters. Each cluster is represented as a set of

named entities and corresponds to an ongoing topic in the corpus. An example is:

ORGANIZATION Justice Department
PERSON Janet Reno
ORGANIZATION Microsoft

This is recognizable as the U.S. antitrust case against Microsoft. Although not as readable or

informative as a narrative description of the topic, it is a compact, human-understandable

representation. It also meets our “find the original documents” criteria, as the topic can

used as a query to find documents containing some or all of the extracted named entities

(see Section 3.4).

Much of this is based on existing commercial or research technology: natural language

processing for named entity extraction, association rule data mining, clustering of association

rules, and information retrieval techniques. The novelty of TopCat lies in how these disparate

technologies are combined. There are a few key developments that have wider application:

• The frequent itemset filtering criteria (Section 3.2.1).

• The hypergraph-based clustering mechanism, a more generalizable development of that

proposed in [9] (Section 3.3).

• Use of information retrieval measures for clustering of associations (Section 3.5).
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Although we only discuss identifying topics in text, these developments apply to any market

basket style data mining problem.

We will next give some background on where this problem originated. In Section 3 we

give details on the TopCat process. The process will be described start to finish, from issues

such as data preparation and cleansing, to the mapping from topics back to documents.

Section 4 describes an evaluation of TopCat on the Topic Detection and Tracking project

[10] corpus of news articles, including an analysis of how TopCat performs compared to a

manually-defined “ground truth” list of topics.

2 Problem Statement

The TopCat project started with a specific user need. A project called GeoNODE concerns

itself with organizing news in a geographic fashion. Given a sequence of news stories, GeoN-

ODE can produce a world map highlighting the locations that the stories discuss. In order

to do this reliably GeoNODE must identify ongoing topics, since not every story on a topic

explicitly mentions the geographical area in question. This directs us to exactly the problem

at hand: providing some sort of human-understandable organization to a set of documents.

Data mining experiments that we have conducted showed that using association rules can

produce concepts that are identifiable as major news topics. This led us to develop a topic

identification mechanism based on data mining techniques.

There are related topic-based problems being addressed. The Topic Detection and Track-

ing (TDT) project [10] looks at two specific problems:

Topic Tracking: Mapping incoming documents to a predefined set of topics, using a train-

ing set of documents already classified into topics.

Topic Detection: Recognizing if a new document falls into an existing topic, or belongs in

a new topic.

Our problem is similar to the Topic Detection (clustering) problem, with the following

exceptions:

• We must generate a human-understandable “label” for a topic: a compact identifier

that allows a person to quickly see what the topic is about.

• Topic identification can be retrospective. We do not have a requirement to identify

each new document/topic as it arrives.

Even though our goals are slightly different, the test corpus developed for the TDT project (a

collection of news articles manually classified into topics) provides a basis for us to evaluate
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Figure 1: GeoNODE screen shot showing identified topics at lower right.
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our work. A full description of the corpus can be found in [10]. For this evaluation, we use

the topic detection criteria developed for TDT2 (described in Section 4). This requires that

we go beyond identifying topics, and also match documents to a topic.

For purposes of using the TDT evaluation criteria, we define the problem as follows:

Definitions:

Document : word+

TopicID : word+

Data Source:

Corpus : {Document}

Goal: Produce the following functions

TopicList(Corpus) : {TopicID}

Topicmatch(TopicList(Corpus), Document ∈ Corpus) : Topicid ⊂ TopicList(Corpus)

In Section 4, we discuss how TopCat performs against the TDT criteria.

One key item missing from the TDT2 evaluation criteria is that the TopicID must be

useful to a human. This is harder to evaluate, as not only is it subjective, but there are

many notions of “useful”. We later argue that the TopicID produced by TopCat is useful

to and understandable by a human.

Both the use of natural language processing and term clustering have been studied exten-

sively in the Information Retrieval (IR) domain, usually with the goal of increasing precision

and recall [11, 12, 13]. Natural language processing has been used to automatically generate

concept thesauri, generate document summaries, handle natural language queries, and per-

form feature space reduction for vector space models, as discussed in [14]. Term clustering

has also been used for automatic thesaurus generation, as well as document clustering [15].

However, these techniques have had little use in attempts to understand a collection, as

opposed to individual documents.

Referee 1: On related work, pg. 4, there is a brief discussion of how NLP

and term clustering have been used in the past, and then a comment that the

techniques have had little use in attempts to understand a collections... Exactly

what has been done, and what has not. Who’s work is closest to this and how to

they relate to your fundamental research goals? It would also be helpful to have

a very clear statement of the research contributions of this work; this would help

delineate the related work.
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3 Process

TopCat follows a multi-stage process, first identifying key concepts within a document, then

grouping these to find topics, and finally mapping the topics back to documents and using

the mapping to find higher-level groupings. Figure 2 gives an overview of this process.

We identify key concepts within a document by using natural language techniques to extract

named people, places, and organizations. This gives us a structure that can be mapped into a

market basket style mining problem.1 We then generate frequent itemsets, or groups of named

entities that commonly appear together. Further clustering is done using a hypergraph

splitting technique to identify groups of frequent itemsets that contain considerable overlap,

even though not all of the items may appear together often enough to qualify as a frequent

itemset.

The generated topics, a set of named entities, can be used as a query to find documents

related to the topic (Section 3.4). Using this, we can identify topics that frequently occur

in the same document to perform a further clustering step (identifying not only topics, but

also topic/subtopic relationships).

We will use the following cluster, capturing professional tennis stories, as an example

throughout this section.

PERSON Andre Agassi
PERSON Martina Hingis
PERSON Mary Pierce
PERSON Pete Sampras
PERSON Venus Williams
PERSON Serena
PERSON Marcelo Rios
PERSON Anna Kournikova

This is a typical cluster (in terms of size, support, etc.) and allows us to illustrate many of

the details of the TopCat process. It comes from merging two subsidiary clusters (described

in Section 3.5), formed from clustering seven frequent itemsets (Section 3.3).

