Switched Probabilistic I/O Automata

Ling Cheung1 \quad Nancy Lynch2 \quad Roberto Segala3 \\
Frits Vaandrager1

1Nijmegen Institute for Computing and Information Sciences \\
University of Nijmegen, the Netherlands

2MIT Computer Science and Artificial Intelligence Laboratory, U.S.A.

3Dipartimento di Informatica, Università di Verona, Italy

ICTAC 2004, Guiyang, China
Outline

1 Introduction
 - Basics
 - Randomization
Outline

1. Introduction
 - Basics
 - Randomization

2. The trouble with composition
 - What is parallel composition?
 - How much does the daemon know?
 - Global choice vs local choice
Outline

1. Introduction
 - Basics
 - Randomization

2. The trouble with composition
 - What is parallel composition?
 - How much does the daemon know?
 - Global choice vs local choice

3. Switched PIOA
 - The Switched PIOA model
 - Implementing parallel compositions
Outline

1. **Introduction**
 - Basics
 - Randomization

2. **The trouble with composition**
 - What is parallel composition?
 - How much does the daemon know?
 - Global choice vs local choice

3. **Switched PIOA**
 - The Switched PIOA model
 - Implementing parallel compositions

4. **Summary and future work**
 - Summary
 - Future work
To NIII Colloquium Attendees:

Thank you all for coming to my talk!
For this talk . . .

- We need very little probability theory: *discrete distributions.* Examples:
 - fair coin: \{⟨Head, \frac{1}{2}⟩, ⟨Tail, \frac{1}{2}⟩\};
 - fair dice: \{⟨i, \frac{1}{6}⟩ | 1 ≤ i ≤ 6⟩.\}
We need very little probability theory: *discrete distributions*. Examples:
- fair coin: \(\{ \langle \text{Head}, \frac{1}{2} \rangle, \langle \text{Tail}, \frac{1}{2} \rangle \} \);
- fair dice: \(\{ \langle i, \frac{1}{6} \rangle \mid 1 \leq i \leq 6 \} \).

Underlying model: nondeterministic automata with asynchronous composition.
(In our paper: input/output distinction, combination of synchronous and asynchronous compositions, etc.)
We need very little probability theory: *discrete distributions*. Examples:

- fair coin: \(\{\langle \text{Head}, \frac{1}{2}\rangle, \langle \text{Tail}, \frac{1}{2}\rangle\}\);
- fair dice: \(\{\langle i, \frac{1}{6}\rangle \mid 1 \leq i \leq 6\}\).

Underlying model: nondeterministic automata with asynchronous composition.
(In our paper: input/output distinction, combination of synchronous and asynchronous compositions, etc.)

Total order semantics: if both actions \(a\) and \(b\) occur, one must precede the other.
Schedulers and trace distributions

- History-dependent, randomized schedulers transform nondeterministic choices into probabilistic choices.

\[\{ \langle a, p \rangle, \langle ab, p(1-q) \rangle, \langle b, 1-p \rangle \} \]

Cheung, Lynch, Segala, Vaandrager
Schedulers and trace distributions

- *History-dependent, randomized* schedulers transform nondeterministic choices into probabilistic choices.

\[\begin{align*}
 a &\xrightarrow{p} b \\
 a &\xrightarrow{1-p} b \\
 a &\xrightarrow{q} 1-q \\
 a &\xrightarrow{1-q} 1-q
\end{align*} \]
Schedulers and trace distributions

- *History-dependent, randomized* schedulers transform nondeterministic choices into probabilistic choices.

