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Abstract

Geographic Routing is a family of routing algorithms that uses geographic point locations as addresses for
the purposes of routing. Such routing algorithms have proven to be both simple to implement and heuristically
effective when applied to wireless sensor networks. Greedy Routing is a natural abstraction of this model in which
nodes are assigned virtual coordinates in a metric space, and these coordinates are used to perform point-to-point
routing.

Here we resolve a conjecture of Papadimitriou and Ratajczak that every 3-connected planar graph admits a
greedy embedding into the Euclidean plane. This immediately implies that all 3-connected graphs that exclude
K3,3 as a minor admit a greedy embedding into the Euclidean plane. We also prove a combinatorial condition
that guarantees non-embeddability. We use this result to construct graphs that can be greedily embedded into the
Euclidean plane, but for which no spanning tree admits such an embedding.

1 Introduction

1.1 Background

The study of routing has a long and rich history. But for many important classes of routing problems, routing
schemes that are both simple and provably effective have so far been elusive. In particular, scalable wireless sensor
networks require point-to-point communication but such ad-hoc networks admit no global hierarchical addressing
scheme and there are still no broadly accepted, scalable point-to-point routing schemes despite numerous propos-
als. Geographic Routing is a family of routing algorithms that uses geographic point locations as addresses for
the purposes of routing. Such routing algorithms have proven to be both simple to implement and heuristically
effective when applied to wireless sensor networks.

Recent work on routing protocols for wireless sensor networks [2], [8] has focused particular attention on a
class of ’greedy’ algorithms wherein a packet at a node u that is destined for a node v is simply forwarded to any
neighbor u′ of u for which d(u′,v) < d(u,v) where d(x,y) is the Euclidean distance between the locations of x and y
in the plane. For such an algorithm to guarantee delivery it must be the case that for every u and v, such a u′ exists
(i.e. that wherever a packet is in the network, there is always a next hop that gets the packet closer in Euclidean
distance to its ultimate destination).

Rao et al. [12] proposed a natural abstraction of this model in which nodes are assigned virtual coordinates in
a metric space, and these coordinates are used to perform point-to-point routing.
∗This research was supported in part by an MIT (Akamai) Presidential Fellowship



Definition 1. A graph G = (V,E) is said to have a greedy embedding into a metric space (X,d) if there is a
function f : V → X such that for every pair of distinct nodes u,v ∈ V , there exists a neighbor u′ of u in G such that
d( f (u′), f (v)) < d( f (u), f (v)).

Papadimitriou and Ratajczak [11] considered the case where (X,d) is the Euclidean plane and gave simple
examples of graphs which have a greedy embedding (e.g., Hamiltonian graphs) and graphs that admit no greedy
embedding into the Euclidean plane (e.g., Kr,6r+1). Papadimitriou and Ratajczak conjectured that all 3-vertex-
connected planar graphs admit a greedy embedding into the Euclidean plane. Throughout this paper, we will be
interested only in vertex connectivity so we will shorten k-vertex-connected to k-connected.

Conjecture 1. [11] All 3-connected planar graphs admit a greedy embedding into the Euclidean plane

Papadimitriou and Ratajczak [11] proved that all 3-connected planar graphs admit a greedy-type embedding
in 3-dimensions, although for their result the notion of a greedy embedding is slightly different than the standard
definition because the distance function they use is not a metric. Kleinberg [9] considered the case in which
(X,d) is the hyperbolic plane and showed that every tree (and consequently every graph) has a greedy embedding
in the hyperbolic plane. Dhandapani [3] recently proved that all triangulated 3-connected planar graphs admit a
greedy embedding into the Euclidean plane; this is a relaxation of the Papadimitriou-Ratajczak Conjecture. His
proof made use of Schnyder Realizers, and used the geometric properties of Schnyder Drawings to find a greedy
embedding.

Eppstein and Goodrich [4] considered the problem of finding a greedy embedding that can be represented suc-
cinctly. Many theoretical results on greedy embeddings (including those presented here) require the bit complexity
of representing the greedy embedding to exceed the bit complexity of describing the adjacency matrix of the graph.
In [4], Eppstein and Goodrich are able to support greedy routing (in hyperbolic space), but substantially improve
the bit-complexity of representing the virtual coordinates used by the algorithm. Additionally, Goorich and Strash
[7] presented variants of some embeddings given here, and were able to obtain similar improvements in the case
of greedy embeddings into the Euclidean plane.

1.2 Our Results

Here we resolve the Papadimitriou-Ratajczak Conjecture. In fact, we construct a greedy embedding into the
Euclidean plane for all circuit graphs (which generalize 3-connected planar graphs). We can apply a theorem in
[11] which states that if a 3-connected graph G does not contain K3,3 as a minor, then G contains a spanning
3-connected planar subgraph. If any spanning subgraph of G admits a greedy embedding (into a particular metric
space (X,d)) then G also admits a greedy embedding into this metric space. So this immediately implies that all
3-connected graphs that exclude K3,3 as a minor admit a greedy embedding into the Euclidean plane.

Additionally, we provide the first examples of graphs of degree at most 3 that admit no such embedding. We
also prove a combinatorial condition that guarantees non-embeddability and this condition provides a certificate
for non-embeddability that can be verified in linear time. We use this result to construct graphs that can be greedily
embedded into the Euclidean plane, but for which no spanning tree admits such an embedding.

Perhaps of independent interest, we make use of a decomposition theorem due to Gao and Richter [6]. This is,
to the best of our knowledge, this decomposition theorem’s first use in theoretical computer science. We use this
theorem to find a spanning subgraph that can be greedily embedded into the Euclidean plane. And we believe that
this technique can be generally applicable for finding particular types of spanning subgraphs in circuit graphs as
needed.

