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ABSTRACT

Recently, Aissi et al. gave new counting and algorithmic
bounds for parametric minimum cuts in a graph, where each
edge cost is a linear combination of multiple cost criteria and
different cuts become minimum as the coefficients of the lin-
ear combination are varied. In this article, we derive better
bounds using a mathematically simpler argument. We pro-
vide faster algorithms for enumerating these cuts. We give
a lower bound showing our upper bounds have roughly the
right form. Our results also immediately generalize to para-
metric versions of other problems solved by the Contraction
Algorithm, including approximate min-cuts, multi-way cuts,
and a matroid optimization problem. We also give a first
generalization to nonlinear parametric minimum cuts.

Categories and Subject Descriptors

F2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Computa-
tions on Discrete Structures; G2.1 [Discrete Mathemat-
ics]: Combinatorics—Combinatorial Algorithms, Counting
Problems; G2.2 [Discrete Mathematics]: Graph Theory—
Graph Algorithms

Keywords

Minimum cuts, Randomization, Parametric optimization,
Enumeration

1. INTRODUCTION

Recently, Aissi et al. [AMMQ15] gave new bounds on the
number of parametric minimum cuts in graphs and hyper-
graphs. Their problem formulation considers a set of k dis-
tinct edge cost “criteria” ¢;(e) and defines an overall com-
bined cost c(e) = > uici(e) using linear coefficients p;. As
the p; vary so does each c¢(e), which causes the min-cut of
the graph to vary. It is natural to ask how many different
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cuts can become min-cuts and how to enumerate all of them
quickly. There is an extensive literature on and interest in
such parametric optimization.

In a graph with negative edge costs, even the standard
single-parameter minimum cut problem is NP-hard. And
the empty graph (equivalently, all zero cost edges) has all
exponentially many cuts minimum even without varying pa-
rameters. But it is well known [DKL76, KS96, Kar00] that
any connected (by its positive cost edges) n-vertex graph has
at most (g) min-cuts, with this bound being achieved by the
cycle on n vertices. Thus work focuses on graphs where all
edge costs are non-negative (although the individual crite-
ria may be negative) and where the graph is connected by
its positive cost edges. Mulmuley [Mul99] gave an O(n'?)
bound on the number of 2-parameter min-cuts in this case.

Aissi et al. show that in a k-parameter linear combination,
the number of cuts that become minimum at some point in
the parameter space is O(mkn2 logh~! n). In the case of
hypergraphs there is an additional exponential dependence
on the hypergraph rank. They also derive algorithms with
nO®*) running times for enumerating all such cuts. For the
special case of 2 parameters they give a better bound of
O(n®logn) cuts that can be enumerated in O(m?n*) time.

1.1 Results

In this article, we give a different analysis of paramet-
ric min-cuts that uses significantly less math. We require
stronger conditions than Aissi et al. to apply our results,
but the results are significantly stronger for those conditions
and generalize more broadly in various directions.

In particular, we require that each of the k criterion func-
tions c¢;(e), as well as the p;, be nonnegative, instead of
just requiring that the overall linear combination be non-
negative. With this stronger condition, we improve the
bound on the number of k-parameter minimum cuts from
O(mFn?) to O(n'**). We give an algorithm for enumerat-

ing all of them in O(mnl+k) time, improving the Aissi et al.

bound of n®**). We also give better bounds of O(n?y/m)
for enumerating 2-parameter min-cuts and O(n4) for enu-
merating 3-parameter min-cuts. We give a related lower
bound, showing a k-parameter graph with Q(nk/ 2) min-cuts
over the parameter space.

Our techniques generalize to prove similar bounds on the
number of hypergraph min-cuts in the parametric setting
(again, improving on bounds by Aissi et al. for this problem)
as well as the number of approrimately minimum paramet-
ric graph cuts and hypergraph cuts (for which there were no
previous results) and a more general “matroid min-cut” opti-



mization problem. Our results are modular: they essentially
state that in all these problems, the number of k-parameter
solutions is O(n*~!) times the number of standard solutions,
and that a variant of the Contraction Algorithm [KS96] finds
them all. We also provide efficient algorithms for enumerat-
ing the cuts in question.

We also generalize to the first result on nonlinear para-
metric min-cut problems. We show that when edge costs
have the form Y% | ¢;(e)u’ for positive ¢;(e)—that is, a
polynomial combination of k criteria via a single parame-
ter p—the number of min-cuts is O(kn?). It seems it is
not linearity but limited degrees of freedom that constrains
the number of min-cuts. We also give an O(n>y/m)-time al-
gorithm for enumerating these cuts—i.e., spending roughly
/m time per potential cut. These results generalize to a
broad class of parametric functions that don’t repeatedly
cross each other.

1.2 Method

We prove our result by applying the Contraction Algo-
rithm [Kar93], which finds min-cuts by contracting edges
in random order. The new trick we apply here is to de-
scribe that random choice process over a parametric cost
function as a series of decisions that we can make in two
different orders—much like exchanging the order of a sum-
mation. Intuitively, we argue that running the Contraction
Algorithm on a parametric combination of weight functions
is equivalent to running a parametric combination of Con-
traction Algorithms, and that the increase in the number of
parametric min-cuts is determined entirely by the way these
different Contraction Algorithms can interleave their execu-
tions, or more precisely by the relative “rates” at which these
Contraction Algorithms execute.

2. THE ANALYSIS

For brevity, we call a particular cut minimish if there
is some setting of the parameters for which it is a min-cut.
We wish to enumerate the minimish cuts. We generalize our
original use of the Contraction Algorithm [Kar93] to bound
the number of (standard) minimum cuts. Our core result is
the following:

THEOREM 2.1. The number of cuts that become minimum

over all nonnegative combinations Y uic;(e) of k parameters
is O(nF*1).

2.1 The Contraction Algorithm
We define the Contraction Algorithm as follows:

e Generate a random weighted permutation of the edges
of G by repeatedly choosing an unchosen edge with
probability proportional to its weight until all edges
have been chosen

e Contract edges in permutation order until only 2 ver-
tices remain, defining the output cut

Usually, we describe the Contraction Algorithm [KS96]
as choosing and contracting non-loop edges. In the above
variation we don’t notice self loops until after we build the
permutation and begin contracting. But these loops have
no impact on the output cut, so the variant produces the
same output as the standard Contraction Algorithm. It is
known [KS96] that this process produces any particular min-

cut with probability at least (,21)—1.
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2.2 Proof Outline

We begin our analysis with the following slightly modified
description of the Contraction Algorithm’s application to
(standard) min-cuts:

e The Contraction Algorithm outputs one random cut

e It outputs any given min-cut with probability at least
n\—1 . .
(2) (assuming the graph is connected).

e Thus if there are K min-cuts, the expected number
output is at least K(g)fl.

e But only 1 cut (minimum or not) is ever output, so
K(”)_1 < 1, which shows that K < (g)

2

For the parametric problem, we make a minor change:

e We modify the Contraction Algorithm to output at set
of C' cuts.

e We show that every minimish cut is among those out-
put with probability at least (;)_1.

e So if there are K minimish cuts, the expected number
output is at least K(g)fl.

e But only C cuts (minimish or not) are ever output, so

K(3)™" < C, which shows that K < C(}).

Finally we bound C' by n*~!, which concludes our analysis.

2.3 A Special Case

To convey the main idea, we’ll first consider a special case
of the problem. Take two edge sets F1 and F2 on the same
vertex set G, with m; and mo edges respectively. Each F;
spans GG. Parallel edges may exist. Consider the parametric
problem where we assign weight u1 to every edge in Ey and
weight po to every edge in Es3, and consider the evolving
min-cuts as we vary p1 and po.

For this parametric problem, once we have fixed the p;
to get a single cost function, we can apply the Contraction
Algorithm, contracting according to a permutation weighted
by the scaled costs p;ci(e). In our special case graph, each
edge of the permutation comes from either E; or Ea2. In
other words, the permutation can be described by specifying
(i) its subsequence 71 of edges from FE1, (ii) its subsequence
mo of edges from Fs, and (iii) an interleaving S indicating,
at each step, whether we take our next edge from m; or ms.

Critically, the sequences 71 and 72 are uniformly random,
independent sequences of their respective edge sets. This is
because each step in building the permutation can be de-
scribed as first deciding randomly from which E; to choose
an edge and then deciding randomly which edge to take from
the selected E;. Since all edges of E; have the same weight
i, each edge choice from F; is uniformly random.

It follows that we can describe the construction of our
permutation in a different way: first, we generate uniformly
random permutations of E; and E. Then, we randomly
interleave these two permutations via some random process
that depends on the u; and ;.

So far we have only changed the description of the algo-
rithm, not its operation. Thus, given the specific u; the pro-
cedure just described outputs any particular min-cut (under

cost pic1 + pace) with probability at least (,21)—1. Now we



make a change: instead of using this permutation to out-
put one cut, we consider all possible interleavings of the
(uniformly random) ; and output all the cuts produced by
contracting along these different interleavings.

Our original procedure that used a random interleaving
(from the proper distribution) output our particular min-
imish cut with probability (g)_1 Our revised procedure,
which tries all interleavings, will therefore still output this
cut with at least the same probability.