- Each scheduler induces a *trace distribution*: a discrete distribution on finite traces.

\[
\{(aa, pq), (ab, p(1-q)), (b, 1-p)\}
\]
Nondeterministic parallel composition

\[P \xrightarrow{a} \quad Q \xrightarrow{b} \]

The interleaving axiom:

\[P \parallel Q \]

Cheung, Lynch, Segala, Vaandrager

Switched Probabilistic I/O Automata
Nondeterministic parallel composition

The *interleaving* axiom:
Probabilistic parallel composition

\[P \]
\[\downarrow \]
\[\uparrow \rightarrow \]
\[\rightarrow \rightarrow \]
\[a \]

\[Q \]
\[\downarrow \]
\[\uparrow \rightarrow \]
\[\rightarrow \rightarrow \]
\[b \]
Probabilistic parallel composition

What is a probabilistic behavior of $P\parallel Q$?

Quick answer: bias factor θ. Imagine a coin-flipping daemon.
What is a \textit{probabilistic} behavior of $P \parallel Q$? Quick answer: \textit{bias factor θ}.

\begin{center}
\begin{tikzpicture}
\node (P) at (0,0) {P};
\node (Q) at (2,0) {Q};
\draw[->] (P.north) -- +(0,0.5) node[fill=white] {a};
\draw[->] (Q.south) -- +(0,-0.5) node[fill=white] {b};
\end{tikzpicture}
\end{center}
Probabilistic parallel composition

What is a probabilistic behavior of $P \parallel Q$?
Quick answer: bias factor θ.
Imagine a coin-flipping daemon.
What is the value of θ?

\[P \parallel Q \]

- a with probability θ
- b with probability $1 - \theta$

Fixed θ: parameterized composition operator $\parallel \theta$.

Limitations: static parameter, not commutative, not associative.

Variable θ: a supply of coins with different biases; imaginary daemon chooses a coin based on his knowledge.
What is the value of θ?

Fixed θ: *parameterized* composition operator \parallel^θ.

\[\begin{array}{l}
 P \parallel Q \\
 \theta \quad 1-\theta \\
 a \quad b \\
 \end{array} \]
What is the value of θ?

Fixed θ: parameterized composition operator $P \parallel \theta$. Limitations: static parameter, not commutative, not associative.
What is the value of θ?

Fixed θ: *parameterized* composition operator $P \parallel Q^\theta$.
Limitations: static parameter, not commutative, not associative.

Variable θ:
- a supply of coins with different biases;
- imaginary daemon chooses a coin based on his knowledge.
How much does the daemon know?

There are two scenarios:
How much does the daemon know?

There are two scenarios:

Scenario 1: *context-independent*
How much does the daemon know?

There are two scenarios:

Scenario 1: *context-independent*

Scenario 2: *context-dependent*
Scenario 1: context-independent composition
How much does the daemon know?

Daemon, P and Q all inside a big black box.
Scenario 1: context-independent composition
How much does the daemon know?

Daemon, P and Q all inside a big black box.

Daemon knows the histories of P and Q, but nothing about the outside world.
Scenario 1: context-independent composition
How much does the daemon know?

Daemon, P and Q all inside a big black box.

Daemon knows the histories of P and Q, but nothing about the outside world.

Problem: non-associativity.
Non-associativity: $P\parallel(Q\parallel R)$

Context-independent composition

Inner daemon: $\langle R, 1 \rangle$.

\[
\begin{align*}
P & \quad a \downarrow \\
Q & \quad b \downarrow \\
R_c & \quad \begin{array}{c}
p \rightarrow \\
1-p \rightarrow \\
d \rightarrow \\
p \leftarrow \\
1-p \leftarrow \\
c \rightarrow \\
\end{array}
\end{align*}
\]
Non-associativity: $P \parallel (Q \parallel R)$

Context-independent composition

Inner daemon: $\langle R, 1 \rangle$.

Outer daemon: $\langle Q \parallel R, 1 \rangle$; if c, then $\langle P, 1 \rangle$, else $\langle Q \parallel R, 1 \rangle$.
Non-associativity: $P \parallel (Q \parallel R)$

Context-independent composition

Inner daemon: $\langle R, 1 \rangle$.