3.1 Data Preparation

TopCat starts by identifying named entities in each article (using the Alembic[16] system).

Alembic identifies people, locations, and organizations mentioned in the text based on lin-

guistic cues, and identifies the type of entity (person, location, or organization) as well as

1Treating a document as a “basket of words” did not work well, as shown in Section 3.1. Named entities
stand alone, but raw words need sequence to be meaningful.
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Figure 2: TopCat Process
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the name. 2 This serves several purposes. First, it shrinks the data set for further process-

ing. It also gives structure to the data, allowing us to treat documents as a set of typed

and named entities. This gives us a natural database schema for documents that maps into

the traditional market basket data mining problem. Third, and perhaps most important, it

means that from the start we are working with data that is rich in meaning, improving our

chances of getting human understandable results. We eliminate frequently occurring terms

(those occurring in over 10% of the articles, such as United States), as these are used across

too many topics to be useful in discriminating between topics.

Note that the use of named entities, as opposed to full text, is debatable. It has been

shown that careful feature selection can slightly improve results in text categorization, while

poor feature selection can have a large negative impact [17]. This leaves the question, are

named entities a good form of feature selection?

We tested this on our dataset using Support Vector Machines as classifiers [18]. Using

the TDT2 training/development sets as our training and test sets (stemmed using the Porter

stemming algorithm [19], and filtered for a list of common stopwords), we obtained a precision

of 95% for full text categorization, versus 82% for named entity based categorization (the

recall was nearly identical, at 87% and 86% respectively): Full text was better than named

entities. Details of this test are given in [20].

However, for the problem of topic identification, the use of full text is not nearly as clear

cut. We tested TopCat with full text, and found two problems. The first was with scalability

(the stemmed/filtered full text corpus contained almost 5 million unique word-document

pairs vs. 385,420 named entity/document pairs). On our prototype, we were unable to

generate frequent itemsets at the low levels of support we used with named entities (at 5%

support it took nine hours on full text, and found only a single two-itemset.) We tried a

smaller test set (one week of data), and the TopCat process took approximately one hour

at 2% support. Using named entities from the same data took only two minutes at 0.5%

support.

More critical is the difference in the quality of the results. Using 2% support and full-

text generated 91 topics, many of which were nonsensical such as (tip, true) and (chat, signal,

insid) or non-topic relationships such as (husband, wife). The named entities, even at lower

support, generated only 33 topics for the week, and none were nonsensical (although some,

such as (Brussels, Belgium), were not topics). Even the best full-text clusters were not that

good; Table 1 shows the “Asian Economic Crisis” cluster from the full-text and named-entity

versions. We feel the named entity version is just as recognizable, and contains more useful

2Although not tested specifically on the TDT2 corpus, Alembic and other top Named Entity tagging
systems typically achieve 90-95% precision and recall.
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Table 1: Asian Economic Crisis Topic: Full Text vs. Named Entities from One Week of
News

Full Text Named Entity
analyst LOCATION Asia
asia LOCATION Japan
thailand PERSON Suharto
korea LOCATION China
invest ORGANIZATION International Monetary Fund
growth LOCATION Thailand
indonesia LOCATION Singapore
currenc LOCATION Hong Kong
investor LOCATION Indonesia
stock LOCATION Malaysia
asian LOCATION South Korea

ORGANIZATION Imf

information.

3.1.1 Coreference

One difficulty with named entities is that multiple names may be used for a single entity.

This gives us a high correlation between different variants of a name (e.g., Rios and Marcelo

Rios) that add no useful information. We want to combine such references before we proceed.

There are two issues involved:

1. How do we identify multiple references to the same entity within a document (as shown

above); and

2. How do we ensure that the same name is used to refer to an entity between documents?

We have tried two approaches. The first is to find association rules between items where the

predicted item is a substring of the predictor. This works well for person names, where the

short name is uncommon, but is less effective with organization names.

The second approach makes use of natural language techniques that work within a doc-

ument. We use coreference information generated by Alembic to generate groups of names

within a document (solving problem 1 above). Problem 2 is more difficult. Some choices

clearly will not work (Marcelo Rios is referred to as Marcelo only once in our corpus). How-

ever, choosing the most common version doesn’t work either (he is referred to as Marcelo

Rios 82 times, and Rios 264; but there are 73 references to Rios that refer to someone else).
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Therefore we use the globally most common version of the name where most groups con-

taining that name contain at least one other name within the current group. Although not

perfect (e.g., three documents referencing Marcelo Rios only as Rios are missed), this does

give a global identifier for an entity that is both reasonably global and reasonably unique.

In many cases, this is better than such “obvious” techniques as using a full name. For

example, Serena Williams is referred to simply as Serena in many articles; the above technique

captures this in choosing a global identifier. More sophisticated techniques could be used

(such as a manually-prepared “catalog” of global names), but we find this sufficient for our

purposes (in fact, the difference between the above two approaches with respect to the TDT2

evaluation criteria is small).

Although the natural language technique is our primary approach, we also use the asso-

ciation rule based approach with a minimum support of 0.05% and a minimum confidence

of 50%. This only results in six additional translations, but as they are relatively frequent

it does affect results. Most are straightforward (e.g., sports team full names versus short

names, such as New York Rangers vs. Rangers); these are frequently abbreviated in short

articles, and thus are missed by the natural-language “single document” technique. The

only questionable one was a translation of Korea to South Korea; a sample of the documents

affected showed this to be appropriate.