Now note that this argument applies to each minimish
cut. That is, the all-interleavings algorithm outputs each
minimish cut with probability (g)_l. But this modified al-
gorithm no longer depends on the p;. Those u; affected
which interleaving of the uniformly random m; was gener-
ated in the original Contraction Algorithm, but our modified
algorithm considers all interleavings.

In summary, we designed an algorithm that outputs some
number C of cuts such that every minimish cut is output
with probability at least (g) ~!. As outlined in Section 2.2, it
follows that if there are K minimish cuts, then the expected
number of minimish cuts output by our algorithm is at least
K(2)~! < C, which implies that K < C(%).

2.4 Bounding the Number of Distinguishable
Interleavings

We now bound the number of cuts C' output as we con-
sider all interleavings. A priori, there are ("™ *2) distinct
interleavings, but we will see that most of them produce the
same cuts.

In particular, once we fix the m;, the exact interleaving or-
der doesn’t matter. The Contraction Algorithm terminates
when certain interleaved prefixes of w1 and 72 have been
contracted to reduce G to 2 vertices. The exact order in
which those contractions are done doesn’t matter.

It follows that without loss of generality we can assume
the interleaving places all edges contracted from m; before
all those from mo. This means that we need only specify the
number n; of (non-self-loop) contractions that occur from
the prefix of 71, since then there must be exactly n —n; —2
contractions from 72 to reduce G to 2 vertices and output a
cut.

We have shown that every output cut corresponds to a
value of n1 chosen from 0 to n— 2, so there are at most n— 1
distinct output cuts. Incorporating this refinement into our
argument, we find the number of minimish cuts is at most
n(3).

Our analysis assumes that each interleaving yields only
one cut, which is true if the positive-cost edges span G.
This certainly holds if each of the F; span G as we assumed
at the beginning; alternatively, it is sufficient for the union
of the F; to span G if we require to all y; > 0 instead
of ;i > 0. There may be other parameter values p; < 0
for which the overall cost function is nonnegative and the
positive edges span G; however, our proof does not hold in
this case because we treat the u; as probabilities, which only
makes sense if the p; are nonnegative. Some of the results
of Aissi et al. apply to the more general parameters so long
as the combined cast is positive.

2.5 The General Case

The basic argument above generalizes, unchanged, to ar-
bitrary graphs with two-parameter linear weight functions.

544

We considered a parametric combination of “unweighted”
graphs (all edge weights 1). But we can instead consider
a weight function pici(e) + pace(e). For (nonnegative) in-
teger valued c;(e) we can replace the edge of weight c;(e)
with ¢;(e) parallel edges of weight 1 and reduce to our spe-
cial case. For (nonnegative) rational c;(e) we can scale up
by the least common denominator to reduce to the integer-
weighted case. And nonnegative reals c¢;(e) are a limit of
rationals.

The resulting graphs have unbounded numbers of edges
but this doesn’t matter for the counting arguments. In fact,
given the equivalence we can simulate the algorithms di-
rectly on the weighted edges: we generate individual weighted
permutations m; by sampling edges e with probabilities pro-
portional to ¢;(e), then interleave them as before.

We can also generalize to higher-order linear parametric
weight functions. A graph with weight function Zle wici(e)
can be seen as a combination of k graphs with weights ¢;(e).
We know that running the Contraction Algorithm on the
graph outputs each min-cut (at this specific p-weighting)
with probability (;)_1 as before. But we can represent this
Contraction Algorithm as an interleaving of a contraction
sequence for each of its k component graphs. As was argued
above, the exact interleaving doesn’t matter. Instead, we
need only choose some number of contractions n; to perform
using a prefix of w1, then some number ng of contractions
from a prefix of 72, and so on. In total we must perform
> n; = n — 2 contractions to reduce G to 2 vertices and
define a cut.

We have thus shown that every possible cut that can be
produced by interleaving the m; can be identified by speci-
fying values n; that sum to n — 2. There are obviously at
most n*~! ways to do this (the final ny is fixed by the oth-
ers). The well-known “stars and bars” theorem [Fel68] gives
a better bound of ("F*1).

It follows that the number of cuts that can be output by
interleaving any k given permutations is at most n*~!, which
means that the number of minimish cuts overall is O(n*T!).

In Section 6, we will extend our bounds to nonlinear para-
metric cost functions. First, we turn to lower bounds and
enumeration algorithms for the linear case.

3. LOWER BOUNDS

We now show our results to be relatively tight by giving a
lower bound of n*/? (versus the n**' upper bound) on the
number of k-parameter minimish cuts.

We begin with the 2-parameter problem. Consider the
graph K1 ,—21 consisting of two vertices s and ¢ along with
n — 2 vertices v;, it = 1,...,n — 2, each connected to s and t.
We assign weights so that varying parameters forces some
of the v; to merge with s and the others to merge with ¢ in
any minimish cut.

We require a sufficiently large quantity M that we’ll de-
fine later. Our first weight function sets ci(s,v;) = M
and c¢1(vi,t) = 0. Our second weight function assigns sets
c2(s,v;) = 0 and c2(vi,t) = M™™ . We consider the bi-
criterion weight function ¢ = pic¢1 4 pece. Suppose we set
w1 = M~7 while setting po = MI="+1 Tt follows that
c(s,v;) = M*™7 is at least M for i > j and is at most 1 for
i < j. Similarly, c(vi,t) = M?7*T! is at most 1 for i > j and
at least M for 7 > 4. In other words, exactly one of (s,v;)
and (vs,t) is at most 1 and the other is at least M.



From this we can see that there is a cut of value n — 2 in
the graph: removing all edges of weight at most 1 removes
one each of (s,v;) and (v;,t) and therefore separates s and
t. This shows that the min-cut has value at most n — 2.
Assuming M > n, this means no edge of weight M crosses
the min-cut. We can therefore contract all such edges with-
out affecting the min-cut. This merges all v; into either s or
t, leaving a graph with 2 vertices and only one cut, which
must be the min-cut; this shows that the cut we originally
identified, consisting of all edges of weight at most 1, is in
fact the min-cut given these values of 1 and pos.

It follows that if we vary j through the integers from 1 to
n—1 to set values for the two parameters we get n—1 distinct
min-cuts identified by how many of the v; are on the s and ¢
sides respectively. This shows that there can be as many as
n — 1 minimish cuts. Which is not interesting in itself, since
the cycle has (;‘) min-cuts without any parametric weight
function at all.

However, we can generalize this construction. Make r
distinct copies of the graph described above, each with its
own 2 vertices s and ¢, its own (n — 2)/r middle vertices v;
with edges to s and ¢, 2 edge weight functions, and 2 pa-
rameters. Then identify all the s vertices from the different
copies into a single vertex, and do the same for ¢, and extend
each weight function to assign weight 0 on edges in copies
of the graph other than its own. This essentially gives us
an instance of Ki,,—2,1, but with r “groups” of edges each
being driven by their own 2 parameters. By setting each
pair of parameters separately according to the previous 2-
parameter construction, we can independently choose how
many of the (n — 2)/r middle vertices v; in each copy must
be merged with each of s and ¢ in the min-cut of the com-
bined graph. It follows that by varying these choices inde-
pendently we can cause ((n —2)/r)" distinct cuts to become
the (unique) min-cut of this graph. In other words, if we are
given k = 2r parameters we can force up to (2(n — 2)/k)*/?
distinct minimish cuts, as compared to the O(n"™') upper
bound.

One might object that the individual cost functions we
are using are not “fair” since each cost function individually
fails to connect the graph using its positive-weight edges.
However, we can eliminate this objection by adding an in-
finitesimal cost to every zero-cost edge without changing the
argument above (or the resulting min-cuts).

Just like our upper bound, our lower bound is based on
an interleaving of permutations. Each of our k geometric
weight functions defines a permutation (order by weight) on
its edges; our choice of multipliers for the individual criteria
the determines how those permutations interleave.

While our bound is meaningful for large k, it is useless
for k£ < 6. A small tweak on the above construction, adding
an n-vertex path from s to t, can improve the 5-criterion
bound to Q(n?). But for 2-4 criteria we have no interesting
separation from the single criterion case better than k(%)
(achieved by combining k distinct cycles).

4. PROBLEM GENERALIZATIONS

Our analysis above uses nothing about the specifics of
the problem being solved; it relies only on an argument that
the Contraction Algorithm “succeeds” with some probability
and can be interleaved to run on parametric problems. Thus,
any use of the Contraction Algorithm for a standard single-
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parameter problem has an immediate extension to paramet-
ric problems:

THEOREM 4.1. Let S(c) be a particular set of “interest-
ing” cuts, such as the min-cuts, of an n vertex graph G with
edge cost function c. If every cut of S(c) is output by the
Contraction Algorithm with probability 1/N, then the size of
S(c) is at most N. Furthermore, given a linear parametric
cost function Y pici(e) over k positive criteria c;(e), the to-
tal number of cuts in S(c) over all nonnegative values u; is

at most (nszl) N.

PrOOF. The proof of this theorem follows the analysis
of Section 2. We showed that there are (";:f;l) distinct
interleavings, and that for any particular u;, one of those
interleavings corresponds to the permutation we would get
running the Contraction Algorithm with cost Z pic; where
each cut of S(c) is output with probability 1/N. [

COROLLARY 4.2. Given a k-parameter cost function the
number of cuts of value o times the min-cut (at some pa-
rameter value) is O(n*~172%).