Outer daemon: $\langle Q \parallel R, 1 \rangle$; if c, then $\langle P, 1 \rangle$, else $\langle Q \parallel R, 1 \rangle$.

Result: $\{\langle cab, p \rangle, \langle dba, 1 - p \rangle\}$.
Non-associativity: \((P \parallel Q) \parallel R\)

Context-independent composition

Claim: \{\langle cab, p \rangle, \langle dba, 1 - p \rangle \} not possible!
Non-associativity: \((P \parallel Q) \parallel R\)

Context-independent composition

Claim: \(\{\langle cab, p \rangle, \langle dba, 1 - p \rangle\}\) not possible!

- **Outer** daemon: \(\langle R, 1 \rangle\).
Non-associativity: \((P \parallel Q) \parallel R\)

Context-independent composition

Claim: \{\(\langle cab, p \rangle, \langle dba, 1 - p \rangle\}\} not possible!

- **Outer** daemon: \(\langle R, 1 \rangle\).
- **Inner** daemon:
 \{\(\langle P, q \rangle, \langle Q, 1 - q \rangle\}\}.
Non-associativity: \((P \parallel Q) \parallel R\)

Context-independent composition

Claim: \(\{\langle cab, p \rangle, \langle dba, 1 - p \rangle\}\) not possible!

- **Outer daemon:** \(\langle R, 1 \rangle\).
- **Inner daemon:** \(\{\langle P, q \rangle, \langle Q, 1 - q \rangle\}\).

Cheung, Lynch, Segala, Vaandrager

Switched Probabilistic I/O Automata
Non-associativity: $(P \parallel Q) \parallel R$

Context-independent composition

Claim: $\{⟨cab, p⟩, ⟨dba, 1 − p⟩\}$ not possible!

- **Outer daemon:** $⟨R, 1⟩$.
- **Inner daemon:** $\{⟨P, q⟩, ⟨Q, 1 − q⟩\}$.
- **Conclusion:** inner daemon doesn't know enough.
Scenario 2: context-dependent composition
How much does the daemon know?

Daemon sees the outside world.
Scenario 2: context-dependent composition
How much does the daemon know?

Daemon sees the outside world.

Daemon knows the histories of P, Q and Env.
Scenario 2: context-dependent composition
How much does the daemon know?

Daemon sees the outside world.

Daemon knows the histories of P, Q and Env.

Problem: violation of the interleaving axiom!
I.e., there exists Env such that

$$(a \parallel b) \parallel Env \not\sim (a.b + b.a) \parallel Env.$$
Non-interleaving semantics
Context-dependent composition

\[(a \parallel b) \parallel \text{Env:}\]

\[
\begin{align*}
P & \quad a \\
Q & \quad b \\
\text{Env} & \quad c \quad d \\
 & \quad p \quad 1-p
\end{align*}
\]
Non-interleaving semantics
Context-dependent composition

\[(a\parallel b)\parallel \text{Env:}\]

\[(a.b + b.a)\parallel \text{Env:}\]
The (same) counterexample

Context-dependent composition

The trace distribution

$$\{\langle cab, p \rangle, \langle dba, 1 - p \rangle\}$$

is possible in \((a \parallel b) \parallel \text{Env}\), but not in \((a.b + b.a) \parallel \text{Env}\).
The (same) counterexample

Context-dependent composition

The trace distribution

\[\{\langle cab, p\rangle, \langle dba, 1-p\rangle\} \]

is possible in \((a \parallel b) \parallel \text{Env}\), but not in \((a.b + b.a) \parallel \text{Env}\).

Conclusion: we have a non-interleaving, but total order semantics.
What's wrong?

Something is wrong with our understanding of parallel composition.
What’s wrong?

Something is wrong with our understanding of parallel composition.

In context-independent composition, the problem shows up as non-associativity.
What’s wrong?

Something is wrong with our understanding of parallel composition.

In context-independent composition, the problem shows up as non-associativity.

