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Abstract

Intensity-based classification of MR images has proven problematic, even when
advanced techniques are used. Intra-scan and inter-scan intensity inhomogeneities
are a common source of difficulty. While reported methods have had some success
in correcting intra-scan inhomogeneities, such methods require supervision for the
individual scan. This paper describes a new method called adaptive segmentation
that uses knowledge of tissue intensity properties and intensity inhomogeneities to
correct and segment MR images. Use of the EM algorithm leads to a method that
allows for more accurate segmentation of tissue types as well as better visualization
of MRI data, that has proven to be effective in a study that includes more than
1000 brain scans.

Implementation and results are described for segmenting the brain in the fol-
lowing types of images: axial (dual-echo spin-echo), coronal (3DFT gradient-echo
T1-weighted) all using a conventional head coil; and a sagittal section acquired using
a surface coil.

The accuracy of adaptive segmentation was found to be comparable with man-
ual segmentation, and closer to manual segmentation than supervised multi-variate
classification while segmenting gray and white matter.
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1 Introduction

The advantages of magnetic resonance imaging (MRI) over other diagnostic imaging

modalities are its high spatial resolution and excellent discrimination of soft tissues. MRI

provides rich information about anatomical structure, enabling quantitative pathological

or clinical studies [1]; the derivation of computerized anatomical atlases [2]; as well as pre-

and intra-operative guidance for therapeutic intervention [3, 4]. Such information is also

valuable as an anatomical reference for functional modalities, such as PET [5], SPECT,

and functional MRI [6].

Advanced applications that use the morphologic contents of MRI frequently require

segmentation of the imaged volume into tissue types. This problem has received consid-

erable attention – the comprehensive survey article by Bezdek et al. [7] lists 90 citations.

Such tissue segmentation is often achieved by applying statistical classification meth-

ods to the signal intensities [8, 9], in conjunction with morphological image processing

operations [10, 11].

Conventional intensity-based classification of MR images has proven problematic, how-

ever, even when advanced techniques such as non-parametric, multi-channel methods are

used. Intra-scan intensity inhomogeneities due to RF coils or acquisition sequences (e.g.

susceptibility artifacts in gradient echo images) are a common source of difficulty. Al-

though MRI images may appear visually uniform, such intra-scan inhomogeneities often

disturb intensity-based segmentation methods. In the ideal case, differentiation between

white and gray matter in the brain should be easy since these tissue types exhibit distinct

signal intensities. In practice, spatial intensity inhomogeneities are often of sufficient

magnitude to cause the distributions of signal intensities associated with these tissue

classes to overlap significantly. In addition, the operating conditions and status of the

MR equipment frequently affect the observed intensities, causing significant inter-scan

intensity inhomogeneities that often necessitate manual training on a per-scan basis.

While reported methods [12, 13, 14, 15, 16, 17] have had some success in correcting

intra-scan inhomogeneities, such methods require supervision for the individual scan. It

was our goal to develop a fully automated segmentation algorithm for MR data that can

handle the intra-scan and inter-scan intensity inhomogeneities that frequently arise.

This paper describes a new method called adaptive segmentation that uses knowledge

of tissue properties and intensity inhomogeneities to correct and segment MR images.

Use of the expectation-maximization algorithm leads to a method that allows for more

accurate segmentation of tissue types as well as better visualization of MRI data. Adaptive

segmentation has proven to be an effective fully-automatic means of segmenting brain

tissue in a study including more than 1000 brain scans.

The method is described in Section 2, and a selection of segmentation results are pre-

sented in Section 3. A comparison of the method to manual and supervised segmentation
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is described in Section 4, and the relation of adaptive segmentation to other methods is

discussed in Section 5. Finally, some conclusions are drawn in Section 6.

2 Description of Method

We model intra- and inter-scan MRI intensity inhomogeneities with a spatially-varying

factor called the gain field that multiplies the intensity data. The application of a loga-

rithmic transformation to the intensities allows the artifact to be modeled as an additive

bias field.

If the gain field is known, then it is relatively easy to estimate tissue class by applying

a conventional intensity-based segmenter to the corrected data. Similarly, if the tissue

classes are known, then it is straightforward to estimate the gain field by comparing pre-

dicted intensities and observed intensities. It may be problematic, however, to determine

either the gain or the tissue type without knowledge of the other. We will show, however,

that is possible to estimate both using an iterative algorithm (that converges in five to

ten iterations, typically).

2.1 Bias Field Estimator

We use a Bayesian approach to estimating the bias field that represents the gain artifact

in log-transformed MR intensity data. We first compute a logarithmic transformation of

the intensity data as follows,

Yi = g(Xi) = (ln([Xi]1), ln([Xi]2), . . . , ln([Xi]m))T , (1)

where Xi is the observed MRI signal intensity at the i-th voxel, and m is the dimension

of the MRI signal. 1

Similar to other statistical approaches to intensity-based segmentation of MRI [10,

11], the distribution for observed values is modeled as a normal distribution (with the

incorporation of an explicit bias field):

p(Yi | Γi, βi) = GψΓi
(Yi − µ(Γi)− βi) , (2)

where

GψΓi
(x) ≡ (2π)−

m
2 |ψΓi|−

1
2 exp

(
−1

2
xTψ−1

Γi
x
)

is the m-dimensional Gaussian distribution with variance ψΓi , and where

1For example, m will be two for a double-echo MRI acquisition.
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Yi is the observed log-transformed intensities at the ith voxel

Γi is the tissue class at the ith voxel2

µ(x) is the mean intensity for tissue class x

ψx is the covariance matrix for tissue class x

βi is the bias field at the ith voxel.