2 A Greedy Embedding for Circuit Graphs

Circuit graphs are a relaxation of 3-connected planar graphs. In this section, we prove that all circuit graphs
contain a spanning Christmas cactus graph and provide a polynomial time algorithm to find such a spanning
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Figure 1. A Christmas cactus graph G generated by the tree T. The nodes in U are denoted with a ∗
and the edge in F is circled.

subgraph. We then construct a greedy embedding into the Euclidean plane for all Christmas cactus graphs. This
proves the Papadimitriou-Ratajczak Conjecture. As a corollary, any 3-connected graph that excludes K3,3 as a
minor admits a greedy embedding into the Euclidean plane.

2.1 Christmas Cactus Graphs

A cactus graph is a graph for which every edge is part of at most one cycle. In what follows, we will be
interested in a special type of cactus graph that we call a Christmas cactus graph.

Definition 2. A Christmas cactus graph G = (V,E) is a connected cactus graph for which the removal of any node
v ∈ V disconnects G into at most 2 components.

It is well known that a cactus graph can be constructed from a tree by replacing edges with cycles of arbitrary
size. Similarly, a Christmas cactus graph can be constructed from a tree by replacing nodes with cycles and
contracting edges that are not in cycles. It is easy to see that we can alternatively define a Christmas cactus graph
as any graph that can be generated by the following procedure:

Step 1. Let T be a tree and let U be any subset of nodes of T that contains every node with degree at least 3 in
T .

Step 2. (Repeat) For each node u ∈U, replace u with a cycle Cu of arbitrary length so that all neighbors of u (in
the current graph) are connected by an edge to a distinct node in Cu.

Step 3. Let F be any set of edges in the graph resulting from Step 2 which are not contained in a cycle.
Step 4. Contract out the edges in F.

For example, these steps are shown in Figure 1.
Simple cycles in a Christmas cactus graph are not necessarily node-disjoint because a path connecting two

node-disjoint cycles can be contracted. However, for any two simple cycles C1, C2, |C1∩C2| ≤ 1 and for any three
simple cycles C1,C2,C3, |C1∩C2∩C3| = 0.

2.2 Circuit Graphs

Barnette [1] introduced the class of graphs known as circuit graphs, which he defined to be graphs obtained by
deleting a vertex from a 3-connected planar graph. Circuit graphs are a relaxation of 3-connected planar graphs,
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Figure 2. Obtaining a spanning closed 2-walk from a spanning Christmas cactus graph.

but provide a more convenient class of graphs on which to construct inductive proofs. Gao and Richter [6] proved
rich structural theorems about the class of circuit graphs, and used these results to inductively prove that all circuit
graphs contain a spanning closed 2-walk -i.e. a walk that starts and ends at some vertex u and visits all vertices in
G at least once, and at most twice. Here we will use these structural results to prove that any 3-connected planar
graph (or more generally any circuit graph) contains a spanning Christmas cactus graph. We will then give a
greedy embedding for any Christmas cactus graph into the Euclidean plane, and this will prove the Papadimitriou-
Ratajczak Conjecture.

We take a short detour to provide intuition as to why the notion of a greedy embedding into the Euclidean
plane should be at all related to the existence of a spanning closed 2-walk. We note that any graph that contains
a Hamiltonian cycle also admits a greedy embedding into the Euclidean plane. The reason is that if any spanning
subgraph of G admits a greedy embedding into the Euclidean plane, then G also admits a greedy embedding into
the Euclidean plane. Also, any cycle admits a greedy embedding into the Euclidean plane, and this implies the
claim.

However, not all 3-connected planar graphs contain a Hamiltonian cycle. So we cannot hope to prove the
Papadimitriou-Ratajczak Conjecture by finding a Hamiltonian cycle. A spanning closed 2-walk is a relaxation of
a Hamiltonian cycle, and such a walk still maintains almost enough structure so that we can reconstruct a greedy
embedding into the Euclidean plane from such a walk.

We can consider a spanning Christmas cactus graph to be a type of spanning closed 2-walk:

Claim 1. Any graph G that contains a spanning Christmas cactus graph also contains a spanning closed 2-walk.

And such a walk can be obtained by performing a depth first search of the tree T that generated the spanning
Christmas cactus graph - see Figure 2.

So here we will use the results of Gao and Richter [6] to prove the existence of a particular type of spanning
closed 2-walk - a spanning Christmas cactus graph - in every circuit graph. And from this spanning subgraph, we
will construct a greedy embedding into the Euclidean plane. Gao and Richter equivalently define a circuit graph
as:

Definition 3. A circuit graph is an ordered pair (G,C) such that:
1. G is 2-connected, and C is a polygon in G.
2. There is a non-crossing embedding of G in the plane s.t. C bounds an infinite face.
3. If (H,K) is a 2-separation1 of G, then C * H, C * K.



5

b
1

B
1

B
2

b
2 B

3 b
3

B
4

b
4

B
5

B
6

b

Figure 3. A plane chain of blocks.

A 3-connected planar graph is a circuit graph because G can be embedded using Tutte’s rubber band embedding
and any 2-separation (H,K) s.t. C ⊂ H would imply that G is not 3-connected. We next review some key structural
properties of circuit graphs:

Lemma 1. [6] Let (G,C) be a circuit graph embedded in the plane (s.t. no edges are crossing), and let C1 be any
polygon in G. Then the subgraph G1 containing C1 and all nodes and edges inside C1 (in the plane embedding) is
a circuit graph.

Definition 4. [6] A connected graph G is a chain of blocks if each block of G contains at most two cut vertices
and each cut vertex 2 lies in exactly two blocks. Then a chain of blocks can be written as B1,b1,B2, ..bk−1,Bk such
that the common vertex of blocks Bi and Bi+1 is bi. Then a plane chain of blocks is a chain of blocks and a plane
embedding s.t. for all j, ∪i, jBi is in the infinite face of B j.