In context-dependent composition, the same problem leads to difference between $a \parallel b$ and $a.b + b.a$.
Two types of nondeterministic choices: global vs. local

Global choice: $a \parallel b$, resolved by a daemon.

![Diagram of global choice](image)

Behavior varies depending on the perspective!
Two types of nondeterministic choices: global vs. local

Global choice: $a \parallel b$, resolved by a daemon.

Local choice: $a \cdot b + b \cdot a$, resolved by a local scheduler.

Behavior varies depending on the perspective!
Dissecting the problem, Part I: eliminate global choices.

To better understand the problem, we developed the model of *Switched PIOA*.

\[P \xrightarrow{a} . \]

\[Q \xrightarrow{b} . \]
Dissecting the problem, Part I: eliminate global choices.

To better understand the problem, we developed the model of Switched PIOA.

- active states (foreground) vs. inactive states (background);
Dissecting the problem, Part I: eliminate global choices.

To better understand the problem, we developed the model of \textit{Switched PIOA}.

- active states (foreground) vs. inactive states (background);
- control exchange via special actions (e.g. \textit{go}_P, \textit{go}_Q);
Dissecting the problem, Part I: eliminate global choices.

To better understand the problem, we developed the model of *Switched PIOA*.

- **active** states (foreground) vs. **inactive** states (background);
- **control exchange** via special actions (e.g. go\(_P\), go\(_Q\));

Every decision is made locally, so no more daemons.
Due to the absence of global choices . . .

Parallel composition in Switched PIOA:
- easy to define;
Due to the absence of global choices . . .

Parallel composition in Switched PIOA:

- easy to define;
- commutative and associative;
Due to the absence of global choices . . .

Parallel composition in Switched PIOA:

- easy to define;
- commutative and associative;
- deep/semantic compositionality of trace distribution semantics;
Due to the absence of global choices . . .

Parallel composition in Switched PIOA:
- easy to define;
- commutative and associative;
- deep/semantic compositionality of trace distribution semantics;

That’s all very nice, but parallel processes don’t really exchange control . . .
Dissecting the problem, Part II: reintroduce global choices.

- Control-exchange should not be taken semantically.
Dissecting the problem, Part II: reintroduce global choices.

- Control-exchange should **not** be taken semantically.
- Switch PIOA is an **implementation tool** for various composition operators.
Dissecting the problem, Part II: reintroduce global choices.

- Control-exchange should not be taken semantically.
- Switch PIOA is an implementation tool for various composition operators.

Examples:
- fixed bias factor θ;
Dissecting the problem, Part II: reintroduce global choices.

- Control-exchange should not be taken semantically.
- Switch PIOA is an implementation tool for various composition operators.

Examples:
 - fixed bias factor θ;
 - context-independent.
Implementing biased composition

Local schedulers: always return control after one local move.

Arbiter: usually schedule $\langle \text{go } P, \theta \rangle$, $\langle \text{go } Q, 1-\theta \rangle$; if final P then $\langle \text{go } Q, 1 \rangle$ and vice versa.

Examples:
$\langle \text{go } P, a, \text{final } P, \text{go } Q, b, \text{final } Q, \theta \rangle$;
$\langle \text{go } Q, b, \text{final } Q, \text{go } P, a, \text{final } P, 1-\theta \rangle$.

Cheung, Lynch, Segala, Vaandrager
Implementing **biased** composition

- Local schedulers: always return control after one local move.
Implementing *biased* composition

- Local schedulers: always return control after one local move.
- Arbiter:
 - usually schedule $\{\langle \text{go}_P, \theta \rangle, \langle \text{go}_Q, 1 - \theta \rangle \}$;
Implementing biased composition

- Local schedulers: always return control after one local move.
- Arbiter:
 - usually schedule \(\{ \langle \text{go}_P, \theta \rangle, \langle \text{go}_Q, 1 - \theta \rangle \} \);
 - if \(\text{final}_P \) then \(\langle \text{go}_Q, 1 \rangle \) and vice versa.
Implementing biased composition

- Local schedulers: always return control after one local move.
- Arbiter:
 - usually schedule $\{\langle \text{go}_P, \theta \rangle, \langle \text{go}_Q, 1 - \theta \rangle\}$;
 - if final_P then $\langle \text{go}_Q, 1 \rangle$ and vice versa.