Here Yi, µ(x), and βi are represented by m-dimensional column vectors, while ψx is

represented by an m-by-m matrix. Note that the bias field has a separate value for each

component of the log-intensity signal at each voxel. In words, Equation 2 states that

the probability of observing a particular image intensity, given knowledge of the tissue

class and the bias field is given by a Gaussian distribution centered at the biased mean

intensity for the class.

A stationary prior (before the image data is seen) probability distribution on tissue

class is used, it is denoted

p(Γi) . (3)

If this probability is uniform over tissue classes, our method devolves to a maximum-

likelihood approach to the tissue classification component. A spatially-varying prior prob-

ability density on brain tissue class is described in [18]. Such a model might profitably be

used within this framework.

The entire bias field is denoted by β = (β0, β1, . . . , βn−1)T , where n is the number of

voxels of data. The bias field is modeled by a n-dimensional zero mean Gaussian prior

probability density. This model allows us to capture the smoothness that is apparent in

these inhomogeneities:

p(β) = Gψβ(β) , (4)

where

Gψβ(x) ≡ (2π)−
n
2 |ψβ|−

1
2 exp

(
−1

2
xTψ−1

β x
)

is the n-dimensional Gaussian distribution. The n × n covariance matrix for the entire

bias field is denoted ψβ. Although ψβ will be too large to manipulate directly in practice,

we will show below that tractable estimators result when ψβ is chosen so that it is banded.

We assume that the bias field and the tissue classes are statistically independent, this

follows if the intensity inhomogeneities originate in the equipment. Using the definition of

conditional probability we may obtain the joint probability on intensity and tissue class

conditioned on the bias field as follows,

p(Yi,Γi | βi) = p(Yi | Γi, βi)p(Γi) , (5)

and we may obtain the conditional probability of intensity alone by computing a marginal

2For example, when segmenting brain tissue Γi ∈ {white matter, gray matter, cerebro-spinal fluid}.
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over tissue class:

p(Yi | βi) =
∑
Γi

p(Yi,Γi | βi) =
∑
Γi

p(Yi | Γi, βi)p(Γi) . (6)

Thus, our modeling has led to a class-independent intensity distribution that is a mixture

of Gaussian populations (one population for each tissue class). Since this model is a

Gaussian mixture, rather than a purely Gaussian distribution, the estimators that we

derive below will be non-linear.

We assume statistical independence of the voxel intensities (in other words, the noise

in the MR signal is spatially white). We may then write the probability density for the

entire image as

p(Y | β) =
∏
i

p(Yi | βi) . (7)

Bayes’ rule may then be used to obtain the posterior probability of the bias field, given

observed intensity data as follows,

p(β | Y ) =
p(Y | β)p(β)

p(Y )
, (8)

where p(Y ) is an unimportant normalizing constant.

Having obtained the posterior probability on the bias field, we now use the maximum-

a-posteriori (MAP) principle to formulate an estimate of the bias field as the value of β

having the largest posterior probability,

β̂ = arg max
β

p(β | Y ) . (9)

A necessary condition for a maximum of the posterior probability of β is that its gradient

with respect to β be zero. We use an equivalent zero-gradient condition on the logarithm

of the posterior probability,[
∂

∂[βi]k
ln p(β | Y )

]
β=β̂

= 0 ∀i,k , (10)

where [βi]k is the k-th component of the bias field at voxel i. Installing the statistical

modeling of Equations 2-9 yields the following expression for the zero gradient condition: ∂

∂[βi]k

∑
j

ln p(Yj | βj) + ln p(β)


β=β̂

= 0 ∀i,k .

Since only the i-th term of the sum depends on βi, we have (after differentiating the

logarithms)  ∂
∂[βi]k

p(Yi | βi)
p(Yi | βi)

+

∂
∂[βi]k

p(β)

p(β)


β=β̂

= 0 ∀i,k .
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Using Equations 2 and 6, this may be re-written as∑Γi p(Γi)
∂

∂[βi]k
GψΓi

(Yi − µ(Γi)− βi)∑
Γi p(Γi)GψΓi

(Yi − µ(Γi)− βi)
+

∂
∂[βi]k

p(β)

p(β)


β=β̂

= 0 ∀i,k .

Differentiating the Gaussian expression in the first term yields∑Γi p(Γi)GψΓi
(Yi − µ(Γi)− βi)

[
ψ−1

Γi
(Yi − µ(Γi)− βi)

]
k∑

Γi p(Γi)GψΓi
(Yi − µ(Γi)− βi)

+

∂
∂[βi]k

p(β)

p(β)


β=β̂

= 0 ∀i,k .