ProOOF. For the single-parameter problem the Contrac-
tion Algorithm yields any a-minimum cut with probability
Q(n~2*) [KS96]. O

COROLLARY 4.3. Given a k-parameter cost function the
number of r-way minimish cuts is O(n*~1+2)

ProOOF. For the single-parameter problem the Contrac-
tion Algorithm yields any c-minimum r-way cut with prob-
ability Q(n™2") [KS96]. O

COROLLARY 4.4. Given a k-parameter cost function the
number of a-times minimish r-way cuts is O(n2*r~HDFE=1)

PROOF. For the single-parameter problem the Contrac-
tion Algorithm yields any a-minimum r-way cut with prob-
ability Q(n~2¢("=1)) [KS96]. O

COROLLARY 4.5. Given a k-parameter cost function the

number of a-times minimish hypergraph minimum cuts is
O(2arn2a+k—l)

ProOOF. Kogan and Krauthgamer [KK15] proved that with
a single parameter cost function each c-minimum hyper-
graph cut is found by the Contraction Algorithm with prob-
ability Q(27*"n™2%). O

Our final corollary is about the generalization of the min-
cut problem to matroids. In a matroid, a quotient is the
complement of any closed subset of the matroid (in partic-
ular, a cut of the graphic matroid). The minimum quotient
is the quotient of minimum cardinality (or total weight, if
each matroid element is given a weight). The Contraction
Algorithm outputs any particular minimum quotient of an
m-element rank-r matroid with probability 1/mr [Kar98|.

COROLLARY 4.6. Given a k-parameter cost function the
number of minimish quotients of an m-element rank-r ma-
troid is at most m*r.

S. BASIC ALGORITHMS

We have used an algorithmic thought experiment to count
cuts, but now that we know this number is polynomial, we
can use the same algorithmic idea find them all. We’ve



proven that choosing random permutations for each param-
eter and considering all interleavings outputs each minimish
cut with probability (7). Since there are O(n**") such
cuts, doing this O(kn?logn) times will select all minimish
cuts with high probability. Each trial requires generating in-
dividual permutations m; then attempting all interleavings.

For the thought experiment we could vague about the out-
put of our algorithm, settling for a description of algorithms
that “encounter” every potentially minimish cut with high
probability. For certain search applications this may be suit-
able. For example, we may have an application that seeks a
certain cut that it knows will be minimish, but that it can
identify by other means if given the cut.

But for the problem of listing or accurately counting the
minimish cuts of a particular graph, what we have so far is
inadequate. We enumerate a set that includes all the min-
imish cuts, but some of them might not actually be min-
imish. So in addition to implementing the generation of all
candidate cuts, we explain how to determine which of the
cuts we visit actually is minimish, which enables us to count
or list only the minimish cuts.

In this section, we give basic algorithms both for enu-
merating the candidate minimish cuts and for determining
which of them actually do become minimum for certain pa-
rameters. In Section 7, we give better but more complex
algorithms. We summarize here the runtimes we will ulti-
mately achieve:

THEOREM 5.1. For 2 parameter linear costs the O(n?®)
minimish cuts can be enumerated in O(ny/m) time.

THEOREM 5.2. For 8 parameter linear costs the O(n*)
minimish cuts can be enumerated in O(n*log®n) time, and
for 4 parameter linear costs the O(n5) minimish cuts can be
enumerated in O(n°logn) time.

THEOREM 5.3. For k > 5 parameter linear costs it is pos-
sible to enumerate a set containing all O(n**1) minimish
cuts in O(n*+1logn) time. Enumerating only the minimish
cuts in this set can be done in O(kK*mn'™*) time via Ellip-
soid or in O(k(nlogn)?T*) strongly polynomial time.

Note the odd fact that for 3 and 4 parameters our time
bound is nearly optimal with respect to our bound on the
number of cuts—we cannot hope to improve it significantly
without improving the cut counting bound. For 2 and 5
or more parameters, we are off by factors of \/m and m
respectively for different reasons we discuss below.

5.1 On the Input Size

There are some choices in defining the input size. The
graph has some number of edges, and we could define m
to be this quantity. But each edge can have up to k dis-
tinct costs associated with the different parameters. In a
“sparse” representation, however, we might only represent
the nonzero costs on each edge. We allow this sparse rep-
resentation and define m to be the total number of nonzero
coefficients over all the edges. The input will have this size
when we record each nonzero cost coefficient explicitly. A
natural way to do this is to use a distinct parallel edge for
each distinct criterion in the parametrized function. We can
still sum edges bearing the same criterion, but the graph
may now have as many as kn? distinct edges.
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There might be cases where the input problem can be
smaller because coefficients are represented implicitly. Re-
gardless, when k is a constant, there is no asymptotic differ-
ence from the standard edge count.

5.2 A Basic Interleaving Algorithm

We begin with a direct implementation of the abstract al-
gorithm used to bound the number of minimish cuts. Given
the permutations m;, only n edges in each m; can actually
matter as the others are contracted by the time we encounter
them in the permutation. Which n edges these are can be
determined by contracting the edges of m; alone in order,
i.e. by running an instance of the standard one-parameter
contraction algorithm. This is equivalent to computing a
minimum spanning tree on the edges of the permutation, so
can be solved over all k parameters in O(ma(n)) time using
Kruskal’s algorithm (since the edges are already sorted) or
O(m) time with more sophisticated ones [KKT95].

Having thinned each permutation to n edges, we try all
O(n*~1) interleavings of the thinned permutations. For each
of the O(n*') lengths of prefixes of the first k— 1 permuta-
tions, we collect all the edges in those prefixes and compute
connected components to contract G in O(m) time. We then
contract enough of the final permutation to give us 2 ver-
tices which correspond to the cut. In this case we need only
the ending cut defined by the largest MST edge and not all
the edges that matter in the contraction, so we can find it
using binary search instead of a full MST algorithm. This
gives a total of O(mnkil) time per trial. We must perform
O(kn?log n) trials to find all minimish cuts with high proba-
bility, for total work of O(kmn**' logn). Similar algorithms
apply for the various generalized problems.

This enumeration time bound is a factor of km logn greater
than our bound on the number of minimish cuts. In Sec-
tion 7, we show how to eliminate most of this factor.

5.3 Winnowing Candidate Cuts

Our interleaving algorithm has output a set of linear cost
functions S such that whatever the minimum cut value is
at some parameter setting, it is achieved by a function in
S. But the converse need not be true: some functions in S
might never be minimum. To output (only) the minimish
cuts, we need to identify the functions that do become min-
imum at some parameter setting. Note that any minimum
over S is minimum over all cuts with high probability given
our proof that the minimum cut is in S for all parameters.

Consider the k-dimensional polytope P consisting of all
parameter vectors p for which the minimum cut in G exceeds
1. This polytope is frequently described as the intersection
of 2”71 constraints, one for each cut in G, which requires
that the parametric value of that cut be at least one. How-
ever, we have previously given an algorithm that enumerates
aset S of O(n**!) cuts that contains all minimish cuts—i.e.,
all cuts that can be minimum under some parametrization.
Thus, if any cut in the graph has value below 1, some cut
in S will have value below one. Conversely, to ensure G has
minimum cut 1, it is sufficient to require that every cut in
S have minimum cut 1. In other words, the polytope can
be written more simply as the intersection of the constraints
defined by the cuts in S. This means that this polytope has
O(n**1) facets.

We wish to select all the minimish cuts out of S. A cut
C € S is minimish if there is some parametrization p for



which C becomes a minimum cut. We can scale this y so
that the value of C' is 1 while that value of every other cut is
at least 1. This gives us a point p that is in P that is tight for
the constraint that the value of C is at least 1. Conversely,
any cut C for which such a point p exists is a minimum cut
for that value of p and therefore a minimish cut.

In summary, we have reduced the problem of selecting
minimish cuts from S to that of determining, for each S,
whether there is some p € P which assigns value 1 to C.
Equivalently, we can see this as the problem of minimizing
the value of C over the polytope P.

Since we are dealing with a set of linear constraints, we
can solve this problem using linear programming. We have
a polynomial number of constraints—one constraint per cut
for a total of O(n**!) constraints—so can use any polyno-
mial time linear programming algorithm. Better, since our
problem involves only k variables p;, we can makes use of al-
gorithms optimized for fized dimension linear programming.
The currently best [HZ15] takes 2°0VFI N time to solve a lin-

ear program with N constraints, so takes 20(VE) pEHL time

per candidate cut in our problem. We need to apply it
to every candidate cut, yielding an overall time bound of
20(VE) 2(k+1) time,

5.3.1 Linear Winnowing via Ellipsoid

We can get a better runtime by leveraging the FEllipsoid
Algorithm [GLS88] which copes well with large numbers of
constraints.

The Ellipsoid Algorithm can find a feasible point in a poly-
tope given a separation oracle. The separation oracle, when
given a query point (value of u) outside the polytope, must
return a constraint that is satisfied by all points in the poly-
tope but not by the query point.

