Topics in TCS: Problem Set # 1

Instructor: Ankur Moitra

Due: April 2nd

If you work with other students, you must write-up your solutions by yourself and indicate at the top who you worked with!

Problem 1 [Barvinok, page 19]

Give an example of an infinite family \(\{A_i, i = 1, 2, \ldots\} \) of convex sets in \(\mathbb{R}^d \) such that every \(d + 1 \) sets have a common point but there are no points in common to all of the sets \(A_i \). (Hint: Helly’s theorem holds for infinite families of compact sets, so you will have to look for non-compact sets)

Problem 2 [Matousek, page 12]

In the situation of Radon’s lemma (\(A \) is a \((d + 2) \)-point set in \(\mathbb{R}^d \)), call a point \(x \in \mathbb{R}^d \) a Radon point of \(A \) if it is contained in convex hulls of two disjoint subsets of \(A \). Prove that if \(A \) is in general position (no \(d + 1 \) points affinely dependent), then its Radon point is unique.

Problem 3 [Matousek, page 12] Kirchberger’s Theorem

(a) Let \(X, Y \subset \mathbb{R}^2 \) be finite point sets, and suppose that for every subset \(S \subseteq X \cup Y \) of at most 4 points, \(S \cap X \) can be linearly-separated from \(S \cap Y \). Prove that \(X \) and \(Y \) are linearly-separable.

(b) Extend (a) to sets \(X, Y \subset \mathbb{R}^d \), with \(|S| \leq d + 2 \).

Problem 4 [Barvinok, page 144]

Let \(A \subset \mathbb{R}^d \) be a non-empty set such that \(A^o = A \). Prove that \(A \) is the unit ball, i.e.

\[
A = \{ x \in \mathbb{R}^d : \|x\| \leq 1 \}
\]
Problem 5 **Seidel’s Algorithm**

Let $A = \{ x \in \mathbb{R}^d : \langle c_i, x \rangle \leq 1 \text{ for } i = 1, \ldots, m \}$ be a polytope (namely it is bounded). Let A' be obtained from A by removing one of its constraints at random. Then prove:

$$\Pr[\max_{x \in A} u^T x < \max_{x \in A'} u^T x] \leq \frac{d}{m}$$

Problem 6 *[Barvinok, page 8] **Guass-Lucas Theorem**

Let $f(z)$ be a non-constant polynomial in one complex variable z and let z_1, \ldots, z_m be the roots of f (that is, the set of all solutions to the equation $f(z) = 0$). Let us interpret a complex number $z = x + iy$ as a point $(x, y) \in \mathbb{R}^2$. Prove that each root of the derivative $f'(z)$ lies in the convex hull $\text{conv}(z_1, \ldots, z_m)$.

Hint: Without loss of generality we may suppose $f(z) = (z - z_1) \ldots (z - z_m)$. If w is a root of $f'(z)$, then $\sum_{i=1}^m \prod_{j \neq i} (w - z_j) = 0$, and, therefore, $\sum_{i=1}^m \prod_{j \neq i} (\overline{w} - \overline{z}_j) = 0$ (where \overline{z} is complex conjugate of z). Multiply both sides of the last identity by $(w - z_1) \ldots (w - z_m)$ and express w as a convex combination of z_1, \ldots, z_m.