3.1.2 Data Cleansing

In addition to identifying the named entities within each document, several data cleaning

algorithms were applied prior to the knowledge discovery phase in order to increase the

quality of the results. The data cleaning techniques used by the TopCat system, shown in

Figure 3, can be broadly classified into two categories, generic and domain specific. The

generic data cleaning techniques are mostly taken from the Information Retrieval domain,

and include case normalization and a stop algorithm. Since words traditionally found in a

stop list, such as articles of speech and prepositions, have already been removed due to named

entity identification, TopCat uses a simple stop algorithm. The stop algorithm takes a user

supplied upper bound for the percentage of documents that contain any given term (referred

to as document frequency), and removes all terms that have a document frequency greater

than the upper bound. Frequently occurring terms, such as United States, are generally

used across too many subjects to be useful in discriminating between topics; removing these

improved our results. The notion of the document frequency being inversely proportional

to the usefulness or information gain of the term is the basis for Salton’s popular TFIDF

(term frequency/inverse document frequency) term weighting scheme [21] that is used in

many Information Retrieval applications.
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Figure 3: TopCat Data Cleaning

The domain specific data cleaning steps used by TopCat for the TDT test corpus are

removal of duplicate stories (an artifact of pulling stories off of a “newswire”, where errors

cause the entire story to be retransmitted) and removal of what will be referred to as compos-

ite stories. A composite story is a multi-topic story that contains brief descriptions or recaps

of stories reported on elsewhere. In the print media domain, composite stories often appear

on the first page of a section, with brief descriptions of stories contained within the section,

or stories that have occurred across the previous week. If these stories are not filtered out be-

fore the knowledge discovery phase, terms and stories are associated with each other simply

because the events are reported in the same section of the newspaper, or occur over the same

time period. A composite story is different from a simple multi-topic story, as the topics

covered in a composite story are generally covered elsewhere in the paper. The heuristic

TopCat uses for identifying composite stories is to look for re-occurring identical headlines.

Any headline that occurs on at least a monthly basis (e.g., BULLETIN) is assumed to be a

composite story and is filtered out.

3.2 Frequent Itemsets

The foundation of the topic identification process is frequent itemsets. In our case, a frequent

itemset is a group of named entities that occur together in multiple articles. What this

really gives us is correlated items, rather than any notion of a topic. However, we found that

correlated named entities frequently occurred within a recognizable topic.

Discovery of frequent itemsets is a well-understood data mining problem, arising in the

market basket association rule problem [22]. A document can be viewed as a market basket

of named entities; existing research in this area applies directly to our problem. We perform

the search directly in a relational database using query flocks [23] technology, allowing us

to incorporate the filtering criteria described below into the search while relying on the
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database query processor for many algorithmic issues. One problem with frequent itemsets

is that the items must co-occur frequently, causing us to ignore topics that occur in only a

few articles. To deal with this, we use a low support threshold of 0.05% (25 occurrences in

the TDT corpus). Since we are working with multiple sources, any topic of importance is

mentioned multiple times; this level of support captures all topics of any ongoing significance.

However, this gives too many frequent itemsets (6028 2-itemsets in the TDT corpus). We

need additional filtering criteria to get just the “important” itemsets.3

3.2.1 Filtering of Frequent Itemsets

The traditional “market basket association rule” filters are:

support – the number (or percent) of baskets that must contain the given rule; and

confidence – the percent of time that the rule is true (given the antecedent, the consequent

follows).

We have already discussed problems with support. Confidence overemphasizes common

items as consequents and rare items as antecedents (e.g., “Key West =⇒ United States”).

The consequent in such cases rarely adds much meaning to a topic identifier.

We use interest [25], a measure of correlation strength (specifically, the ratio of the prob-

ability of a frequent itemset occurring in a document to the multiple of the independent

probabilities of occurrence of the individual items) as an additional filter. This emphasizes

relatively rare items that generally occur together, and de-emphasizes common items. We

select all frequent itemsets where either the support or interest are at least one standard

deviation above the average, or where both support and interest are above average (note

that this is computed independently for 2-itemsets, 3-itemsets, etc.) For 2-itemsets, this

brings us from 6028 to 1033. This is still dependent on the choice of a minimum support;

computing this efficiently without a fixed minimum support is an interesting problem.

We also use interest to choose between “contained” and “containing” itemsets (i.e., any

3-itemset contains three 2-itemsets with the required support.) We don’t need to keep the

2-itemsets independently; however, a strong 2-itemset is better than a weak 3-itemset. An

n− 1-itemset is used only if it has greater interest than the corresponding n-itemset, and an

n-itemset is used only if it has greater interest than at least one of its contained n−1-itemsets.

This brings us to 416 (instead of 1033) 2-itemsets.

The difficulty with using frequent itemsets for topic identification is that they tend to be

over-specific. For example, the “tennis player” frequent itemsets consist of the following:

3The problems with traditional data mining measures for use with text corpuses have been noted elsewhere
as well, see [24] for another approach.
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Type1 Value1 Type2 Value2 Support Interest
PERSON Andre Agassi PERSON Marcelo Rios .00063 261
PERSON Andre Agassi PERSON Pete Sampras .00100 190
PERSON Anna Kournikova PERSON Martina Hingis .00070 283
PERSON Marcelo Rios PERSON Pete Sampras .00076 265
PERSON Martina Hingis PERSON Mary Pierce .00057 227
PERSON Martina Hingis PERSON Serena .00054 228
PERSON Martina Hingis PERSON Venus Williams .00063 183

These capture individual matches of significance, but not the topic of “championship tennis”

as a whole. There are also some rules containing these players that are filtered out due to

low support and/or interest; these are locations of matches and home countries of players

(interesting, perhaps, but again relevant to specific matches rather than “championship

tennis” as a whole.)

3.3 Clustering

We experimented with different frequent itemset filtering techniques, but were always faced

with an unacceptable tradeoff between the number of itemsets and our ability to capture

a reasonable breadth of topics. Further investigation showed that some named entities

we should group as a topic would not show up as a frequent itemset under any measure;

no article contained all of the entities. Therefore, we chose to perform clustering of the

named entities in addition to the discovery of frequent itemsets. Clustering based on the

partitioning of a frequent itemset hypergraph was chosen for two reasons. First, the method

easily handles the large number of dimensions associated with the text domain. Second, the

method takes advantage of the computational effort already performed by the generation of

frequent itemsets. The hypergraph clustering method of [9] takes a set of association rules

and declares the items in the rules to be vertices, and the rules themselves to be hyperedges.