Because each cut vertex is in exactly two blocks, then each bi must be distinct. A block is called trivial if the
block is just the edge bi,bi+1. Then the seminal work of Gao and Richter gives the following structural result for
circuit graphs:

Theorem 1. [6] Let (G,C) be a circuit graph, and let x,y ∈ C be distinct. Then there exists a partition of V(G)−
V(C) into V1,V2, ...,Vm and distinct vertices v1,v2, ...,vm ∈ V(C)−{x,y} s.t. the graph induced by Vi∪{vi} is a plane
chain of blocks Bi,1,bi,1, ...,bi,k−1,Bi,k s.t. vi ∈ V(Bi,1)−bi,1 and each nontrivial block Bi, j has an outer polygon Ci, j

s.t. (Bi, j,Ci, j) is a circuit graph 3.

Gao and Richter use this structural result to find a spanning closed 2-walk that visits x,y only once, in any
circuit graph by induction. In what follows, we use this structural result to find a spanning subgraph in any circuit
graph that can be greedily embedded in the plane. We will use δG(x) to denote the degree of x in G. The proof of
this theorem given by Gao and Richter is constructive, and can be used to find such a decomposition in polynomial
time, given the planar drawing of the circuit graph.

1A k-separation of a graph H = (V,E) is a pair H1,H2 of edge disjoint subgraphs of H, each with at least k +1 vertices, s.t. H = H1∪H2
and |V(H1)∩V(H2)| = k.

2A cut vertex is a vertex that when removed from G, disconnects the graph.
3Gao and Richter actually state that Bi, j is a block, but from the construction of this block in the proof of the theorem, it is clear that

Bi, j is a subgraph containing all nodes and edges inside (and including) a polygon Ci, j in G. This implies that (Bi, j,Ci, j) is a circuit graph
and Gao and Richter explicitly state this when actually invoking the structural theorem to prove that all circuit graphs contain a closed,
spanning 2 walk.



i,3vi

Bi,1

bi,1 bi,1

Bi,2

bi,2 bi,2

Bi,3

bi,3 bi,3

Bi,4

vi
bi,1 bi,2

b

Figure 4. Connecting spanning Christmas cactus graphs in a plane chain of blocks.

Theorem 2. For any circuit graph (G,C) and distinct x,y ∈ C, there exists a Christmas cactus graph T (G) that
spans G s.t. x,y are jointly in a cycle and δT (G)(x) = δT (G)(y) = 2. And such a subgraph can be found in polynomial
time.

Proof: The proof is by induction on the number of vertices in the circuit graph (G,C). Let x,y be distinct and
x,y ∈ V(C). Applying Theorem 1, there exists a partition of V(G)−V(C) into V1,V2, ...,Vm and distinct vertices
v1,v2, ...,vm ∈ V(C)− {x,y} s.t. the graph induced by Vi ∪ {vi} is a plane chain of blocks Bi,1,bi,1, ...,bi,k−1,Bi,k,
vi ∈ V(Bi,1)−bi,1 and each nontrivial block Bi, j has a outer polygon Ci, j s.t. (Bi, j,Ci, j) is a circuit graph.

From the definition of a plane chain of blocks, each cut vertex bi,k must be distinct. The chain of blocks
Bi,1,bi,1, ...,bi,k−1,Bi,k is a plane chain of blocks w.r.t. the original plane embedding. vi is on the infinite face in G,
and this implies that vi ∈Ci,1 because vi must be in the infinite face in (Bi,1,Ci,1). Choose bi,0 = vi and bi,k to be any
vertex ∈ Bi,k−bi,k−1 that is contained in the infinite face Ci,k. If Bi,k is a trivial block, then just choose bi,k to be the
remaining endpoint. Directly from the structural theorem, vi ∈ Bi,1−bi,1. Then each bi, j is distinct, and contained
in both infinite faces Ci, j and Ci, j+1.

By induction each (non-trivial) Bi, j has a Christmas cactus spanning subgraph s.t. bi, j−1,bi, j are jointly on
a simple cycle and δT (Bi, j)(bi, j−1), δT (Bi, j)(bi, j) = 2. Then join the spanning Christmas cactus graph of Bi, j to the
spanning Christmas cactus graph of Bi, j+1 by joining bi, j in each spanning Christmas cactus graph by an edge, and
contracting the edge.

If the neighboring block in the plane chain is a trivial block, then just connect a non-trivial block to the next
non-trivial block by a path of the trivial blocks. If Bi,1 is not trivial, then the result is a Christmas cactus spanning
subgraph for the plane chain of blocks Bi,1,bi,1, ...,bi,k−1,Bi,k s.t. vi is on a cycle and has δT (Bi,1...,k)(vi) = 2. If Bi,1 is
trivial, then the result is a Christmas cactus spanning subgraph for the plane chain of blocks Bi,1,bi,1, ...,bi,k−1,Bi,k

s.t. vi is not on a cycle and δT (Bi,1...,k)(vi) = 1.
Then consider the base cycle V(C), and join the spanning Christmas cactus graph of each induced plane chain

of blocks Vi∪{vi} to the node vi on the cycle by an edge, and contract the edge.
The result is a spanning Christmas cactus graph of G s.t. x,y are jointly on a cycle and δT (G)(x), δT (G)(y) = 2

and the theorem is true by induction. This construction also yields a polynomial time algorithm because each
decomposition is polynomial time constructible and x,y do not appear in the decomposition so the number of
decompositions that must be computed is bounded by n

2 . �

2.3 Constructing a Greedy Embedding

In this section, we construct a greedy embedding for any Christmas cactus graph in the Euclidean plane.
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Figure 5. Embedding a Christmas cactus graph on concentric semi-circles.