Given such a separation oracle, Ellipsoid will find a fea-
sible point in a k-dimensional polytope if one exists, using
O(K?L) calls to the separation oracle, where L is the num-
ber of bits in the coefficients of the constraints defining the
polytope. In our particular application, given the constraint
C' corresponding to the cut that we wish to test, we seek a
feasible point in the polytope P N C. The coefficients in the
constraints are simply the ¢;(e).

Since we have an explicit listing of the polytope’s con-
straints S, there is an immediate separation oracle—to check
for violated constraints. But we can do far better by return-
ing to the origins of P as the cut polytope. A point not
in P is a p which either violates C' or produces a graph
whose minimum cut is less than 1. We can directly check
whether C is violated; if it is not then we can look for a
cut in G of value less than 1 given the parameters p. This
can be done by finding a minimum cut in G, which can be
done in O(mlog®n) time using a randomized algorithm of
Karger [Kar00] after we spend O(m) time computing the
numeric value of edges given the parametrization p. This
is much faster than testing each cut in S explicitly. Once
we have the violating cut X we can compute its parameter
vector © = 3 c(e) in O(m) time; the constraint = - u is
the separating hyperplane we return to the oracle.

It follows that we can check whether any cut in S is min-
imish in O(k*mlog®nlogU) time, where U is the ratio of
maximum to minimum value of the coefficients ¢;(e). Since
we have bounded the number of minimish cuts by O(n***),
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this yields an O(k*mn'**) time bound for enumerating all
minimish cuts.

While Ellipsoid is significantly faster then naive linear pro-
gramming, it is not strongly polynomial. In section 7, we
will give a more complicated algorithm that nearly matches
the Ellipsoid approach and is strongly polynomial.

5.4 Algorithms for the Generalized Problems

Our algorithms apply to the generalizations of Section 4
with caveats. For r-way cuts, which we find using an early
halt of the Contraction Algorithm [KS93], the application to
minimish cut counting is immediate and we achieve similar
time bounds to 2-way cuts for all values of k. We can im-
plement the candidate enumeration algorithm as before and
apply linear programming to winnow candidates. The ex-
plicit LP approach is unchanged. For Ellipsoid, we no longer
have a linear-time separator oracle, but the Recursive Con-
traction Algorithm can be used to solve the minimum r-way
cut problem and provide a separator oracle in O(n?") time
for an overall time bound of O(n?"nF~1*27) = O(pk=1+47),

We can similarly enumerate a-minimish cuts. Again, to
enumerate candidate cuts, we use the standard Contrac-
tion Algorithm in the single parameter case with an early
halt) [KS93] to enumerate all candidate cuts. The Ellipsoid
algorithm also applies: given a candidate cuts, we can write
a linear program seeking a setting for p that makes the value
of that cut less than « while the minimum cut is at least 1.
Again, we use a a suitable cut algorithm as a separation ora-
cle. This gives a bound of O(mn?***~1) time to enumerate
o-minimish 2-way cuts using the linear-time min-cut ora-
cle and O(n?"n?*("=Y+k=1) time to enumerate a-minimum
r-way cuts using the Recursive Contraction Algorithm.

For hypergraph cuts and matroids, our techniques apply
in general but certain details change—for example, it is no
longer true that the number of (hyper)edges can be bounded
by n?. This worsens our time bounds somewhat. Details will
be provided in the full paper.

6. NONLINEAR PARAMETRIZATIONS

Although it is presented with k parameters, the linear
parametrization we have been considering actually offers
only k — 1 degrees of freedom, since Y p; can always be
scaled to 1 without changing the set of min-cuts. Thus, our
nk~1 (’;) bound shows one factor-n increase in minimish cuts
per degree of freedom. We prove this more generally. Con-
sider, for example, counting the set of minimish cuts under
parametric weights co(e) + t - c1(e) + t>ca2(e). The above
analysis can only treat t and t? as two entirely independent
parameters and derive a bound of O(n*) minimish cuts. But
we will now prove that there are O(n?).

THEOREM 6.1. If every edge cost is a degree-k polynomial
in t with positive coefficients, then as t ranges over the pos-
itive reals (and the positive-cost edges span G) the number
of distinct minimish cuts is O(kn®) and they can be output

in O(kn3y/m) time.

6.1 Constructing Weighted Permutations

To prove the theorem we start with the 2-parameter case.
In order to analyze this case, we consider a specific method
for generating the Contraction Algorithm’s weighted per-
mutations based on a Poisson process. This idea, of defin-
ing order via a Poisson process, was used by Lomonosov



and Poleskii in their analysis of network reliability [Lom94].
Given a graph with edge weights c(e), we build a weighted
permutation by generating a score s. for edge e distributed
exponentially with rate c(e), and then sorting edges by in-
creasing score. In other words, Pr[s. > t] = e~ °*. Equiv-
alently, we can generate s. by generating an independent
exponential variable z. distributed as Pr[Z > t] = e, then
set se = ze/c(e).

It is well known [Fel68] that in such a Poisson process, the
first edge in the order is edge e with probability proportional
to c(e). Furthermore, the remaining edge ordering is “mem-
oryless”: conditioned on the identity and score of the first
edge, the (additional) scores of the remaining edges are once
again exponentially distributed with the same rates. Thus,
the order of edges by score satisfies exactly the properties
we demand of the weighted permutation for the Contraction
Algorithm.

Given the permutation based on the scores, we implement
the Contraction Algorithm by going through the edges in
score order and contracting each edge that does not form
a self loop, stopping when we have contracted to two ver-
tices and the next edge we contract would reduce to one.
This is equivalent to running Kruskal’s minimum spanning
tree algorithm (on edge scores, not weights) up to the fi-
nal (largest) MST edge. In other words, the cut defined by
scores is precisely the cut produced by taking the MST of
the scored edges, then removing the edge of largest score.

6.2 Counting Interleavings

To apply this idea to the parametric problem, we consider
our quadratic-parametrized graph as a union of three graphs
G; where G; has edge weights c;(e) which are then multi-
plied by t*. For now, assume each G; is connected. As just
described, we generate an independent exponential variable
zi,e for each edge in G;, then divide it by tici(e) to yield the
properly weighted score, $;.. = ziye/tici(e). Sorting by these
si,e produces a weighted permutation of the edges of each
G, all interleaved to form the complete permutation.

We seek the cuts defined by contracting in the permuta-
tion order, as we vary the parameter ¢. Varying ¢ does not
affect the z; . but does change the scaling of each z;. by
the relevant t‘. Notice, however, that varying t does not
change the order m; of edges in a single G, since each edge
is scaled by the same quantity t°. So the order of edges in G;
is determined by the quantities z;,e/c;(€). This immediately
tells us that any edge of G; that is not in the MST of G;
also cannot be in MST(G), since such an edge will always
be spanned by a path of lower-score edges in GG;. Thus, as in
the linear case, we can immediately discard all but n edges
of each ;. However, as we vary t, the interleaving of the m;
will change, so MST(G) is some combination of edges from
the MST(G;).

We now assess the number of permutations that emerge
starting at a large value of ¢ and slowly reducing ¢ to O.
As discussed above, the cuts correspond to minimum span-
ning trees defined by the scores, so we will actually assess
the number of distinct minimum spanning trees that emerge
as the parameter ¢ varies. The scores s;. for edges in G;
are O(1/t"). So for sufficiently large ¢, all scores in G2 are
smaller than those in G1 and G, which means that all edges
in G2 precede all edges in G; and G2. Thus, the MST of
G is just the MST of G2 (which is unchanging as t varies
since all edges of G2 vary proportionately). As we shrink
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t, the edge weights in Gy are unchanged, while the edges of
G1 grow past them, and the edge weights of G2 grow even
faster to ultimately pass those of G.

Intuitively, as t shrinks the edges of G2 in the MST will
slowly be replaced by edges of G1 and then edges of Gy (as
t — 0, the MST of G must ultimately become the MST of
Go). Since there are only n — 1 edges in the MST of G,
which can be replaced by only n — 1 edges of the MST of
G1 and then by n — 1 edges of the MST of Gy, this suggests
that there can be only 2n — 2 changes to the MST. But we
need to be a little bit careful, as it seems possible for an edge
to leave and re-enter the MST several times as other edges
pass it in opposite directions.

We therefore define the potential of edge e € G; to be
i, and define the potential of the (current) MST to be the
sum of potentials of its edges. The MST potential is at
most 2n — 2 and at least 0. We will show that each change
to the MST decreases the potential by at least 1, which
demonstrates that there can be only 2n — 2 changes to the
MST.

As t shrinks, the MST changes whenever some edge leaves
the MST and another enters to replace it. The entering edge
creates a cycle with the leaving edge, which breaks the cycle
when it leaves. At this moment of transition, the edges are
(both) the maximum score edges' in this cycle—this is the
red rule which says that an edge is excluded from the MST
iff it is the largest edge on some cycle [Tar83]. The leaving
edge must be increasing faster than the entering edge as t
decreases. So if the leaving edge is in G;, the entering edge
(with a more slowly increasing score) must be in some G;
with j < i. In other words, the new MST edge has lower
potential than the old. This demonstrates our claim, that
every change in the MST decreases its potential.

It follows that there are at most 2n changes to the MST.
This means that at most 2n distinct cuts are defined by
the interleaving as we vary ¢. Continuing the argument as
in the basic analysis, we conclude that the total number of
minimish cuts is at most 2n - (3) = O(n?).