Since association rules have a directionality associated with each rule, the algorithm combines

all rules with the same set of items, and uses an average of the confidence of the individual

rules as the weight for a hyperedge. Clusters can be quickly found by using a hypergraph

partitioning algorithm such as hMETIS [26].

We adapted the hypergraph clustering algorithm described in [9] in several ways to fit

our particular domain. Because TopCat discovers frequent itemsets instead of association

rules, the rules do not have any directionality and therefore do not need to be combined

prior to being used in a hypergraph. The interest of each itemset was used for the weight of

each edge. Since interest tends to increase dramatically as the number of items in a frequent

itemset increases, the log of the interest was used in the clustering algorithm to prevent the

larger itemsets from completely dominating the process.
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Upon investigation, we found that the stopping criteria presented in [9] only works for

domains that form very highly connected hypergraphs. Their algorithm continues to recur-

sively partition a hypergraph until the weight of the edges cut compared to the weight of

the edges left in either partition falls below a set ratio (referred to as fitness). This criteria

has two fundamental problems:

• it will never divide a loosely connected hypergraph into the appropriate number of

clusters, as it stops as soon as if finds a partition that meets the fitness criteria; and

• it always performs at least one partition (even if the entire hypergraph should be left

together.) It can inappropriately partition a group of items that should be left together.

If the initial hypergraph is a group of items that logically belong to a single cluster,

the algorithm will go ahead and partition the items anyway.

To solve these problems and to allow items to appear in multiple clusters, we modified

the algorithm as follows:

• hMETIS looks to split the hypergraph into two relatively equal parts while minimizing

the weight of the edges cut. It will allow the number of vertices in each split to be

unequal up to a given unbalance factor, as long as this results in a lower cut weight.

Our algorithm allows hMETIS to use as high an unbalance factor as necessary, with the

restriction that the smallest partition size possible is 2 vertices. (A cluster of one item

is not particularly meaningful.) The algorithm automatically adjusts the unbalance

factor based on the size of the hypergraph to allow for the maximum unbalance. This

prevents a bad split from being made simply to preserve equal partition sizes.

• A user-defined cutoff parameter is used which represents the maximum allowable cut-

weight ratio (the weight of the cut edges divided by the weight of the uncut edges in a

given partition). The cut-weight ratio is defined as follows. Let P be a partition with

a set of m edges e, and c the set of n edges cut in the previous split of the hypergraph:

cutweight(P ) =
Σn
i=1Weight(ci)

Σm
j=1Weight(ej)

A hyperedge remains in a partition if 2 or more vertices from the original edge are

in the partition. For example, a cut-weight ratio of 0.5 means that the weight of the

cut edges is half of the weight of the remaining edges. The algorithm assumes that

natural clusters will be highly connected by edges. Therefore, a low cut-weight ratio

indicates that hMETIS made what should be a natural split between the vertices in

the hypergraph. A high cut-weight ratio indicates that the hypergraph was a natural

cluster of items and should not have been split.
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Figure 4: Hypergraph of Tennis Player Frequent Itemsets

• Once the stopping criteria has been reached for all of the partitions of a hypergraph,

vertices can be “added back in” to clusters depending on the user-defined minimum-

overlap parameter. Up to this point in the algorithm, a given vertex can only be a

member of one cluster. Often, there are vertices that could logically belong to several

clusters. For each partial edge that is left in a cluster, if the percentage of vertices from

the original edge that are still in the cluster exceed the minimum-overlap percentage,

the removed vertices are added back in. Overlap for an edge is calculated as follows,

where v is the set of vertices:

overlap(e, P ) =
|{v ∈ P} ∪ {v ∈ e}|

|{v ∈ e}|

For example, if the minimum-overlap is set to 50%, and 3 of the original 4 vertices of

an edge end up in the same cluster, the 4th vertex is added back in since the overlap

for the edge is calculated to be 0.75. Once this is done, a check is made to remove any

clusters that are a pure subset of another cluster (this often occurs with small clusters

whose vertices are from an edge that is also part of a larger cluster).

For our domain, we found that the results were fairly insensitive to the cutoff criteria.

Cut-weight ratios from 0.3 to 0.8 produced similar clusters, with the higher ratios partitioning

the data into a few more clusters than the lower ratios. The hypergraphs that are created

from the tennis player frequent itemsets are shown in Figure 4. Note that in this example,

each hypergraph becomes a single cluster. Cuts are performed before the stopping criteria

is reached. For example in the “men’s” cluster, the Agassi/Sampras and Agassi/Rios links

are cut. However, they are added back in the final step. The end result is the clusters below.
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Figure 5: Hypergraph of New York Yankees Baseball Frequent Itemsets

PERSON Andre Agassi
PERSON Marcelo Rios
PERSON Pete Sampras

PERSON Anna Kournikova
PERSON Martina Hingis
PERSON Mary Pierce
PERSON Serena
PERSON Venus Williams

The TDT data produced one huge hypergraph containing half the clusters. Most of the

rest are independent hypergraphs that become single clusters. Although the large hypergraph

demonstrates the utility of this method, it is too large to use as an example. One that does

not become a single cluster is shown in Figure 5. Here, the link between Joe Torre and George

Steinbrenner (shown dashed) is cut. Even though this is not the weakest link, the attempt

to balance the graphs causes this link to be cut, rather than producing a singleton set by

cutting a weaker link. This is a sensible distinction. For those that don’t follow U.S. baseball,

George Steinbrenner is the owner of the New York Yankees, and Joe Torre is the manager.

Darryl Strawberry and David Cone are star players. Tampa, Florida is where the Yankees

train in the spring. During the January to April time frame, the players and manager were

in Tampa training, but George Steinbrenner had to deal with repairs to a crumbling Yankee

Stadium back in New York – thus the end result does reflect what is really happening.