Let G be an arbitrary Christmas cactus graph, and let F be the set of edges in G that are not contained in a
simple cycle. For the purposes of this construction, all edges in F will be considered to be simple cycles (on two
nodes). Then every edge in G is contained in exactly one simple cycle.

Definition 5. A depth tree T w.r.t. G is a tree that contains a node for each simple cycle in G, where nodes in T
are connected iff |V(C1)∩V(C2)| = 1.

Select an arbitrary node of T to serve as the "root" and define the depth of a cycle in the graph G as the depth
of the corresponding node in T . Then define the depth of any node in G to be the minimum depth of any cycle
containing that node. G will be embedded on concentric semi-circles of radius 1 = R0 < R1 < R2... s.t. all nodes at
depth i will be embedded on the semi-circle of radius Ri. Let the center of all the semi-circles be the origin.

For any cycle C = (p, x1, ..., xm) at depth k > 0 there will be a unique node on the cycle that is at depth k−1 and
all remaining nodes will be at depth k. Assume that for the cycle C, the unique node on the cycle that is at depth
k−1 is p. Then p will be embedded on the semi-circle at radius Rk−1, and node x1 will be placed at the intersection
of the semi-circle of radius Rk and the ray that contains p and the origin. The remaining nodes (if any) x2, ..., xm

will be embedded on the semi-circle of radius Rk s.t. the nodes x1, x2, ..., xm appear in clock-wise order along the
semi-circle of radius Rk at a distance to be specified shortly.

Definition 6. A node u ∈G is a descendant of the cycle C at depth k if after removing all edges in C from G, node
u is not in the component that also contains node p - the unique node in C at depth k−1.

A node u in the cycle C at depth k, that is not the unique node in C at depth k− 1, is also a descendant of the
cycle C by this definition.

The embedding will proceed in phases, and at the end of phase i all nodes at depth ≤ i will be placed. To simplify
the analysis, after each phase (and subphase) we will preserve the greedy property that the subgraph induced by
all currently placed nodes along with the current embedding, must exhibit the greedy routing property. Formally,
if at the end of a subphase, the set of nodes in G already placed is P and the subgraph induced by P is GP then for
all s, t ∈ P there exists a node u (adjacent to s in GP) s.t. d(u, t) < d(s, t).

We will use a geometric lemma to establish the properties needed for this embedding scheme. Consider the
coordinates (assume ε > 0 and 0 ≤ α,β ≤ π):

c = (0,1 + z)

b = (−sinβ,cosβ)

a = (−(1 + ε) sin(β−α), (1 + ε)cos(β−α))



subject to the constraints:

0 < α, β ≤
π

2

0 < ε ≤
1− cosβ

6
0 ≤ z ≤ ε

sinα ≤
ε(1− cosβ)

2(1 + ε)

Claim 2. d
dz (d(a,c)2−d(b,c)2) < 0

Proof:

d
dz

(d(a,c)2−d(b,c)2)

= 2(1 + z− (1 + ε)cos(β−α))−2(1 + z− cosβ)

= 2(cosβ− (1 + ε)cos(β−α))

= 2(cosβ− (1 + ε)(cosβcosα+ sinβsinα))

≤ 2cosβ(1− (1 + ε)cosα)

< 0

where the last inequality follows because sinα ≤ ε
1+ε and cosα ≥ 1− ε2

(1+ε)2 = 1+2ε
(1+ε)2 >

1
1+ε �

Hence d(a,c)2−d(b,c)2 is minimized for z = ε.

Claim 3. d(a,c)−d(b,c) ≥ ε2

Proof: By claim 1,

d(a,c)2−d(b,c)2

≥ (1 + ε)2 sin2(β−α)− sin2 β

+(1 + ε)2(1− cos(β−α))2− (1 + ε − cosβ)2

≥ (1 + ε)2 sin2(β−α)−2(1 + ε)(1− cosβ)

+(1 + ε)2(1− cos(β−α))2− ε2

= 2(1 + ε)2(1− cos(β−α))−2(1 + ε)(1− cosβ)− ε2

= −ε2 + 2(1 + ε)(ε + cosβ− (1 + ε)cos(β−α))

≥ −ε2 + 2(1 + ε)(ε + cosβ− (1 + ε)(cosβ+ sinα))

= −ε2 + 2(1 + ε)(ε(1− cosβ)− (1 + ε) sinα)

≥ −ε2 + (1 + ε)ε(1− cosβ)

≥ 5ε2

Then

d(a,c)−d(b,c) =
d(a,c)2−d(b,c)2

d(a,c) + d(b,c)

≥
1
5

(d(a,c)2−d(b,c)2)

≥ ε2



since d(a,c) + d(b,c) ≤ 5. �

For notational convenience, given an embedding f : V → R2 define the angle ∠a,b,c on nodes a,b,c,∈ V(G) as
the angle formed by the rays ( f (b), f (a)) and ( f (b), f (c)).

Theorem 3. For any Christmas cactus graph G, there exists a greedy embedding of G into the Euclidean plane.

Proof: Assume that every edge is in a simple cycle by considering any edge not in a simple cycle as a 2-cycle.
Construct the depth tree T w.r.t. G, and root T at an arbitrary node. Trace out a semi-circle of radius 1 centered at
the origin. Suppose that the cycle C in G at depth 0 contains m nodes, C = (1,2, ...,m). Then divide the semi-circle
of radius R0 into m equal angle sectors and place node i at the beginning of the ith sector. The arc subtended by
1,2, ...,m is strictly smaller than the perimeter of the semi-circle of radius R0 = 1 because no node is placed at the
end of the mth sector.

For any triple (a,a + 1,c) such that c > a the angle ∠a,a + 1,c is strictly larger than π
2 and d(a + 1,c) < d(a,c).