Examples:
- $\langle \text{go}_P . a . \text{final}_P . \text{go}_Q . b . \text{final}_Q, \theta \rangle$;
Implementing biased composition

- Local schedulers: always return control after one local move.
- Arbiter:
 - usually schedule $\{\langle \text{go}_P, \theta \rangle, \langle \text{go}_Q, 1 - \theta \rangle\}$;
 - if final_P then $\langle \text{go}_Q, 1 \rangle$ and vice versa.

Examples:
- $\langle \text{go}_P \cdot a \cdot \text{final}_P \cdot \text{go}_Q \cdot b \cdot \text{final}_Q, \theta \rangle$;
- $\langle \text{go}_Q \cdot b \cdot \text{final}_Q \cdot \text{go}_P \cdot a \cdot \text{final}_P, 1 - \theta \rangle$.
Implementing context-independent composition

\[
P \xrightarrow{\text{go}_P} \text{Arb} \xleftarrow{\text{done}_Q} \xrightarrow{\text{final}_Q} Q
\]

\[
P \xrightarrow{\text{done}_P} \text{Arb} \xleftarrow{\text{final}_P} \xrightarrow{\text{go}_Q} Q
\]

Local schedulers: no scheduling restrictions ("run to completion").

Arbiter: if final \(P \) then \(\langle \text{go}_Q, 1 \rangle \) and vice versa.
Implementing context-independent composition

- Local schedulers: no scheduling restrictions ("run to completion").
Implementing context-independent composition

- Local schedulers: no scheduling restrictions ("run to completion").
- Arbiter: if final_P then \(\langle \text{go}_Q, 1 \rangle \) and vice versa.
To summarize . . .

- Parallel composition is trickier than we thought.
To summarize . . .

- Parallel composition is trickier than we thought.
- Switched PIOA is a probabilistic model without global choices.
To summarize . . .

- Parallel composition is trickier than we thought.
- Switched PIOA is a probabilistic model without global choices.
- Parallel composition in Switched PIOA is well-behaved.
To summarize . . .

- Parallel composition is trickier than we thought.
- Switched PIOA is a probabilistic model without global choices.
- Parallel composition in Switched PIOA is well-behaved.
- Switched PIOA can be used to study various “real” parallel composition operators.
Future work

- Philosophical: is there a “most intuitive” parallel composition operator?
Future work

- Philosophical: is there a “most intuitive” parallel composition operator?
- Technical: “decomposing” trace distribution semantics.

```
Trace Distribution → Trace Set

‖ ‖ ‖ ‖
↓ ‖ ‖ ‖
Trace Likelihood → Trace
```

Philosophical: is there a “most intuitive” parallel composition operator?

Technical: “decomposing” trace distribution semantics.
Future work

- Philosophical: is there a “most intuitive” parallel composition operator?
- Technical: “decomposing” trace distribution semantics.

```
Trace Distribution → Trace Set
          ↓   ↓
          ↓   ↓
Trace Likelihood → Trace
```

- Practical: modeling communication and/or security protocols in Switched PIOA.
Future work

- Philosophical: is there a “most intuitive” parallel composition operator?
- Technical: “decomposing” trace distribution semantics.

Trace Distribution \rightarrow Trace Set

\[\begin{array}{c}
\text{Trace Likelihood} \\
\downarrow \\
\downarrow \\
\downarrow \\
\downarrow \\
\text{Trace}
\end{array} \]

- Practical: modeling communication and/or security protocols in Switched PIOA.