We initially assumed for simplicity that each G; was con-
nected, but as before it is only necessary that the combined
graph be connected. If the G; are not connected, their mini-
mum spanning forests will simply have fewer edges and thus
fewer edge crossings than our analysis pessimistically as-
sumed. Equivalently, we can add connecting edges to these
graphs with infinite scores so they never enter the MST.

6.3 Generalization

There is a clear generalization to higher degrees. For a
degree-k polynomial parametrization, where our basic anal-
ysis would suggest a bound of O(n***) min-cuts, our new
potential-function analysis shows that the number of min-
imish cuts is O(kn®). And it generalizes beyond polynomi-
als: the only fact we used was that the different additive
terms in the parametric function had a consistent order by
rate of increase. In other words, any parametric function of
the form S | ¢;f;(t) for positive ¢; and f; yields O(kn®)
minimish cuts so long as each ratio f;(¢)/f;(t) is monotonic,
since this ensures that when we consider the graph as a union
of k evolving graphs, two edge scores can only cross once as

! As is usual, we can use lexicographic tie-breaking to ensure
that no 3 edges tie in value. Although in this case that is in
fact unnecessary, as one can show that the probability that
the random edge coefficients yield a 3-way tie is 0.



t changes. Equivalently, the quantities f;(t)/f;(t) must be
non-crossing, where f’ is the derivative.

As another application of this generalization, notice that
each edge could have its own, arbitrary parametric capac-
ity function ce(¢). So long as the monotonicity criterion just
given holds—that for any pair of edges e and f, the function
ce(t)/cy(t) is monotonic—we are in the situation of the pre-
vious paragraph but with m distinct functions. A corollary
follows:

COROLLARY 6.2. Suppose the capacities of edges e on graph

G are arbitrary nonnegative functions ce(t) such that for ev-
ery pair of edges e and f the function ce(t)/cs(t) is mono-
tonic. Then as t varies, the number of distinct cuts of G
that become minimum is at most mn(g)

PROOF. Our analysis above derived an O(kn (%)) bound
for k classes of “once-crossing” edge functions. Here we sim-
ply think of each edge as forming its own class, so k = m.
In more detail, we run the Contraction Algorithm where
permutation score for edge e is se/cc(t) where s. is an in-
dependent exponential random variable. The permutation
changes as we vary the ¢ (and thus the c.(t), but the mono-
tonicity of the ce(t)/cs(t) means two edge scores only cross

once. Thus our analysis is the same as before. [

6.4 Enumerating Interleavings

Our proof has a straightforward algorithmic implication.
As in the linear case, we first need to efficiently enumerate all
the candidate cuts that arise during interleavings, and then
determine which of these cuts actually becomes minimum
for some value of the (single) parameter.

To enumerate minimish cuts, we need to track the MST as
it evolves with changing ¢, and in particular the two pieces
it forms when the heaviest edge is removed. These define
the candidate minimish cuts. The MST depends only on
the relative order of edges, not their values. Thus, it is
sufficient for us to track changes in the edge order as t varies,
and recompute the MST each time the order changes. The
bound on the number of changes was the core of our bound
on the minimish cuts.

We can track the order of edges using a “sweep line” method
from computational geometry, which was used by Sarnak
and Tarjan [ST86] in a point location data structure. The
key observation is that ordering changes are local: they oc-
cur through the exchange of two adjacent edges in the order.

We thus start with edges ordered as they should be at ¢t =
oo (breaking ties in any consistent way). We then compute,
for every edge, the time at which its numeric value crosses
each of its neighbors’. The first crossing time (over all edge
pairs) is the first time the MST changes. At that moment,
we can compute the implied cut and its value. We also swap
the edges whose order has switched.

Determining the next crossing requires a scan of the edges,
and so does computing the value of the implied cut. Thus,
we can find and assess each cut in O(m) time, yielding
an overall time bound of m times our bound on the num-
ber of MST changes. For example, under the quadratic
parametrization all n interleavings can be found in O(mn)
time. This yields a bound of O(mn?) to find the (possible
n?®) candidate minimish cuts.

It seems excessive to spend m time identifying each cut,
and we can speed up part of the work. In addition to storing
the edges in order, we can store neighboring edge pairs in a
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priority queue keyed by crossing time. Extracting the next
crossing time takes O(logn) time; computing the crossing
times for the new neighbors also takes O(logn) time. Having
identified the necessary ordering changes in O(logn) time,
we can invoke a dynamic MST data structure [HALT01] that
can maintain an MST during edge insertions and deletions
at a cost of O(log?n) per insertion or deletion. We use the
rank of each edge in the array as the key for this MST data
structure; when two edges cross, we delete them with their
old ranks and insert them with their new ranks.

In summary, we have shown how to maintain the evolving
MST that corresponds to our candidate minimish cuts at a
cost of O(log? n) per minimish cut (plus an O(m log? n) cost
to insert the initial neighbor pairs). But to assess the cuts
values, we also need to sum the values of the edges crossing
the cuts. Naively, this will take O(m) time per cut.

6.5 Faster Interleaving

We can improve the interleaving step by using a contrac-
tion batching technique. We have just shown how to identify
the sequence of MST changes—each an insertion and dele-
tion of one edge—that defines the cuts we need to evaluate.
Consider a series of d of the changes. From the starting MST
we delete only d edges, which means that over the course of
the d deletions, the remaining MST edges are never deleted.
Thus, before we consider this sequence of changes, we can
contract all the undeleted edges, leaving us with a graph
that has only d + 1 vertices. By merging edges we can also
ensure that the number of edges is O(d?).

We apply this idea recursively. Suppose we have an n
vertex graph with a given starting MST and we wish to
compute the (parametric) values of cuts creating during a
series of at most n changes. Divide the sequence of changes
into a first sequence of n/2 and a second sequence of n/2.
Construct the MST as it exists at the midpoint in O(m) time
by looking at the edge insertion and deletion times. We can
now solve two subproblems involving a starting tree and a
sequence of n/2 changes. As argued above we can contract
each problem to a size n/2 graph before we begin. This
yields a recurrence in n, the size of both the graph and the
number of changes, where T'(n) < 2(min(m,n?) 4+ T'(n/2)).

To solve this recurrence, note that in particular T'(m,n) <
kn?4-2T(n/2) = O(kn?). Looking more closely, observe that
at each layer of the recursion the number of subproblems
doubles while the work per subproblem remains m, until we
reach a layer where there are n/\/m subproblems of size \/m.
At this point our simpler O(kn?) bound gives an O(km)
bound on the work in each subproblem. This dominates the
prior work, yielding a total bound of O((n/\/m) - km) =
O(kn+/m) time per interleaving.

If our sequence contains some larger quantity d > n of
changes, we can break it up into d/n subproblems each with
n changes, compute the MST at each break-point, and apply
our algorithm for n changes to each subproblem from the
starting MST. This yields a runtime of O((d/n)nvkm) =
O(dvkm). In other words, we can evaluate the cut value
functions at a cost of O(v/km) time per cut. Thus, for ex-
ample, listing candidate minimish cuts with the quadratic
parametrization can be solved in O(n*vkm) time.

6.6 Winnowing Minimish Cuts

Our enumeration procedure produces a list of candidate
cuts, each with a quadratic function which sums the quadrat-



ics of the edges in the cut and represents the cost of the cut
as a function of the parameter t. We know that every min-
imish cut is in the set, but some of the cuts might not be
minimish. We need to determine which cuts truly become
minimum for some value of the parameter t.

For the case of quadratic parametrization, this is equiva-
lent to determining the lower envelope of the set of parabo-
las. For the single parameter problem, this can be done in
O(nlogn) time using a simple divide and conquer proce-
dure [SA95].

More generally, the time to find the lower envelope of n
curves is O(As(n)logn) where s is the number of times any
two curves may intersect (two in the case of our parabolas)
and As(n) is the maximum length of an (n,s)-Davenport-
Schinzel sequence. We have A\2(n) = O(n) which yields the
O(nlogn) bound we claimed. If we consider cubic func-
tions with 3 potential crossing per pair, As(n) = O(na(n)).
The quantity grows with larger s but remains very close to
O(n) [ASS89]. Thus, for any fixed s, the time to find the
lower envelope given the candidate cuts is dominated by the
O(ny/m) time we take to find the candidates.

7. FASTER INTERLEAVING

In Section 5 we gave bounds of roughly O(m) times the
number of minimish cuts for actually finding them. These
bounds were “balanced” in the sense that it cost us roughly
a factor m slowdown to enumerate each candidate cut and
also a factor of m to check if each candidate cut was actually
minimish using the Ellipsoid algorithm. In this section, we
give improved interleaving algorithms and in the following
we give improved winnowing algorithms. We show that for
all kK > 3 we can enumerate candidate cuts in O(1) time per
cut. Conversely, we show that for 2-4-parameter problems
we can winnow all candidates in O(1) time per cut. Combin-
ing these two facts gives us a faster enumeration algorithm
for 2-parameter cuts and a near-optimal (relative to the cut
bound) enumeration algorithm for 3- and 4-parameter cuts.
We also give a strongly polynomial winnowing algorithm to
complement our Ellipsoid-based approach.