3.4 Mapping to Documents

The preceding process gives us reasonable topics. However, to evaluate this with respect to

the TDT2 instrumented corpus, we must map the identified topics back to a set of documents.

We could trace back to the source data, using the fact that frequent itemsets can be tracked
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directly to a set of documents. However, this had two problems:

1. a document can be responsible for multiple frequent itemsets, we need to identify a

single topic for each document; and

2. a document may relate to a topic, but not contain the all the entities of any of the

frequent itemsets.

We instead use the fact that the topic itself, a set of named entities, looks much like

a boolean query. We use the TFIDF metric4 to generate a distance measure between a

document and a topic, then choose the closest topic for each document. This is a flexible

measure; if desired, we can use cutoffs (a document isn’t close to any topic), or allow multiple

mappings.

Note that this is all done within the database; we never need to refer back to the full

text.

3.5 Combining Clusters based on Document Mapping

Although the clustered topics appeared reasonable, we were over-segmenting with respect

to the TDT “ground truth” criteria. For example, we separated men’s and women’s tennis;

the TDT human-defined topics had this as a single topic.

We found that the topic-to-document mapping provided a means to deal with this. Many

documents were close to multiple topics. In some cases, this overlap was common and

repeated; many documents referenced both topics (the tennis example was one of these).

We used this to merge topics, giving a final “tennis” topic of:

PERSON Andre Agassi
PERSON Martina Hingis
PERSON Mary Pierce
PERSON Pete Sampras
PERSON Venus Williams
PERSON Serena
PERSON Marcelo Rios
PERSON Anna Kournikova

4The TFIDF weight between a document i and topic t is calculated as follows:[21]

TFIDFit =
∑
k∈t

tfik · (log(N/nk))2√∑
j∈t(log(N/nj))2

√∑
j∈t(tfij)2 · (log(N/nj))2

where tfik is the term frequency (number of occurrences) of term k in i, N is the size of the corpus, and nk
is the number of documents with term k.

17



There are two types of merge. In the first (marriage), the majority of documents similar

to either topic are similar to both. In the second (parent/child), the documents similar to

the child are also similar to the parent, but the reverse does not necessarily hold. (The tennis

clusters were a marriage merge.)

The calculation of these values is actually a bit more complex, as it also takes into account

negative relationships (two marriage topics are not only close to the same documents, but

also far away from the same documents.)

3.5.1 Marriage Relationship Calculation

The marriage similarity between clusters a and b is defined as:

Marriageab =

∑
i∈documents TFIDFia ∗ TFIDFib/N∑

i∈documents TFIDFia/N ∗
∑
i∈documents TFIDFib/N

Based on experiments on the TDT2 training set, we chose a cutoff of 30 (Marriageab ≥ 30)

for merging clusters. This value can be adjusted depending on user requirements. Note

that this is not a transitive measure; this could pose a problem where clusters a and b are

marriages, b and c are marriages, but a and c are not. However, since merging clusters is

done by taking a union of the named entities in the two, and there is no requirement that the

topic identifiers partition the set of entities, it is not a practical issue (we end up with two

topics instead of the original three). We do merge into a single cluster where such transitivity

exists.

3.5.2 Parent/Child Relationship Calculation

The parent child relationship is calculated as follows:

ParentChildpc =

∑
i∈documents TFIDFip ∗ TFIDFic/N∑

i∈documents TFIDFic/N

We calculate the parent/child relationship after the marriage clusters have been merged. In

this case, we used a cutoff of 0.3 (this was a reasonably easy choice; the highest similarity

was 0.4, and the closest to 0.3 were 0.27 and 0.35 – a natural break.) Merging the groups is

again accomplished through a union of the named entities.

Note that there is nothing document-specific about these methods. The same approach

could be applied to any market basket problem.

4 Experimental Results

The TDT2 evaluation criteria is based on the probability of failing to retrieve a document

that belongs with the topic, and the probability of erroneously matching a document to the
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topic. These are combined to a single number CDet as follows [27]:

CDet = CMiss · PMiss · Ptopic + CFalseAlarm · PFalseAlarm · (1− Ptopic)

where:

PMiss =
∑
R

|R−H(R)|/
∑
R

|R|

PFalseAlarm =
∑
R

|H(R)−R|/
∑
R

|S −R|

R is the set of stories in a reference target topic.

H is the set of stories associated with a TopCat-produced topic.

Ptopic (the a priori probability of a story being on some given topic) = 0.02.

CMiss (the cost of a miss) = 1.

CFalseAlarm (the cost of a false alarm) = 1.

The mapping H(R) between TopCat-identified topics and reference topics is defined to be the

mapping that minimizes CDet for that topic (as specified by the TDT2 evaluation process):

H(R) = argmin
H
{CDet(R,H)}

where

CDet(R,H) = CMiss · PMiss(R,H) · Ptopic + CFalseAlarm · PFalseAlarm(R,H) · (1− Ptopic)

PMiss(R,H) = NMiss(R,H)/|R|

PFalseAlarm(R,H) = NFalseAlarm(R,H)/|S −R|

NMiss(R,H) is the number of stories in R that are not in H.

NFalseAlarm(R,H) is the number of stories in H that are not in R.

|X| is the number of stories in the set X of stories.

S is the set of stories to be scored in the evaluation corpus being processed.

Using the TDT2 evaluation data (May and June 1998), the CDet score was 0.0062 us-

ing named entities alone, with improvements up to 0.0053 when a selection of keywords

in the categories DISASTERS, TRIALS, VIOLENCE, and US POLITICS were added (as de-

scribed in Section 5. This was comparable to the results from the TDT2 topic detection

participants[28], which ranged from 0.0040 to 0.0129, although they are not directly com-

parable (as the TDT2 topic detection is on-line, rather than retrospective). Of note is the
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low false alarm probability we achieved (0.002); further improvement here would be difficult.