– End –
Appendix

- Trace Set Semantics
- Trace Likelihood Semantics
- Getting Stuck
Trace Set Semantics

Loosely speaking, a trace distribution is a discrete probability distribution over the set of finite traces.
Trace Set Semantics

Loosely speaking, a trace distribution is a discrete probability distribution over the set of finite traces.

To go from trace distribution to trace set, we forget probabilities by:

\[\text{DiscDistr(Traces)} \xrightarrow{\text{support}} \text{Powerset(Traces)} \]
Trace Set Semantics

Loosely speaking, a trace distribution is a discrete probability distribution over the set of finite traces.

To go from trace distribution to trace set, we forget probabilities by:

\[
\text{DiscDistr(Traces)} \xrightarrow{\text{support}} \text{Powerset(Traces)}
\]

That is, schedulers return sets of possible transitions, rather than discrete distributions over possible transitions.
Trace Set Semantics: Example

Trace Set Semantics: Example

Add input e,f-loops.
Trace Set Semantics: Example

Add input e,f-loops.

Equivalent in semantics: trace.
Not equivalent in semantics: trace set, trace distribution, bisimulation.
Trace Set Semantics: Example

Trace set \(\{aec, afd\}\) not possible in Early'.

Consider the case in which: Early' chooses the left-hand branch; and environment performs \(f\).

At this point, Early' does not have the option to perform \(d\).

Important: Early' cannot choose between inputs \(e\) and \(f\).
Trace Set Semantics: Example

Trace set \(\{aec, afd\} \) not possible in Early'.
Consider the case in which:

- Early' chooses the left-hand branch; and
Trace Set Semantics: Example

Trace set \{aec, afd\} not possible in Early'.

Consider the case in which:
- Early' chooses the left-hand branch; and
- environment performs \(f \).

Cheung, Lynch, Segala, Vaandrager
Switched Probabilistic I/O Automata
Trace Set Semantics: Example

Trace set \{aec, afd\} not possible in Early'.
Consider the case in which:
- Early' chooses the left-hand branch; and
- environment performs \(f \).
At this point, Early' does not have the option to perform \(d \).
Trace Set Semantics: Example

Trace set \{aec,afd\} not possible in Early'.

Consider the case in which:
- Early' chooses the left-hand branch; and
- environment performs f.

At this point, Early' does not have the option to perform d.

Important: Early' cannot choose between inputs e and f.
What’s the lesson here?
What’s the lesson here?

It’s not about the numbers . . .
What’s the lesson here?

It’s not about the numbers . . .

Examples of ”undesirable” properties of trace distribution semantics can be reproduced in trace set semantics.
What’s the lesson here?

It’s not about the numbers . . .

Examples of ”undesirable” properties of trace distribution semantics can be reproduced in trace set semantics.

Key: each trace distribution contains a collection of traces, rather than a single trace.

In some cases, this allows us to observe branching structure.
An Alternative: Trace Likelihood Semantics

Each behavior is represented by a pair \(\langle \alpha, p \rangle \).
An Alternative: Trace Likelihood Semantics

Each behavior is represented by a pair $\langle \alpha, p \rangle$.

Intended meaning: under some scenario, trace α occurs with probability p.
An Alternative: Trace Likelihood Semantics

Each behavior is represented by a pair \(\langle \alpha, p \rangle \).

Intended meaning: under some scenario, trace \(\alpha \) occurs with probability \(p \).

Difficulty: what is a possible scenario?
An Alternative: Trace Likelihood Semantics

Each behavior is represented by a pair $\langle \alpha, p \rangle$.

Intended meaning: under some scenario, trace α occurs with probability p.

Difficulty: what is a possible scenario?

Frequentist probabilities: prediction about a large number of experiments, not about a single experiment.
Getting Stuck . . .

my current strategy:

- stop thinking, start reading;
Getting Stuck . . .

my current strategy:

- stop thinking, start reading;
- do something concrete: modeling oblivious transfer.