7.1 On the Output Size

If we're going to beat a runtime of O(m) per cut, we
have to find a compact output representation. Outputting
a cut as a vertex partition or edge set will take time n or m
respectively. Thus, we focus simply on outputting the value
of a cut. Here, that value is not a number but a parametric
function, representing the sum of all the functions of edges
crossing the cut.

More precisely, the interleaving algorithms repeatedly con-
tract the graph to a pair of vertices. As vertices are con-
tracted, parallel edges can be merged by addition. Each
edge that we are summing carries a vector of k coefficients
representing its linear-parametric cost. Thus, when we fin-
ish contracting to a pair of vertices, we also have a single
edge connecting them, bearing a k-coordinate vector repre-
senting the cost of the selected cut as a linear function of the
parameters. It follows that the output of our enumeration
is a set S of k-dimensional vectors representing linear func-
tions. Our analysis has shown that with high probability,
for any possible (positive) setting of the parameters, one of
these linear functions defines the minimum cut of the graph
at that setting of the parameters.
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We may be concerned about outputting cuts more than
once. As was shown elsewhere [Kar94], we can “fingerprint”
each cut by assigning a random integer to each vertex, and
exclusive-or-ing the integers of any vertices we merge. A
cut (pair of vertices) now corresponds to a pair of integers.
With polynomial integers, the probability that two cuts get
the same fingerprint is negligible. Storing these fingerprints
in a hash table as we encounter them lets us output each cut
only once. This is useful if, for example, we wish to exactly
count the number of minimish cuts in a given graph without
spending the time to determine the vertex partition of each
cut.

7.2 Batched Interleaving

We can improve our naive interleaving algorithm by batch-
ing the contractions as we did in the quadratic parametriza-
tion. Suppose that in the 2-parameter problem we have
generated two permutations 7; and thinned them to n edges
each and wish to output the cuts corresponding to their in-
terleavings. The naive approach above required O(mn) time
for one permutation so O(mn?®logn) time overall.

As an alternative, we observe that in an n vertex graph,
each interleaving must perform at least n/2 contractions us-
ing either m or of m2. Thus, we can generate two recur-
sive subproblems by contracting a length-n/2 prefix of each
m;, then recursively output the cuts formed by interleavings
in the two subproblems. These contractions initially need
not decrease the number of edges below m, but as contrac-
tions occur we can merge parallel edges and bound the total
number of edges by O(nQ). ‘We also thin the interleavings
so their size is bounded by n. This leads to a recurrence
T (m,n) < min(m,n?) 4 2T(n/2).

We already solved this recursion for the nonlinear para-
metric problem; it yields T'(m) = O(ny/mlogn). This in
turn reduces the overall minimish cut enumeration time from

O(n®mlogn) to O(n®y/mlogn) = O(n*logn).

7.3 Four or More Parameters

With more parameters the same batching technique yields
an even better bound. Consider the 4-parameter problem on
a graph of n? edges (we skip over the 3-parameter problem
and return to it in Section 7.4). Choose a large integer q.
Given the four thinned permutations 7;, divide the enumer-
ation of all interleavings into subproblems, where a given
subproblem focuses on interleavings where the number of
edges contracted in each 7; is at least a;n/q and less than
(a; + 1)n/q for some integers a; with 0 < a; < ¢. Since the
total number of contractions to produce a cut is n — 2 we
must have > a; < ¢ and Y a; > g — 4, which means there
are O(g*) subproblems. For the subproblem indexed by a;
we know that there are at least a;n/q edges contracted from
each m; so we can contract this many before we recursively
explore the rest of the edges to contract. At this point we
know there remain at most n/q contractions to be done in
each m; to get a cut (2-vertex graph), which means the size
of the contracted graph is at most 4n/q. Thus we can dis-
card any graphs larger than this, then recursively enumerate
all cuts produced by contracting at most an additional n/q
edges from each ;. Doing this for all ¢> subproblems gives
a recurrence T(n) = O(¢®(n* + T(4n/q))). If we now set
g =n'* we find T(n) < kn'*/* 4+ n1/*T(4n**). By induc-
tion T(n) = O(n®) since the recursive term dominates.



We need to perform O(n?logn) iterations of this exper-
iment to find all cuts with high probability, for an overall
running time of O(n°logn). Relative to our O(n®) bound
on the number of 4-parameter minimish cuts, this suggests
we are producing each cut in nearly constant time. The same
technique applied to k > 4 yields an O(k*n*™'logn) time
bound for enumerating cuts with any k > 4 parameters.

7.4 The 3-Parameter Problem

Our recursive algorithm is near-optimal relative to our
counting bound for k > 4 parameters, but doesn’t quite work
for the 3-parameter case. We’d like to achieve an O(n?)
bound for a 3-parameter interleaving, which forces us to
set ¢ = O(1) in the analysis above. But this only yields
T(n) = O(n*"¢). Here we show how to remove the n° term.
This waste term arises from the basic recursive algorithm
because we solve certain subproblems multiple times. We
address this issue by memoizing the subproblems so that
each only needs to be solved once. The resulting algorithm
generalizes to any number of parameters, but is not worth
the added complexity for larger k since the simpler divide
and conquer algorithm is already near optimal.

We are analyzing a series of edge contractions. Note that
as we contract edges, some of the other edges in the 7; be-
come “inactive” since they spanned by the previously con-
tracted edges, so the edge’s endpoints are merged by the
time we reach it.

Consider the 3-parameter version of the problem. We are
given 3 permutations m; and generate a cut by contracting
some prefix p; of each of the 7; to produce a 2-vertex graph.
We will describe a “canonical” way to perform these contrac-
tions of the p; that will help us create them all efficiently.
We contract in batches whose sizes are powers of 2. Starting
with j = logn and decreasing, we consider each 7; in order.
For each m;, if contracting the remaining edges of p; will re-
duce the size of G by more than 27, then contract enough of
pi to reduce the size of G by ezactly 27.

Observe that by induction, after we execute the phase for
a particular value of j, the maximum amount by which con-
tracting p; can reduce the size of G will be 27. This is clearly
true when j = logn. In phase j, we know by induction that
the maximum possible reduction is 2971, If it exceeds 27
then we contract more of p;, reducing the size by exactly 27,
which means that the maximum remaining reduction is at
most 2971 — 27 < 29, Contractions done using the other per-
mutations can only further reduce the amount of “available
reduction” in the permutation we are considering, as some
of its edges become redundant self loops.

We’ve described the canonical order in which we contract
the p;. Using this idea, we show how to generate the graphs
that result from the canonical-order contractions of all n?
interleavings that yield the candidate cuts we want.

In particular, suppose that we have already generated all
the graphs and “residual prefixes” that arise after phase j+1
of the canonical contraction order for all interleavings we
care about. We show how to generate all the results of phase
j. Consider a particular interleaving with prefixes p; whose
graph at the end of phase j + 1 is H. This interleaving’s
canonical order now performs 0 or 2/ additional contractions
on each of the remaining p; in order. We do so, starting from
H, to produce a new intermediate result H'. We then go
through the remaining parts of the prefixes p; and remove
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any edges whose endpoints were already contracted, as these
are irrelevant.

We can bound the size of each intermediate result after
phase j. Note that in H’, each remaining p; can reduce
the size by at most 2/. Since by assumption the p; taken
together must reduce H' to 2 vertices, this implies that the
maximum possible size is of H' is 24+ 3 -2/ = O(2%). This
in turns means that the length of each p; is O(27). Also,
since we can merge parallel edges in H', we conclude that
the number of edges in H' is O(47).

We can also bound the number of intermediate results
after phase j. Naively, we have constructed each interme-
diate result by making three binary choices per phase over
log n—j phases; it follows that the total number of outcomes
is 23(logn) — j = n®/87. But the size of the remaining graph
is at most 327 as discussed above. Thus, we know that the
sum of the chosen powers of 2 must be between n — 3 % 27
(since we cannot contract less and get a graph of the correct
size) and n (since we cannot contract more). This means the
third value (total length of p3), which must be a multiple of
27 is essentially determined by the first two, which implies
that the number of combinations that satisfy this constraint
is O(n?/47).

How long does it take to construct these intermediate re-
sults? We have just argued that there are O(n?/47) interme-
diate results at the start of phase j. To generate the level-j
intermediate results that follow from a given one, we need to
try 8 possible combinations of 0 or 27 contractions of each p;.
Each starts from a graph of size O(27) which means that the
work of contracting (and computing the new graph with its
merged parallel edges and reduced p;) is O(47). Thus the to-
tal work for doing all the extensions is O(47-n*/47) = O(n?).
We can then discard all the results whose total size is greater
than the derived bound of 2/ (because these cannot be in-
termediate results that proceed to contract fully to yield a
cut).

In summary we have shown how to extend from each phase
§ +1 to phase j in O(n?) time. Thus, starting from phase
logn where the only result is the original graph and com-
puting to phase 0 where we have the results of contracting
any arbitrary set of prefixes to produce 2 results takes time
O(n*logn). Tt follows that the time to try this with the
O(n?logn) necessary random permutations is O(n* log® n),
a factor of O(log?n) greater than our O(n*) bound on the
possible number of 3-parametric minimish cuts.