The primary impediment to a better overall score is the miss probability of 0.17.

Although the use of keywords did provide some improvement in the scores on the evalua-

tion set, it was not significant. Only two topics that mapped to evaluation topics contained

keywords; one of these (mapping California primaries to the Unabomber case) was a mis-

take. The other added the terms earthquake and quake to the topic matching the “Afghan

Earthquake” topic. However, some topics (corresponding to topics not part of the TDT2

list) did include interesting keywords, such as suit to the Microsoft anti-trust case.

The primary reason for the high miss probability is the difference in specificity between

the human-defined topics and the TopCat-discovered topics. (Only three topics were missed

entirely; containing one, three, and five documents.) Many TDT2-defined topics matched

multiple TopCat topics. Since the TDT2 evaluation process only allows a single system-

defined topic to be mapped to the human-defined topic, over half the TopCat-discovered

topics were not used (and any document associated with those topics was counted as a

“miss” in the scoring). TopCat often identified separate topics, such as (for the conflict with

Iraq) Madeleine Albright/Iraq/Middle East/State, in addition to the “best” topic (lowest CDet

score) shown at the top of Table 3. The TFIDF-based topic merging of Section 3.5 addressed

this to some extent, substantially improving results in the training set. (Interestingly, the

topic merging didn’t have a significant effect on the evaluation set.) Although various TopCat

parameters could be changed to merge these, many similar topics that the “ground truth”

set considers separate (such as the world ice skating championships and the winter Olympics)

would be merged as well.

The miss probability is a minor issue for our problem. Our goal is to identify important

topics, and to give a user the means to follow up on that topic. The low false alarm probability

means that a story selected for follow-up will give good information on the topic. For the

purpose of understanding general topics and trends in a corpus, it is more important to get

all topics and a few good articles for each topic than to get all articles for a topic.

5 Keywords

Named entities can be very powerful identifiers for allowing a human to identify a topic or

event. However, they are not all-encompassing. Named entities can capture questions like

“Who?” and “Where?”, but require that we use our background knowledge and inference

capabilities to answer questions such as “What?” “When?” and “Why?” Other words

in documents can answer these questions, but, as has been mentioned before, data mining

techniques have difficulty dealing with the unrestricted set of information found in a large
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document collection. Named entities are one manageable subset. Another possibility is to

have a human generate a small set of keywords that are related to the sorts of documents

in our corpus. Since we value efficiency, we ask for a small set of keywords that can be

quickly generated. An expansive keyword set might require significant human effort. This

set of keywords provides us with another manageable subset of information. However, this

keyword set is likely to be limited; even though the words may adequately describe the topic

of interest, numerous other words are likely to be used to refer to the same idea. This leads

us to the problem of automatically expanding the keyword list to better represent the full

list of words that might be used to describe the topic.

WordNet [29] is a tool that can help us make use of these keywords without overburdening

the data mining system or asking the human to provide an expansive list of keywords.

WordNet is a semantic network developed by George Miller at Princeton University that

has mapped out a significant portion of the English language in a hierarchical lexicon. It

includes linkages that we are all familiar with, such as synonyms and antonyms, along with

more powerful, yet lesser known relations, such as hypernyms and hyponyms. A hypernym is

a word that is more general than another word. Similarly, a hyponym is a word that is more

specific. For example, we can say that vehicle is a hypernym of automobile and that couch

is a hyponym of furniture. By exploiting these relations, we can expand a set of keywords

to include related words that were not part of the original keyword set. WordNet has

been continually honed and improved during the 14 years of its existence and now includes

relations for over 100,000 word forms. The hyper/hyponym noun hierarchy is the most

developed portion of WordNet and will be the portion that we rely upon for our expansion

rules.

Although no such collection could possibly be complete, WordNet holds an expansive

amount of knowledge about the human language. Given a term such as politician, it can

tell us that a politician is a type of leader and that Democrats and Republicans are types of

politicians. It might be difficult to locate a document on U.S. politics using simply the query

politician. Words such as Democrat, Republican and leader can allow us to match more related

documents (increase recall) without much damaging the specificity (decrease precision) In

the next few paragraphs, we describe how WordNet is used for the keyword expansion task

and provide some experimental evidence that WordNet is a viable resource for expanding a

set of keywords to better represent the corresponding topic.

While WordNet is a great repository of knowledge, it is not a panacea for the keyword

expansion problem. The knowledge that it stores was constructed by humans without any

underlying mathematical model. Thus, some of the symmetry that one might expect, such

as equal semantic distance between links, do not hold. Since we know that WordNet is a
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valuable resource, we have spent time determining which of its aspects are most useful for the

task of keyword expansion. As a result of this work, we have developed the following three

heuristics for controlling the aspects of WordNet that should be used in keyword expansion:

1. A word, sense pair given by a WordNet relation should be added to the expanded

keyword list only if the sense is the most common one for that word.

2. A hypernym relation should be used only if the hypernym is at depth 5 or below.

3. A hyponym relation should be used only if there are no more than 15 hyponyms for

the corresponding keyword.

We find the basis for our first heuristic in the word sense disambiguation (WSD) literature.

This literature is often closely tied to WordNet because it is the only large scale, well-known,

publicly available lexicon that describes interconnections between individual senses of words.

Many WSD papers, such as [30], [31] and [32] use WordNet and the Brown corpus [33] (the

document base used to construct WordNet) as a foundation for their evaluations. One

observation that has been made in the WSD literature is that words are used to mean their

most common sense about 80% of the time. Since it would not be realistic to expect our

document corpus to be sense disambiguated, we do not want to expand our keyword set

with words that are likely to retrieve irrelevant documents. For example, WordNet gives the

sixth sense of force as a synonym for violence. Since force is more commonly used to refer

to a powerful effect or influence, we would not want to expand violence with a word such

as force. Since we cannot expect that the search corpus could be fully disambiguated, this

heuristic limits the degree to which we add misleading words to the keyword set.

