Computability Theory Of and With Scheme
Prof. Albert R. Meyer
MIT Computer Science & Artificial Intelligence Laboratory

More Scheme-based Texts
8. La programmation: une approche fonctionnelle et récursive avec Scheme, Arditi & Ducasse, 1996
9. Initiation à la programmation avec Scheme, Blanch, 2001
11. The Scheme Programming Language (2/e), Dybvig, 1996
12. How to Design Programs, Friedman, Feiher, Flew & Krishnamurthi
13. The Schemeers Guide (2/e), Ferguson w/Martin & Kaufman, 1995
14. The Seasoned Schemeer, Friedman & Felleisen, 1995
15. Exploring Computer Science with Scheme, Goldmeyer, 1994
18. Recueil de Petits Problemes en Scheme, Muette, Queinnec, Ribbens & Serre, 1999
20. Debuter la programmation avec Scheme, Rousette, Wypychowak, 1997

23. Les Langages Lisp, Queinnec, 1994

Schools using Scheme
• 154 colleges/universities in USA
 (50 for intro courses)
• 278 colleges/universities worldwide
• 51 secondary schools in USA
Rice/NE U. TeachScheme!
• Commercial education:

The Scheme Underground
... an effort to develop useful software packages in Scheme for use by research projects and for distribution on the net.
We want to take over the world. The internet badly needs a public domain software environment that allows the rapid construction of software tools using a modern programming language. Our goal is to build such a system using Scheme....

Today's Lecture
• Kernel Scheme: overview
• A rigorous, intuitive Scheme “Substitution” Model
• Theorems about Scheme
• Computability theory w/ Scheme
Scheme Expressions

Scheme has lots of parentheses :-)
• variables x, myage, factorial
• procedures +, cons, procedure?
 (lambda (x) <expr>)

Scheme Expressions

• if’s (if <test> <expr> <expr>)
• apply’s (<procedure> <args>)
 (factorial 3)
 ((lambda (func) (func 2 3)) +)

Scheme Expressions

• letrec’s
 (letrec ((x 1)
 (func +))
 (func x 5))
>> 6

Substitution

(letrec ((x 1)
 (func +))
 (+ 1 5))
>> 6

Substitution

(letrec ((x 1)
 (func +))
 (if (= 6 (func x 5))
 "done"
 x)))
>> "done"

Bindings & Lambda

(((lambda (y) (+ y 5)) 2)
 (letrec ((y 2)) (+ y 5)))
Applying lambda creates a binding -- of y to 2 in this example
Bindings & set!

(letrec ((y `dummy))
 (set! y 3)
 (number? y))

>> #t

Scheme Values

basic: 3 "done" #t `aaa
procedure: + cons
(lambda ...)
list: nil
(list <val> ...<val>)

Scheme Evaluation

Evaluation rules change an expression into another expression.
Expressions evaluate until a unique value is reached.

(if #f Texp Fexp) → Fexp
(if <non-#f val> Texp Fexp) → Texp

Redexes

A redex is an expression matching lefthand side of an evaluation rule.

Redexes of if-rules:

(if <value> Texp Fexp)

lambda Evaluation Rule

(((lambda (x) E) <val>))
 →
 (letrec ((x <val>)) E)
 new binding

Scheme Evaluation

(if (= (+ 1 12)
 (- 22
 ((lambda (x) (* x x))
 3)))
 <#t case to do>
 <#f case to do>)
Scheme Evaluation

(if (= (+ 1 12) (apply rule here?)
 (- 22
 ((lambda(x) (* x x))
 3))
 <#t case to do>
 <#f case to do>)

Scheme Evaluation

(if (= (+ 1 12) (apply rule here?)
 (- 22
 ((lambda(x) (* x x))
 3)) (or here?)
 <#t case to do>
 <#f case to do>)

Scheme Evaluation

(if (= (+ 1 12) (apply rule here?)
 (- 22
 ((lambda(x) (* x x))
 3)) (or here?)
 <#t case to do>
 <#f case to do>)

Scheme Evaluation

(if (= (+ 1 12) (apply rule here?)
 (- 22
 ((lambda(x) (* x x))
 3)) (or here?)
 <#t case to do>
 <#f case to do>)

Which expression to rewrite?

Expression to rewrite given by a
Control context, $R[\]$

Control Parsing Lemma. Every non-value Scheme expression parses uniquely as

$R[<\text{redex}>]$
Control Context Syntax

\[R[] \]

- \[\]
- (if \(R[] \) <expr> <expr>)
- (set! x \(R[] \))
- (<val> …<val> \(R[] \) <expr>…)

Substitution Rules

\(x \rightarrow <\text{what } x \text{ is bound to}> \)

(set! x <newval>) \rightarrow 'set!-done
(letrec (...(x <oldval>)) ...) \rightarrow
(letrec (...(x <newval>)) ...)