8. BETTER WINNOWING

With near-optimum algorithms for enumerating candidate
minimish cuts, there is even more motivation to improve the
time to verify the candidates. In this section we describe two
approaches. Convex hull algorithms give near-optimal win-
nowing algorithms for 2-4 parameters. For larger k, we give
an algorithm that nearly matches the ellipsoid algorithm’s
time bound but is strongly polynomial, costing roughly n?
per candidate cut.

8.1 Convex Hulls

One way to winnow faster is to take consider the dual of
our cut polytope. Given our set S of candidate k-parameter
vectors, identifying the minimish cuts is equivalent to asking
which of the k-vectors in S are on the convex hull of S, since
one definition of a convex hull point is that it is a point
minimizing p -« over & € S for some p. In our problem, we



are also adding the requirement that ¢ > 0. To exclude cases
where pu; < 0, we choose a sufficiently large value M and,
for each standard basis vector e;, add the vector Me; to S.
Now whenever u; < 0 the quantity p-x will be minimized by
Me;, so any other z € S on the convex hull must correspond
toapu>0.

Convex hull algorithms have been studied intensively. For
2 and 3 dimensions (parameters) algorithms are known with
runtime N log N for N points [dBSvKOO00]. In our case, the
number of points is the number of candidate cuts, O(n?) for
2 parameters and O(n?) for 3 parameters, so the time to find
the convex hull (and thus the minimish cuts) is O(n> logn)
for 2 dimensions and O(n*logn) for 3 dimensions.

Our 4-parameter problem can also be solved this way. Any
parameter p making a given cut minimum can be scaled to
have coordinate sum 1 and still make the same cut min-
imum. Thus, we can add the constraint that > u; = 1
and reduce the dimensionality of our 4-parameter problem
to 3. In implementation, this means that we rewrite our
4-parameter cut function as a linear function of just 3 pa-
rameters cip1 + cap2 + c3pus + 04(1 — Q1 — H2 — U3, and
find the convex hulls of the resulting 3-coordinate vectors in
O(n®logn) time. This proves Theorems 5.1 and 5.2.

In higher dimension, the best known approach to con-
vex hulls is essentially the linear programming approach we
already described in Section 5. We used the Ellipsoid algo-
rithm to solve this problem quite quickly in Section 5.3.1.
It doesn’t match the linear speed of the 2- and 3-parameter
convex hull algorithms. However, an interesting advantage
of the Ellipsoid approach over the convex hull algorithms is
that it is incremental: given any one candidate cut, it can
determine whether it is minimish, and if so find a proof that
it is, in O(m) time. The convex hull algorithms require a su-
perset of all the candidate cuts in order to determine which
are actually minimish.

Our convex hull approach also applies to some of the gen-
eralized problems of Section 4. In particular for 2 to 4-
parameter problems we can use the convex hull approach to
get O(n* 2" /m) and O(n*T?" log? n) time enumeration al-
gorithms. It does not apply to the a-minimish cut problem
as some a-minimish cuts will not be on the convex hull of
the polytope—they’ll instead be “within o” of it. We can
still apply the Ellipsoid technique for a-minimish cuts.

8.2 Strongly Polynomial Winnowing

The Ellipsoid Algorithm provides a fast way to certify
minimish cuts. But one drawback is that it is not strongly
polynomial. Its runtime is affected by the number of bits
used to represent the input coefficients. Our lower bound
graph is an example of one that uses exponentially large
coefficients and would therefore require substantial time to
solve using ellipsoid. In this section, we give a slightly slower
but strongly polynomial algorithm.

We seek a parameter setting p* that makes a particular
cut C' minimum. Our approach comes in two parts. First,
we show that if we are able to get “close” to a valid p*, we
can find a set of O(n?) “important” cuts and find p* exactly
by linear programming over the resulting O(n?) constraints.
We then show how to get close to the desired p* by par-
titioning the parameter space into a small number boxes
(products of intervals) that are each sufficiently small.

Through this section, we will assume without loss of gen-
erality that the p* we are seeking sets the value of the mini-
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mum cut to 1, since we can always scale u* to change all cut
values proportionately. In fact, we will enforce this restric-
tion by adding a constraint Y u; = 1 to our linear program.

8.2.1 Rounding from a Close Guess

Our first insight is that if we are “close” to the value p*
which demonstrates a cut C' to be minimish, then we can
quickly find p*. In particular, suppose we are given a box
of ratio 1 + €, which is a set of k intervals [a;, ;] such that
a; < pix < B; and also Bi/a; < 14e.

Given the box, we can find p* as follows. At u* the cut C
is a minimum cut of value 1. As with the Ellipsoid approach,
the problem of finding p* is a linear program. Let T be the
set of other cuts that define tight constraints at p*. This
means the cuts of T are also minimum cuts of value 1 at
w*. Since within the box each p; can change in value by a
relative factor of at most 1 + ¢, we know that the value of
each cut can change by at most 1+ ¢, which means that the
minimum cut anywhere in the box is at least 1/(1 +¢€). At
the same time, we know that every cut in T takes on value
at most 1 + € everywhere in the box. It follows that at any
point in the box, every cut of T is a most (14 ¢)? times the
minimum cut.

In earlier work [Kar00], we showed that there are O(n?)
cuts of value less than 3/2 the minimum and they can all be
found in O(n?) time. Setting € = .2 so that (14 €)% = 1.44,
let us find this set of O(n?) cuts. By the argument above,
all cuts of T will be in this set of n? cuts that we find.
These cuts in T are sufficient to constraint p to its optimum
p*. Thus, if we solve our linear program, requiring that C
have minimum cut at most 1 while all the other cuts in S
have value at least 1, then the linear program will yield p*.
(We also include the constraints o; < p; < 3; in order to
force the solution to be inside our box). Thus, we can use a
constant-dimension strongly polynomial linear programming
algorithm [HZ15] to find the optimum in 200VF) 2 time.
Given the solution, we can verify that it does indeed make
C minimum in O(m) time using a standard minimum cut
algorithm [Kar00].

Notice that our procedure needs to give the linear pro-
gramming solver the constraints defined by O(n?) cuts. Con-
structing each constraint separately from the graph might
require O(m) time per cut to sum the parameter vectors of
all edges crossing the cut. Note, however, that we find these
cuts by executing a min-cut algorithm at some point in the
box. This algorithm necessarily computes the numeric costs
of (near) min-cuts as it is identifying the cuts; we can eas-
ily piggyback the summing of the edges’ parameter vectors
onto the summing of the numeric edge costs, taking at most
a factor k slowdown in the algorithm.

8.2.2 Making a Close Guess

We’ve just shown that once we are close to p* in relative
terms we can find p* in O(n?) time. We now show how to
get close.

It would be nice to do this for each cut separately, but we
haven’t yet found a way. Instead, rather than designing an
algorithm to verify each candidate cut separately, we return
to our original interleaving idea but produce a different in-
terleaving procedure designed to certify each cut as we find
it. We again consider our parametric problem as taking k
distinct graphs G; with edge costs ¢;(e) and combining the
k graphs with parameters p;. This time, instead of choosing



a random order and considering interleaving by rank in the
order, we order all edges in each graph by cost and use in-
terleavings to balance the numeric values of the interleaved
edges.

We will discuss our algorithm with respect to a particular
minimish cut C and describe an “oracle” that will identify
and certify C' by making certain guesses. This will show that
every minimish cut can be certified by trying all possible
combinations of guesses. We will then bound the number of
possible combinations of guesses which will bound our over-
all runtime for enumerating all minimish cuts. This will also
give an alternative (deterministic) proof of a bound on the
number of minimish cuts; however, it will be less tight and
more complicated than the randomized thought experiment
of Section 2.

So consider a particular minimish cut C' and let p* be
some setting of the parameters the makes C' a minimum cut
with cost 1 (we can always scale u* to make this last fact
true). Given this p*, define the effective cost of edge e € G;
to be pjci(e). This is the cost of e at parameter setting
u*. We will call an edge heavy if its effective cost exceeds
1 (the minimum cut) and light otherwise. For graph Gj,
define the pivot edge p; to be the minimum cost heavy edge.
This means that all edges with costs at or exceeding p; have
effective cost exceeding 1. We now posit that an oracle has
informed us of all the p;.

Note that if e is heavy it cannot cross the minimum cut.
To take advantage of this, we add the constraints p;-c;(p;) >
1 for each 4, which is true at p; by the definition of p;,
and we contract all heavy edges for any graph. We claim
that if we can make C' be a min-cut (of value 1) in this
contracted graph with the new constraints, then we have
made C minimum in G. To see this, suppose we have found
1’ that makes C' a min-cut of value 1 in the contracted graph.
This means C' is smaller than any cut in the contracted
graph. Any cut of G not in the contracted graph is missing
because a heavy edge crossing it was contracted. But we
added constraints forcing such heavy edges to have effective
cost 1; thus any cut with a heavy edge crossing will have
total cost at least 1 so will be larger than C.

We can therefore assume without loss of generality that
G has no heavy edges. In other words, p* induces effec-
tive cost at most 1 on every edge of G. We now subdivide
our cases further. We specify a series of shrinking intervals
[(1 —¢)", (1 —¢)"'] for integer powers r, and use our ora-
cle to guess which intervals contains the effective cost of the
heaviest uncontracted edge in G;. Recall also that ¢ = .2
from the previous section. We know that u* is in one of
these boxes since the effective cost of each edge is at most 1
by our contraction of heavy edges. Since each interval has
ratio (1 — €) between its endpoints, we can use the “round-
ing” algorithm of the previous section to find the optimum
p* in O(n?) time.