The WordNet hyper/hyponym relations form a set of directed acyclic graphs (DAGs). In

order to gain some understanding of the structure, we assign these designated root words a

depth of 1. We then define the depth of any word to be one plus the depth of its shallowest

hypernym. Using this definition, a word such as as clothing a depth of 5. After conducting

informal keyword expansion experiments, we determined that larger semantic leaps are most

commonly found near in shallower regions of each DAG. We performed hyper/hyponym

expansions on the topic statement for 20 TREC queries and qualitatively evaluated each

expansion word for relevance. As low as depth 4 we found fairly misleading hypernyms,

such as clothing @ → covering. Hence, we decided to only allow hypernym expansion for

words below depth 5 (hypernyms below depth 4). It should be noted that the WordNet

hyper/hyponym hierarchy is quite expansive and runs many levels deep. Of the 35 hypernyms

that we considered for inclusion in the expanded keyword set, 23 were at or below depth 5.
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Table 2: Performance with Keywords
Data Used Story weighted Topic weighted

CDET Miss False CDET Miss False
Named entities only .0062 .19 .0025 .0089 .32 .0025
Base keywords .0056 .20 .0016 .0088 .36 .0017
Expanded keywords .0053 .20 .0014 .0076 .31 .0014

Just as hypernym relations can provide us with words that can misrepresent the given

topic, so too can hyponym relations. To reduce the possibilities of adding such a word to

our expanded keyword list, we restrict the set of hypernym relations that we are willing

to consider. When a word has a small handful of hyponyms, it is likely that those words

are closely related to the topic at hand. However, when the word has a large number

of hyponyms, it is more likely that some of those words are misleading. Clothing has 29

hyponyms and is a perfect example of where this problem strikes. Many are words that

would be useful for further expanding a topic related to clothing, but some may significantly

alter the topic at hand. One such misleading hyponym of clothing is G-string. An altavista

search on G-string leads us to lingerie, porn and music, hardly what one would think of

given a topic of clothing. In order to restrict such occurrences, we decide to not expand the

hyponym relations of words that have more than 15 hyponyms. This heuristic will help our

expansion from blowing out of proportion.

These heuristics give us a set of rules that should give us a fairly robust. For example,

given the keyword set president, U.S., WordNet keyword expansion yields President of the

United States, President, Chief Executive, head of state, chief of state, United States, United

States of America, America, US, USA, U.S.A., North American country, North American nation,

obviously a significant improvement in breadth without the sacrifice in precision that one

might find in other keyword expansion techniques.

In order to evaluate this keyword expansion technique, we have run experiments on the

TDT data according to standard evaluation metrics. Table 2 lists the results from such

experiments using the named entities only, using the keywords and named entities (base

keywords) and using the expanded keywords and named entities (expanded keywords).

As one can see, using a short list of keywords and our heuristic keyword expansion technique

both improve the overall CDET score. Most impressive are the “topic weighted” results,

where the additional expansion words reduce the CDET score by 14%5. Hence keyword

expansion does improve, indicating that keyword expansion can expand our topic coverage

without drawing in irrelevant or tangential ideas.

5Lower CDET scores are better
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Figure 6: Types of Relationships

6 Constructing Hierachies of Topics

The relationships described in Section 3.5 were developed to further coalesce the generated

topics. However, a more important use is to construct hierarchies. Although work has been

done in classifying documents into hierarchies [34], construction of the hierarchies has been

a manual process.

These relationships capture two different types of overlap between topics. The marriage

relationship occurs when there is a high degree of overlap between the documents. The par-

ent/child relationship happens when one topic is a subset of another. A graphic description

of the types of relationships is given in Figure 6.

We had 47 pairs with similarity greater than 30 for the marriage relationship in the TDT

data. Most consisted of two topics, however one each contained three, five, and six topics;

reducing the total number of topics by 36. The largest of these merges the various weather

forecasters (originally individual topics) into the single group showin in Table 3.

The two examples with highest similarity are:

Topic Topic Similarity
LOCATION Dubai ORGANIZATION Crown 103
LOCATION United Arab Emirates PERSON Abdullah
ORGANIZATION Mets PERSON Bernard Gilkey 204
PERSON Valentine PERSON Carlos Baerga

The Parent/Child relationship gave 16 pairs with a similarity greater than 0.3 in the

TDT data. These are divided into 7 hierarchies. The highest similarity three groups are

shown below (note that the India/Pakistan topic has two children):
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Parent Child Similarity
ORGANIZATION Congress PERSON Dick Gephardt 0.55
ORGANIZATION White House PERSON Newt Gingrich
ORGANIZATION House
PERSON Newt Gingrich
ORGANIZATION Senate
LOCATION India ORGANIZATION Bjp 0.46
LOCATION Islamabad ORGANIZATION Congress Party
ORGANIZATION Bjp
LOCATION New Delhi LOCATION Islamabad 0.42
LOCATION Pakistan PERSON Nawaz Sharif
LOCATION South Asia

A display developed for the GeoNODE project capturing Parent/Child relationships is shown

in Figure 7. This is taken from a collection of broadcast news, covering a longer period than

the TDT data. Moving the mouse over a node shows the mnemonic for that topic, allowing a

user to browse the relationships. The node size captures the number of documents associated

with the topic.

7 Conclusions and Future Work

We find that the identified topics are not only reasonable in terms of the TDT2 defined

accuracy, but also are understandable identifiers for the subject. For example, the most

important three topics (based on the support of the frequent itemsets used in generating the

topics) are apparent from Table 3. The first (Iraqi arms inspections) also gives information

on who is involved (although knowing that Richard Butler was head of the arms inspection

team, Bill Richardson is the U.S. Ambassador to the UN, and Saddam Hussein is the leader

of Iraq may require looking at the documents; this shows the usefulness of being able to

access documents based on the topic identifier.) The third is also reasonably understandable:

Events in and around Yugoslavia. The second is an amusing proof of the first half of the

adage “Everybody talks about the weather, but nobody does anything about it.”