Similarly for any triple (a,c−1,c) such that c > a then the angle ∠a,c−1,c is strictly larger than π
2 and d(a,c−1) <

d(a,c). Hence this embedding is greedy.
This establishes the base case for the inductive construction. Now assume that all nodes at depth ≤ i have been

placed and that the induced subgraph on these nodes, Gi, along with the embedding on concentric semi-circles (as
described earlier) is greedy.

Definition 7. If all nodes in Gi have been embedded s.t. this embedding exhibits the greedy property, then for
all s, t ∈Gi there exists u ∈Gi s.t. (u, s) ∈ E(Gi) and d(u, t) < d(s, t). Fix ns,t = u and define δ(Gi) = mins,t d(s, t)−
d(t,ns,t).

Then draw a ball Bu of radius δ(Gi)/3 around each node u ∈Gi. Clearly if a node t at depth i+1 s.t. (u, t) ∈ E(G)
is placed in Bu, then for any node s ∈Gi,, t the neighbor ns,t that is strictly closer to t will also be strictly closer
to u. And if s = t ∈Gi then the neighbor u will be strictly closer to u.

Definition 8. Let β(Gi) be defined as the minimum (non-zero) angle over all s, t at depth ≤ i from s to the origin,
to t in the current embedding.

Assume that all nodes at depth ≤ i have been placed, and that the subgraph induced by these nodes along with
the embedding exhibits the greedy property. We must embed all cycles at depth i + 1, and preserve the greedy
property.

Subphase:
For each cycle C at depth i + 1, C = (p, x1, ..., xm) let p be the unique node in the cycle at depth i. Call x1 the

representative node for the cycle C (choose an orientation of C at random, and choose the next node after p). Let
the radius of the outermost semi-circle in the current embedding be Ri and define δ(Gi) and β(Gi) as before w.r.t.

the current embedding. Also, define ε = min( δ(Gi)
3 ,Ri

1−cos 2
3β(Gi)

6 ).
Place each representative node x1 at the intersection of the semi-circle of radius Ri+1 = Ri + ε and the ray

containing both the origin and p. Let P be the set of currently placed nodes (all nodes at depth ≤ i and one
representative node for each cycle at depth i + 1). We will show that the subgraph induced by these nodes, along
with the current embedding, exhibits the greedy property:

For any nodes s, t ∈Gi there is trivially a node u (adjacent to s in Gi) in the current embedding s.t. d(u, t)< d(s, t)
because the nodes in Gi along with the embedding of these nodes exhibited the greedy property (and the embedding
of nodes in Gi has not been changed) by induction. For any nodes s, t s.t. s ∈Gi and t is a representative node for a
cycle C at depth i+1, then t is in the ball Bp of radius δ(Gi)

3 centered around the node p in C that is the unique node
in C at depth i. Then (t, p) is an edge in G, and all s ∈Gi have a (already placed) neighbor that is strictly closer to
t.



Lastly, consider routing from a node s that is a representative node on a cycle C at depth i + 1 to any node that
has already been placed. Again, let p be the unique node in C that is at depth i. By construction, the perpendicular
bisector to the segment sp contains all nodes currently placed, except s, on the same side as p:

Trivially, any node t at depth ≤ i will be on the same side of the perpendicular bisector to sp as the node p
because the perpendicular bisector is a parallel shift of the tangent to the semi-circle of radius Ri at the point p.
And for any node t that is placed on the semi-circle at radius Ri+1, the angle from t to the origin to s will be
at least β(Gi), and from the geometric lemma (choosing α = 0) then this node will also be on the p side of the
perpendicular bisector to sp. And thus p is strictly closer to t than s is to t for any node t at depth i + 1 that has
been placed in this subphase.

All cases are covered: the subgraph on the currently embedded nodes, along with the current embedding is
greedy because for all s, t there is an already placed neighbor of s that is strictly closer to t.

Subphase:
For a cycle C = (p, x1, ..., xm) at depth i + 1, only the unique node p at depth i and the representative node x1

have been embedded so far. The embedding must now be extended to include all nodes at depth i + 1 and this is
done by placing nodes x2, ..., xm in clockwise order around the semi-circle of radius Ri+1 starting from the location
of node x1.

Let G1
i be the subgraph induced by all nodes already placed. Define δ(G1

i ) as before. Note that this difference is
now defined over all s, t that have already been placed, which includes all nodes that are at depth ≤ i and all nodes
that are depth i + 1 that are representative nodes for a cycle at depth i + 1. Also define ε = Ri+1 −Ri, and note that
β(G1

i ) = β(Gi).
Then place nodes x2, ..., xm on the semi-circle of radius Ri+1 at even intervals starting from the (already fixed)

location of x1 s.t. the angle (in radians) from x1 to the origin to xm is α ≤ min( δ(G
1
i )

3 ,
β(Gi)

3 ) and s.t. sinα ≤
ε(1−cos 2

3β(Gi))
2(1+ε) . Place all nodes on a cycle at depth i + 1 that have not already been placed, according to this rule.

The induced subgraph on all placed nodes after this subphase, along with the embedding will exhibit the greedy
property:

Now all nodes at depth ≤ i + 1 have been placed. Consider all pairs s, t ∈Gi+1. Again, if s, t ∈G1
i then there will

still be a neighbor of s that is strictly closer.

If s ∈G1
i , and t is placed in this subphase then t is at most distance δ(G1

i )
3 from the representative node u on the

same cycle. s , u will have a neighbor that is strictly closer to this representative node u, and this same neighbor
will also be strictly closer to t. If s = u, then s and t will be connected by a path on the semi-circle of radius Ri+1
and each successive node on this path will be strictly closer to t.