8.2.3 Bounding the Number of Guesses

So far we have defined an infinite space of intervals for
all integer r, which makes guessing difficult. But we now
argue that we can truncate our list of intervals at R =
O(e ' log(km/e)). We capture the entire remaining space
of i in a the single interval [0, (1 —€)®] = [0, e/km]. At this
value of R, the effective cost of every (uncontracted) edge
in G; is €/km. It follows that varying u; anywhere in this
interval changes any cut by a total value of m-¢/km = €/k,
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which means that even doing it for all k intervals changes
any cut by a total value of e.

We now reconsider the box algorithm of the previous sec-
tion. We used the fact that moving within intervals [(1 —
€)", (1—¢€)"*] does not change the value of any cut by more
than a (1+e) relative factor, so that we can find all important
cuts as near-minimum cuts. Our new argument shows that
in the “tail” interval [0, (1 — €)®], the minimum cut changes
by at most € in absolute terms. Since we have constrained
the minimum cut to be 1, this means that moving within
the tail intervals also does not change the minimum cut by
more than an e relative factor, so our box algorithm works
in these intervals as well.

We have now ensured a bound on the number of boxes.
Given our choice of pivots, we need to specify an appropriate
r between 0 and R for each parameter’s interval, yielding an
overall total of O(log" km) boxes.

How many choices of pivots are there? A naive answer
is m per parameter since we can choose any pivot edge.
But there is a better answer. When we choose a pivot, we
contract all edges of greater cost. But consider contracting
edges from most to least expensive. As we consider more
edges, only n of them cause a change in the graph. Be-
cause each contraction reduces the number of vertices by
1, all but n of edges in G; will be contracted at the point
we consider them as pivots. We can skip these contracted
edges—instead, the only pivots we need to consider are the
n edges of the maximum spanning tree of each G;. In other
words, there are only n* choices of pivots.

Putting this all together, we take n* choices of pivots.
For each choice, we consider O(logk km) boxes and, in each,
enumerate all 1.44-minimum cuts, solve a linear program in
20(:/E) n? time, and test the validity of the resulting solution
in O(m) time. Taken all together, this gives us a runtime of
20<‘/E)n2(nlog km)* = n*+2+°MW time for finding all nF*!
minimish cuts with k& parameters. This nearly matches the
O(mn'™") time bound of Ellipsoid, and is strongly polyno-
mial.

8.3 Algorithm Summary and Discussion

With these two sections on faster algorithms algorithms,
we have given bounds of O(n®\/mlog®n) for enumerating
2 parameter minimish cuts, O(n*log®n) for enumerating 3-
parameter minimish cuts, O(n5 logz) for 4 parameters, and
O(kanHk) for enumerating all k-parameter minimish cuts
when k£ > 5. For k > 5 we actually produce a superset of
candidate minimish cuts in O(n* logn) time which is near
optimal given our counting bound; however, our enumera-
tion bound is dominated by the hard work of constructing
the convex hull of the candidates in order to decide which
truly are minimish. For k < 4 the convex hull work is neg-
ligible.

For the 2-parameter problem, our O(n®/mlogn) time
bound to find the minimish cuts is a factor \/m larger than
our O(n®) bounds on the number of cuts. Why this odd out-
lier? For 3 or more parameters, the at least n” interleavings
we must consider for one set of permutations means that
the at least constant work per interleaving dominates the m
work we must spend to perform contractions according to an
interleaving. For 2 parameters, with only n cuts per inter-
leaving, this domination is incomplete, and the contraction
work takes us beyond the counting bound.



We are thus in a strange situation where for 3 and 4 pa-
rameters only, we can enumerate all minimish cuts in time
which is only a polylogarithmic factor times our bound on
their number—a nearly optimal result. For 2 or £ > 5 pa-
rameters, we seem far less efficient.

Although the original Contraction Algorithm [Kar93] used
O(mn?) time to enumerate all min-cuts, the Recursive Con-
traction Algorithm [KS96] was able to combine work from
the many iterations of contraction to reduce the overall run-
time to O(n?). Tt is an interesting open problem to achieve
the same speedup for our 2-parameter minimish cut algo-
rithm. The problem is that we need to explore all possible
interleavings, which interferes with the Recursive Contrac-
tion Algorithm’s re-use of partial contractions at high levels
of the recursion.

For k > 4, the dominant work is winnowing. Although
improving general convex hull seems difficult, our separator-
based linear program shows that we can exploit the special
structure of our particular problem. Perhaps this approach
can be refined further. In particular, it may be possible
to combine the Ellipsoid technique with our strongly poly-
nomial algorithm to get one that is both fast and strongly
polynomial.

9. DISCUSSION AND OPEN PROBLEMS

There are three obvious points of improvement in our re-
sults. First is the gap between the lower bound Q(n*/?)
and the upper bound O(n*™!) on minimish cuts with k-
parameter linear costs. The upper bound feels very natural
so we conjecture that the lower bound can be improved.
Second and third are the gaps between our bound on the
number of cuts and the time to enumerate them. We are
in the odd state of having an apparently optimal algorithm
only for the 3- and 4-parameter problems. For 2 and k > 5
parameters there are significant gaps.

For 2 parameters the excess factor of ﬁ in the time to
enumerate 2-parameter minimish cuts, O(n®y/m), as com-
pared to the number of minimish cuts, O(n?), arises from the
difficulty of interleaving two permutations efficiently. Once
given the O(n®logn) candidates from the interleavings, we
can winnow them in linear time. Thus, we seek a better
interleaving algorithm.

For k > 5 parameters the gap between the O(n count-
ing bound and the O(k*mn**1) enumeration bound is driven
entirely by the need to determine which in a set of candidates
is actually minimal. We are already leveraging the origins of
these vectors as graph cuts to solve the this problem quite
quickly using the Ellipsoid Algorithm; perhaps even more
could be achieved.

Aissi et al. prove that their bound of m"* (%) holds over
the entire parameter space for which c(e) > 0. We re-
quire more: our use of the Contraction Algorithm separately
with each ¢;(e) is only meaningful when each c;(e) > 0 and
each p; > 0. It is an interesting open question whether
our bounds can be extended to the case of negative cost
functions, or whether negative cost functions are truly more
complex. Note that in general the cost space considered by
Aissi et al. is a kK — 1-dimensional affine subspace of the m-
dimensional space of edge costs, intersected with the positive
orthant. For Aissi, any basis of k cost functions yields the
same cost space and the same bounds. We on the other hand
require expressing the parametric cost as a conver combina-
tion of nonnegative vertices of this polytope in order for our

k+1)
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results to hold. For k = 2 (the cost space is a line segment)
we can always find 2 vertices to serve this purpose (the end-
points of the segment). However, in higher dimension, the
number of vertices of the polytope can be much larger than
k, suggesting cases where our stronger bounds will not apply.

We considered the problem of linearly combining cost func-
tions. A related problem is to meet a bound on each cost
function separately. This is known as the multicritereon min-
cut problem. Armon and Zwick [AZ06] gave an O(mn?*)
time algorithm for the multicriterion feasibility problem:
finding a cut that meets specific bounds on each criterion
separately.

One can also consider enumeration of all multicriterion op-
tima. Given the k cost functions, each cut corresponds to a
set of k distinct costs, yielding a k-coordinate costs. The set
of all cuts defines a point set. Our work (and that of Aissi)
explore the lower envelope of this set—the interesting part
of its convex hull. Any points on this envelope achieves opti-
mality for some multicriterion objective. However, there are
also Pareto optimal cuts on the interior of this set, which
do not optimize any linear combination of costs but nev-
ertheless are non-dominated: there is no other cut better
than the given cut on all costs. They are thus multicriteria
optima for certain cost bounds. Aissi et al. give bounds
on the number of non-dominated cuts when there are two
cost functions, but leave open the question of counting and
enumerating such non-dominated cuts in general.

It is interesting to note that all the previous results on
multicriteria and parametric minimum cuts [Mul99, AZ06,
AMMQ15] relied on the fact that there are a small number
of (single-criterion) approzimately min-cuts. Our counting
proof (for minimish cuts) is the first that does not make
direct use of this fact. To bound (exact) minimish cuts,
it uses only the bound on (exact) minimum cuts. It does,
however, do so using the Contraction Algorithm which is the
source of the result on approximately min-cuts used by the
other work.

Mulmuley, in his prior work [Mul99] on min-cuts that
are parametrized linearly by a single variable relied like we
did on a connection between min-cut and minimum span-
ning trees; however, he explored it only for the case of low
bit complexity and a single parameter and derived weaker
bounds. Our work suggests that a deeper look at paramet-
ric minimum spanning trees might also shed further light on
parametric minimum cuts.

We studied multi-parametric linear functions, and also
gave a result on single parameter nonlinear parametric func-
tions. It is natural to explore the combination, of multi-
parametric nonlinear functions. Again, the majority of the
work seems to center on understanding the behavior of non-
linear multi-parametric spanning trees.
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