The clustering methods of TopCat are not limited to topics in text, any market bas-

ket style problem is amenable to the same approach. For example, we could use the hy-

pergraph clustering and relationship clustering on mail-order purchase data. This extends

association rules to higher-level “related purchase” groups. Association rules provide a few

highly-specific actionable items, but are not as useful for high-level understanding of general

patterns. The methods presented here can be used to give an overview of patterns and trends

of related purchases, to use (for example) in assembling a targeted specialty catalog.
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Figure 7: Display of Relationships found in Broadcast News
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Table 3: Top 3 Topics for January through June 1998

LOCATION Baghdad
LOCATION Britain
LOCATION China
LOCATION Iraq
ORGANIZATION Security Council
ORGANIZATION United Nations
PERSON Kofi Annan
PERSON Saddam Hussein
PERSON Richard Butler
PERSON Bill Richardson
LOCATION Russia
LOCATION Kuwait
LOCATION France
ORGANIZATION U.N.

LOCATION Alaska
LOCATION Anchorage
LOCATION Caribbean
LOCATION Great Lakes
LOCATION Gulf Coast
LOCATION Hawaii
LOCATION New England
LOCATION Northeast
LOCATION Northwest
LOCATION Ohio Valley
LOCATION Pacific Northwest
LOCATION Plains
LOCATION Southeast
LOCATION West
PERSON Byron Miranda
PERSON Karen Mcginnis
PERSON Meteorologist Dave Hennen
PERSON Valerie Voss

LOCATION Albania
LOCATION Macedonia
LOCATION Belgrade
LOCATION Bosnia
LOCATION Pristina
LOCATION Yugoslavia
LOCATION Serbia
PERSON Slobodan Milosevic
PERSON Ibrahim Rugova
ORGANIZATION Nato
ORGANIZATION Kosovo Liberation Army
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7.1 Computation Requirements

Our implementation of TopCat is designed to test the concepts, and not performance. We

have used research software designed for flexibility, not performance. In particular, all but

the named entity tagging and hypergraph clustering are implemented in SQL and run on

a transaction-oriented commercial database. Thus these times should be viewed as extreme

upper bounds on the computational requirements. However, for those interested, we give

some ideas of the times required (all times an a Sun Ultra1/140):

Named Entity Tagging Alembic tagged the entire 144MB TDT2 corpus in under 21

hours. However, the machine was heavily used during some of this time, so this num-

ber is high. A figure of 128KB/minute would be more appropriate. However, Alembic

is a research tool for applying machine learning techniques to identifying concepts in

data, and is not optimized for performance. Commercial named entity tagging software

exists that would do better.

Coreference mapping The coreference mapping procedure described six hours 49 minutes.

As this is not a central feature of this work, and others are working on better ways

of doing cross-document coreferencing, we have not worried about the expense of this

process.

Frequent itemset computation Computing frequent itemsets to 76 minutes. However,

this could easily be improved using highly optimized commercial data mining tools

(TDT2 has 1.5 million named entities and 65000 documents – an easy task for com-

mercial “market basket association rule” tools).

Hypergraph clustering The hypergraph clustering step took just under 5 minutes on the

TDT2 data.

TFIDF-based cluster merge The TFIDF-based merging of clusters took 67 minutes. Al-

though we found this necessary to get reasonable results on the TDT2 training data,

we find that the results obtained without this step are meaningful to humans, even if

they are more specific than the human breakdowns of topics in the TDT2 testbed (this

was validated on the TDT2 evaluation set.) This step would be primarily of interest

for developing the topic hierarchies in Section 6.

Although the total process is computationally expensive, the most expensive parts are data

preparation: Named entity tagging and cross-document coreference computation. These

need only be done once per document. The actual topic identification process is done more

frequently: it is often interesting to manually define a subset of the corpus (e.g., a specific
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range of dates), then identifying topics within that subset; or identifying new topics and

changes to existing topics as new articles are loaded. In addition, the most expensive part

of the topic identification, computing frequent itemsets, can be significantly improved by

raising the support threshold – if the goal is to identify only the 5-10 most important topics

in a corpus, this is effective. A practical application of TopCat would involve continuously

loading/tagging data as a background process. Given this, topic identification – while not

truly interactive – could easily be fast enough to be done “on demand” whenever a corpus

subset of interest is identified.

7.2 Future Work

One key problem we face is the continuity of topics over time. There are two issues here:

• Performance: Can we incrementally update the topics without looking at all the old

data? The data mining community is addressing this for association rules (for two

examples, see [35] and [36]); this should apply directly to TopCat.

• New knowledge: How do we alert the user when something interesting has changed?

We find the latter issue to be the greater challenge. There are two types of changes: New

topics, and new information added to a topic. For frequent itemsets, this is feasible. One

approach would be to identify when a new frequent itemset is a result of documents that

contributed to an old frequent itemset, with some new documents giving support to a change

(new information added to the itemset), or a result of documents that did not previously sup-

port an itemset (a new itemset). However, carrying this through the hypergraph partitioning

/ clustering is a difficult problem.

Another issue is the type of information to use. We have shown that using all words is

not appropriate, but extracting more information should help. As information extraction

technology advances, we will be able to make use of information other than named entities

and user-provided keywords. For example, the Alembic project is working on extracting

events. How to best make use of this information is an open question. For example, grouping

events into types (as we did with keywords) may or may not be appropriate.

We have talked about how we map documents into the market basket model using named

entities. However, what the named entity processing really gives us is a typed market basket

(e.g., LOCATION or PERSON as types.) We have made little use of the types, but their

presence could be beneficial. Another possibility is to use generalizations (e.g., a geographic

“thesaurus” equating Prague and Brno with the Czech Republic) in the mining process[37].

As the extracted information becomes richer, these issues will increase in importance. Fur-
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ther work on expanded models for data mining could have significant impact on data mining

of text.
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