The only remaining case is when s is a node that is placed in this subphase:
Any node that is not in the set x2, x3, ..., , xm cannot be strictly contained in the sector from x1 to the origin to xm

because we chose α ≤ β(Gi)
3 . Then if s is not x1 or xm, s will have a neighbor that is strictly closer to t, choosing

the next node on the path x1, x2, ..., xm radially in the direction of t.
The case in which s = x1 has already been covered because the node x1 ∈ G1

i . Then suppose s = xm: If t is in
the set x1, ..., xm, then choosing the next node on the path x1, x2, ..., xm radially in the direction of t and s will have
a neighbor strictly closer to t. And if t is not in the set x1, ..., xm: α ≤ 1

3β(Gi) and this implies that the angle from
p to the origin to the node t is at least 2

3β(Gi). From the geometric lemma, d(xm, t)− d(p, t) > 0 and p is strictly
closer to t.

Then all cases are covered, and the subgraph on the currently embedded nodes, along with the current embed-
ding is greedy because for all s, t there is an already placed node that is strictly closer to t.

This completes the inductive construction, because all nodes at depth ≤ i + 1 have been placed. And this also
completes the proof that all Christmas cactus graphs can be greedily embedded in the Euclidean plane. �



Corollary 1. Any 3-connected graph G that excludes K3,3 as a minor admits a greedy embedding into the Eu-
clidean plane.

We can apply a theorem in [11] which states that if a 3-connected graph G does not contain K3,3 as a minor,
then G contains a spanning 3-connected planar subgraph. And using the results of this section, this immediately
implies the corollary.

3 Greedy Embeddings for Trees

In this section, we give the first examples of graphs of degree at most 3 that admit no greedy embedding into the
Euclidean plane. We also prove a combinatorial condition that guarantees non-embeddability and this condition
provides a certificate for non-embeddability that can be verified in linear time. We use this result to construct
graphs that can be greedily embedded into the Euclidean plane, but for which no spanning tree admits such an
embedding.

Barnette [1] proved that all 3-connected planar graphs contain a spanning tree of maximum degree at most 3.
Given any spanning closed 2-walk we can construct a spanning tree of maximum degree at most 3 using only edges
traversed by such a walk. So Barnette’s Theorem is implied by the result of Gao and Richter [6]. We showed that
a particular type of spanning closed 2-walk - a spanning Christmas cactus graph - is enough to construct a greedy
embedding into the Euclidean plane. And as a corollary to the results we present in this section, a sufficiently large
complete binary tree admits no greedy embedding into the Euclidean plane. So, the results due to Gao and Richter
are almost enough to guarantee a greedy embedding into the Euclidean plane, but the results of Barnette [1] are
not sufficient.

3.1 Irreducible Triples

Definition 9. An irreducible triple is a triple {b,c,d} of nodes in a graph G such that deg(b) = 3 and (b,c), (b,d) ∈
E(G) and removing either (b,c) or (b,d) disconnects the graph. The parent of an irreducible triple {b,c,d} is the
unique node a < {b,c,d} such that (a,b) ∈ E(G).

Definition 10. Two irreducible-triples {b,c,d} and {x,y,z} are said to be independent if {b,c,d} ∩ {x,y,z} = ∅ and
if deleting edges (b,c), (b,d), (x,y), and (x,z) leaves b and x connected. A set of irreducible triples is mutually
independent if the irreducible triples are pair-wise independent.

Lemma 2. Consider any set of 3 or more mutually independent irreducible triples Λ. Let a be the parent of any
irreducible triple in the set. Then for all irreducible triples {x,y,z} in the set Λ, {a}∩{x,y,z} = ∅ (including the triple
for which a is the parent).

Proof: Clearly any parent a of an irreducible triple {b,c,d} cannot intersect {b,c,d} directly from the definition
of parent. Suppose there is a set of 3 or more mutually independent triples in a graph G, and that the parent a of
an irreducible triple {b,c,d} is contained in another irreducible triple {x,y,z}. Suppose that a = y. Then deleting
the edge (x,y) disconnects G, but b is still connected to y. This implies that b is not still connected to x. This
contradicts the definition of independence.

Suppose that a = x. Then Γ(b) = {x,c,d} and Γ(x) = {b,y,z} because x is the parent of the triple {b,c,d} and b is
the parent of the triple {x,y,z}. Then consider a third irreducible triple in the set of 3 or more mutually independent
irreducible triples, {l,m,n}.

From the definition of an irreducible triple, deleting the edge (b,c) must partition G into components C1,C2.
Deleting the edge (b,d) also partitioned G into two components. Note that (b,d) cannot connect C1 and C2 that
resulted from deleting (b,c). Then deleting (b,d) after deleting (b,c) must partition G into three components, one
of which contains b, one of which contains c, one of which contains d. Continuing the argument deleting edges



(b,c), (b,d), (x,y) and (x,z) partitions G into five components, one of which contains b and x, one of which contains
c, one of which contains d, one of which contains y and one of which contains z. The component that contains b
and x contains only the nodes b and x, because deg(b) = deg(x) = 3 before deleting two of the edges incident to b
and two of the edges incident to x.

Node l must be contained in a different component than b and x. Let this component be the component that
contains y. Then {l,m,n} would not be independent from {x,y,z} because deleting the edge (x,y) from G would
leave l and x in different components, and this contradicts the definition of independence.

Thus if there is a set of 3 or more mutually independent irreducible triples, then the parent a of any irreducible
triple {b,c,d} in the set cannot be contained in any other triple in the set. �

Lemma 3. For any set of 3 or more mutually independent triples, let {b,c,d} and {x,y,z} be two irreducible triples
in the set and let a,w be the respective parents of these irreducible triples (note that a and w are not guaranteed to
be distinct). Then any simple path from y to c in the graph G must be of the form (y, x), (x,w), ..., (a,b), (b,c). Any
simple path from x to c must be of the form (x,w), ..., (a,b), (b,c). And any simple path from x to b must be of the
form (x,w), ..., (a,b).