Substitution Rule

\begin{align*}
(\text{letrec} (\ldots(x <val>))\ldots)
\rightarrow
(\text{letrec} (\ldots(x <val>))\ldots)
\end{align*}

letrec Rule

\begin{align*}
(\text{letrec} (\ldots(x <oldval>))\ldots)
\rightarrow
(\text{letrec} (\ldots(x <newval>))\ldots)
\end{align*}

The Variable Convention

Rename bound variables so
- no variable appears in two bindings

(\text{letrec}((x 1))
(+ x
 (\lambda(y)(* y y)) ..))

The Variable Convention

Rename bound variables so
- no variable is both bound & free

(\text{letrec}((z 1))
(+ x
 (\lambda(y)(* y y)) ..))
Teaching Scheme: call/cc

call/cc – a general “escape” construct
-- normally in advanced course.
SubModel explains with two simple rules (after Felleisen & Heib).

Teaching Scheme: call/cc

1) \[R[(\text{call/cc } V)] \rightarrow R[(V (\text{lambda}(x) (\text{abort } R[x])))] \]

2) \[R[(\text{abort } V)] \rightarrow V \]

It runs!

```
>> (set! dec (lambda (n) (- n 1)))
>> (dec (dec 3))
== (0, instantiate-global) =>
((lambda (n) (- n 1)) (dec 3))
== (1, instantiate-global) =>
((lambda (n) (- n 1)) ((lambda (n) (- n 1)) 3))
== (2, lambda) =>
(letrec ([in (n 3)])
 ((lambda (n) (- n 1)) (dec 3)))
== (3, lambda) =>
(letrec ([in (n 3)])
 ((lambda (n) (- n 1)) ((lambda (n) (- n 1)) 3)))
== (4, instantiate) =>
(letrec ([in (n 3)])
 ((lambda (n) (- n 1)) (- n 1)))
== (5, builtin) =>
(letrec ([in (n 3)])
 ((lambda (n) (- n 1)) (- n 1)))
== (6, lambda) =>
(letrec ([in (n 3) (n_0 2)])
 ((lambda (n) (- n 1)))
== (7, lambda) =>
(letrec ([in (n 3) (n_0 2)])
 ((lambda (n) (- n 1))))
== (8, instantiate) =>
(letrec ([in (n 3) (n_0 2)])
 (- 2))
== (9, builtin) =>
(letrec ([in (n 3) (n_0 2)] 2)
== (10, instantiate) =>
(letrec ([in (n 3) (n_0 2)] 2)

Final value after 10 steps: 1
```

Scheme Theory

With Scheme mathematically defined by simple rules, can prove theorems about it.

Scheme Theory

Equivalence Lemma.
If \(E \rightarrow \cdots \rightarrow F \), then \(E \) and \(F \) are observably equivalent:

\[E \equiv F. \]

(ignoring a complication from call/cc)

Scheme Theory

“Black Box” Procedures Lemma.
If \(P, Q \) procedure val’s and \(P \neq Q \), then there must be val’s, \(V_1, V_2 \), s.t.

\[(V_1 (P V_2)) \rightarrow \cdots \rightarrow 1 \]
\[(V_1 (Q V_2)) \rightarrow \cdots \rightarrow 1 \]
(or vice-versa).
Computability Theory

With Scheme mathematically defined by simple rules, it can replace Turing Machines.

Example: “self-reproducing” expression.
Define double so that

\[
\text{(double \text{ '<expr>'})} \rightarrow \text{<list-value>}
\]

which prints out as:

\[
\text{(<expr> \text{ '<expr>'})}
\]

So

\[
\text{(double \text{ 'double'})}
\]

prints out as:

\[
\text{(<expr> \text{ 'double'})}
\]

“Self-reproducing”!

Computability Theory: complications

Scheme easier to program than Turing Machines, but makes some basic results harder to show (or false):

If a set is recognizable, then it is enumerable.

Computability Theory: complications

Symbols are recognizable – by builtin symbol? procedure.

How to enumerate them? say with

\[
\text{(nth-symbol 0)}
\]
\[
\text{(nth-symbol 1)}
\]
\[
\text{(nth-symbol 2)} \cdots
\]
Computability Theory: complications

nth-symbol
definable using builtin string->symbol procedure
– not in good taste.

Computability Theory: complications

Procedures are recognizable – by builtin procedure?
How to enumerate them? say with
(nth-procedure 0)
(nth-procedure 1)
(nth-procedure 2) …

Computability Theory: complications

nth-procedure
definable (up to ≡) by constructing an interpreter eval:
(eval 'expr) ≡ expr
– interesting CS project, but tricky, not in good taste for computability theory.

Computability Theory: complications

More generally:
insight of Computability theory is that it is machine independent.
Using Scheme – or any “real” language – can shift focus to programming instead of machine independent results.

Submodel in intro programming?

Why isn’t the Submodel of interest to my programming colleagues?
My guess: can shift focus to details of progr. language instead of progr. abstractions & techniques.

Computability Theory of & with…?

• Found a place in introductory grad course.
• Enjoyed by a few students who had taken grad programming but not computability theory.
• Remains a boutique course.
Computability Theory of & with…?

• But I believe in material.
• See it developing into genuine methodology for reasoning about Scheme programs.
• But not for computability.