Proof: The proof immediately follows from the previous lemma. �

We will implicitly use the path lemma throughout the proof that any graph G containing a set of 6 or more
mutually independent irreducible triples cannot be greedily embedded. Let S = ∪{b,c,d} be the set of all nodes in
any irreducible triple in the set. Let {b,c,d} be a particular irreducible triple in the set and let a be the parent of
this triple. Suppose G admits a greedy embedding f : V → R2. Consider the halfspace Hb that is bounded by the
perpendicular bisector to f (b), f (c) that contains f (b). This halfspace must contain S/{c} from the path lemma,
because the only simple paths from c to a node t ∈ S/{c} must begin by traversing the edge (c,b). Similarly, the
halfspace Ha that is bounded by the perpendicular bisector to f (a), f (b) and contains f (a) must contain S/{b,c,d}
again from the path lemma.

Lemma 4. Let G be a graph that admits a greedy embedding f : V → R2 into the Euclidean plane and let (p, x) ∈
E(G) be an edge s.t. deleting (p, x) disconnects G. Let Cx be the component containing x that results from deleting
the edge (p, x), and let z be an arbitrary node <Cx. Then {x} = Wz = argminw∈Cx || f (w)− f (z)||2

Proof: Suppose that Wz , {x}, and there is a node w ∈ argminw∈Cx || f (w)− f (z)||2 and w , x. All the neighbors of
w are in Cx and no node in Cx is strictly closer to z. Then there is no neighbor of w that is strictly closer to z, and
f is not a greedy embedding. �

Lemma 5. Let G be a graph that admits a greedy embedding f : V→R2 into the Euclidean plane, and that contains
an irreducible triple {b,c,d}. Then any greedy embedding into the Euclidean plane must map the nodes b,c,d to
points in R2 s.t. the angle ∠ f (c) f (b) f (d) > π

3

Proof: Suppose that the angle ∠ f (c) f (b) f (d) is ≤ π
3 . Then by the law of sines, the side (c,d) cannot be the strictly

largest side in the triangle (c,b,d). Let (b,d) be the largest side in the triangle. Node d < Cc and c must be the
closest node in Cc (the component that results from deleting the edge (b,c)) to d. And when routing from node
c to node d, node b must be selected for the next hop. However d(b,d) ≥ d(c,d) and this embedding cannot be
greedy. �

Claim 4. Any graph that contains two independent irreducible triples {b,c,d} and {x,y,z} - where Γ(b) =

{a,c,d},Γ(x) = {w,y,z} - cannot be greedily embedded such that f (a) is contained in a side of the angle
∠ f (c) f (b) f (d) that is ≤ π and f (w) is contained in a side of the angle ∠ f (y) f (x) f (z) that is ≤ π.
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Figure 6. Embedding a quadruple {a,b,c,d} such that f (a) is contained in a side of the angle
∠ f (c) f (b) f (d) that is < π.

Proof: Assume that both ∠ f (c) f (b) f (d) and ∠ f (y) f (x) f (z) , π. Consider a greedy embedding of the quadruple
{a,b,c,d} depicted in Figure 6.

If the embedding is greedy, then there must be a path from a to c s.t. the distances to the destination node,
c, are strictly decreasing along this path. There must also be such a path from a to d. Any such path contains b
as an intermediary node, and this implies that d( f (b), f (c)) < d( f (a), f (c)) and d( f (b), f (d)) < d( f (a), f (d)). This
implies that f (c) and f (d) must be contained on the b side of the line H3. As a result, the segment (bc,bd) must be
contained on the b side of H3 because the line segment is contained in the convex hull of the points f (c), f (d), f (b).

Using a similar argument, all nodes in G not in {b}∪Cc∪Cd must be strictly contained in the triangle (p,q,r),
because all nodes in G not in {b} ∪Cc ∪Cd must be strictly on the b side of H1, strictly on the b side of H2 and
strictly on the a side of H3 respectively. Because the segment (bc,bd) is contained on the b side of H3, we can
relax this constraint to the requirement that all nodes in G not in {b} ∪Cc ∪Cd must be strictly contained in the
triangle (bc,bd, p).

An identical argument holds for the quadruple {w, x,y,z}, and all nodes in G not in {x}∪Cy∪Cz must be strictly
contained in the triangle (xy, xz,o).

Consider the point bc. This lies in the convex hull of f (b), f (c) and any convex body (specifically the triangle
(xy, xz,o)) that strictly contains f (b) and f (c) must strictly contain bc. Similarly the point bd must be strictly
contained in the triangle (xy, xz,o). This implies that the segment (bc,bd) must be strictly contained in the triangle
(xy, xz,o). An identical argument holds for the triangle (bc,bd, p) and this triangle must strictly contain the segment
(xy, xz).

However, this yields a contradiction because there are two triangles T1 and T2 such that T1 must strictly
contain the base of T2 and T2 must strictly contain the base of T1. An almost identical argument holds when
∠ f (c) f (b) f (d) = π or ∠ f (y) f (x) f (z) = π. �

Claim 5. If a graph G is greedily embedded and contains an irreducible triple {b,c,d} - where Γ(b) = {a,c,d} - that
is embedded such that f (a) is contained in a side of the angle ∠ f (c) f (b) f (d) that is > π, then let i be the point of
intersection of the perpendicular bisector to the segment ( f (b), f (c)) and the perpendicular bisector to the segment
( f (b), f (d)). All nodes not in Cc∪Cd are mapped outside the interior of the quadrilateral ( f (c), f (b), f (d), i).
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Figure 7. Embedding a quadruple {a,b,c,d} such that f (a) is contained in a side of the angle
∠ f (c) f (b) f (d) that is > π.

Proof: Consider Figure 7. Clearly, we must only prove that all nodes not in Cc ∪Cd are mapped outside the
quadrilateral (bc, f (b),bd, i) because the line H1 must contain all nodes not in Cc on the b side, and the line H2
must contain all nodes not in Cd on the b side.

Consider the halfspace J1 defined as the a side of the perpendicular bisector to f (a), f (b). Node a is not
mapped into the quadrilateral (bc, f (b),bd, i) by assumption, and any node in G not in {b} ∪Cc ∪Cd must be
contained in the halfspace J1. If the intersection of J1 with the quadrilateral (bc, f (b),bd, i) is empty, then clearly
the claim is proven. The halfspace J1 has an empty intersection with the triangle ( f (b),bc,bd) because the points
f (b), f (c), f (d) must be on the b side of the perpendicular bisector to ( f (a), f (b)).

Consider the triangle (bc,bd, i). Assume that J1 intersects the triangle (bc,bd, i). Then J1 must contain at least
one of the points bc,bd, i. J1 cannot contain bc or bd because f (b), f (c), and f (d) must all be closer to f (b) than
to f (a). As a result, if J1 intersects the triangle (bc,bd, i) then J1 must contain the point i.

A line can intersect another line more than once only if the two lines are identical. Consider the line L bounding
the halfspace J1. Suppose this line is identical to H1. This can only happen if f (a) = f (c) and this would imply that
the embedding is not greedy because node a will not have a neighbor that is strictly closer to f (c). This implies
that the line L can intersect H1 and H2 at most once each.

J1 contains the point i, but not either of the points bc or bd. This implies that the line L intersects both segments
(bc, i) and (bd, i). This line can be cut into two rays, leaving from the point ab in opposite directions. Both rays
begin at the point ab inside the shaded region K, and cannot leave this region through the segment (bc,bd) because
both end points of this segment are not contained in J1.

Then one of the rays must exit the region K through a side bounded by either the line H1 or the line H2. This
yields a contradiction because the line L will intersect either the line H1 or the line H2 twice. Thus J1 cannot
contain i and the claim is proven. �

Note that ∠bcibd < 2π
3 because ∠bc f (b)bd > π

3 and ∠ f (b)bci = ∠ f (b)bdi = π
2 . When a point x is contained in the

sector ∠bcibd we will say the intersection point i contains x.

Lemma 6. Any graph G containing 6 or more mutually independent irreducible triples cannot be greedily embed-
ded in the Euclidean plane.
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Figure 8. Embedding quadruples.

Proof: Suppose that a graph G contains 6 mutually independent irreducible triples. Then there are two cases to
consider:

Suppose that the irreducible triples are embedded such that for each quadruple {a,b,c,d} - where {b,c,d} is an
irreducible triple and Γ(b) = {a,c,d} - f (a) is contained in a side of the angle ∠ f (c) f (b) f (d) that is > π. Then for
each quadruple {a,b,c,d} define the points bc,bd, i as in Figure 7.

No node in G is mapped to a point in the triangle (bc,bd, i) from the previous claim. Then consider another
quadruple {w, x,y,z} where {x,y,z} is an irreducible triple and Γ(x) = {w,y,z}. Re-using the argument used in the
previous claim, if the perpendicular bisector L to the segment ( f (x), f (y)) does not contain i on the x side, then L
must intersect either H1 or H2 twice. But L is a perpendicular bisector to two points that are contained on the same
side of H1 and on the same side of H2, and L cannot be identical to H1 or H2.

Then defining the intersection point i for each quadruple {a,b,c,d} as in Figure 7, each intersection point must
contain all other intersection points in an angle that is < 2π

3 . Define polygon on these intersection points - all angles
in the polygon are < 2π

3 . And from elementary geometry any polygon on n ≥ 6 nodes must contain an angle that
is at least 2π

3 . Then there can be at most 5 intersection points. This yields a contradiction, because there are 6
intersection points.

Suppose that one quadruple {a,b,c,d} is embedded such that f (a) is contained on the side of the angle
∠ f (c) f (b) f (d) that is ≤ π. Consider the points bc,bd, and define intersection points for all remaining irreducible
triples. Then each intersection point for the remaining 5 irreducible triples must contain bc and bd because these
intersection points must contain f (b), f (c) and f (d). We can apply the argument used above to the perpendic-
ular bisectors H1,H2 and H3 and this implies that the angles bounded by H1,H3 and H2,H3 must contain each
intersection point defined for the remaining 5 irreducible triples.

The angles bounded by H1,H3 and H2,H3 sum to at most π, and using the 5 intersection points and the points
bc,bd we have a polygon on 7 nodes such that the angles sum to at most 13

3 π, which yields a contradiction because
the sum of the angles in a 7-gon is 5π from elementary geometry. �

Corollary 2. The complete binary tree B31 with 31 nodes cannot be greedily embedded into the Euclidean plane.

Proof: The complete binary tree B31 contains 6 mutually independent irreducible triples. �

Theorem 4. There exist graphs that can be greedily embedded into the Euclidean plane, but for which no spanning
tree can be greedily embedded into the Euclidean plane.
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Figure 9. A graph that admits a greedy embedding into the Euclidean plane, and yet no spanning
tree of this graph admits such an embedding.

Proof: Let G be the cycle graph on n nodes, and for each node i add a 4-cycle (wi, xi), (xi,yi), (yi,zi), (zi,wi) and an
extra node pi, such that wi is joined by an edge to i, and pi is joined to the node yi. See Figure 9. Any spanning
tree of this graph contains n mutually independent irreducible triples, however, this graph is a Christmas cactus
graph and can be greedily embedded into the Euclidean plane. �
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