This expression may be written more compactly as∑
j

Wij

[
ψ−1
j (Yi − µj − βi)

]
k

+

∂
∂[βi]k

p(β)

p(β)


β=β̂

= 0 ∀i,k , (11)

with the following definition of Wij , (which are called the weights),

Wij ≡

[
p(Γi)GψΓi

(Yi − µ(Γi)− βi)
]
Γi=tissue-class-j∑

Γi p(Γi)GψΓi
(Yi − µ(Γi)− βi)

, (12)

where subscripts i and j refer to voxel index and tissue class respectively, and defining

µj ≡ µ(tissue-class-j)

as the mean intensity of tissue class j. Equation 11 may be re-expressed as follows,∑
j

Wij

[
ψ−1
j (Yi − µj)

]
k
−
∑
j

Wij

[
ψ−1
j βi

]
k

+

∂
∂[βi]k

p(β)

p(β)


β=β̂

= 0 ∀i,k ,

or as [Ri

]
k
−
[
ψ−1

iiβi
]
k

+

∂
∂[βi]k

p(β)

p(β)


β=β̂

= 0 ∀i,k (13)

with the following definitions for the mean residual,

Ri ≡
∑
j

Wijψ
−1
j (Yi − µj) , (14)

and the mean inverse covariance,

ψ−1
ik ≡


∑
jWijψ

−1
j if i = k

0 otherwise
. (15)

The mean residuals and mean inverse covariances defined above are averages taken over

the tissue classes, weighted according to Wij .
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Equation 13 may be re-expressed in matrix notation as[
R − ψ−1β +

∇βp(β)

p(β)

]
β=β̂

= 0 .

Differentiating the last term yields the following,

R− ψ−1β̂ − ψ−1
β β̂ = 0 .

Finally, the zero-gradient condition for the bias field estimator may be written concisely

as

β̂ = HR , (16)

where the linear operator H is defined by

H ≡
[
ψ−1 + ψ−1

β

]−1
, (17)

that is, the bias field estimate is derived by applying the linear operator H to the mean

residual field, and H is determined by the mean covariance of the tissue class intensities

and the covariance of the bias field.

The bias field estimator of Equation 16 has some resemblance to being a linear esti-

mator in Y of the bias field β. It is not a linear estimator, however, owing to the fact

that the Wij (the “weights”) that appear in the expression for R and H are themselves

non-linear functions of Y (Equation 12).

The result of the statistical modeling in this section has been to formulate the problem

of estimating the bias field as a non-linear optimization problem embodied in Equation

16. This optimization depends on the mean residual of observed intensities and the mean

intensity of each tissue class, and on the mean covariance of the tissue class intensities and

the covariance of the bias field. In the next section an approach to obtaining solutions

(estimates) is described.

2.2 EM Algorithm

We use the expectation-maximization (EM) algorithm to obtain bias field estimates from

the non-linear estimator of Equation 16. The EM algorithm was originally described

in its general form by Dempster, Laird and Rubin [19]. It is often used in estimation

problems where some of the data are “missing.” In this application, the missing data is

knowledge of the tissue classes. (If they were known, then estimating the bias field would

be straightforward.)

In this application, the EM algorithm iteratively alternates evaluations of the expres-

sions appearing in Equations 16 and 12,

Wij ←

[
p(Γi)GψΓi

(Yi − µ(Γi)− βi)
]
Γi=tissue-class-j∑

Γi p(Γi)GψΓi
(Yi − µ(Γi)− βi)

, (18)
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β̂ ← HR . (19)

In other words, Equation 12 is used to estimate the weights given an estimated bias field,

then Equation 19 is used to estimate the bias, given estimates of the weights.

As frequently occurs in application of the EM algorithm, the two components of the

iteration have simple interpretations. Equation 18 (the E-Step) is equivalent to calculating

the posterior tissue class probabilities (a good indicator of tissue class) when the bias field

is known. Equation 19 (the M-Step) is equivalent to a MAP estimator of the bias field

when the tissue probabilities W are known.

The iteration may be started on either expression. Initial values for the weights will

be needed to start with Equation 19, and initial values for the bias field will be needed to

start with Equation 18.

It is shown in [19] that in many cases the EM algorithm enjoys pleasant convergence

properties – namely that iterations will never worsen the value of the objective function.

Provided that the bias estimates are bounded, our model satisfies the necessary conditions

for guaranteed convergence (although there is no guarantee of convergence to the global

minimum).

In principle, given µ(Γi), ψβ , and ψj , we could use the EM algorithm to obtain the

needed estimates. In practice, we cannot directly measure ψβ , and thus we will seek other

estimates of ψβ (in Section 2.3).

2.2.1 Tractability of the M Step

Although the covariance matrix ψβ that characterizes the prior on bias fields is impracti-

cally large in general, we will demonstrate that tractable estimation algorithms may yet

be obtained.

From an engineering standpoint, ψβ may be chosen in the following way,

ψβ = LLT (20)

where L represents a “practical” low-pass filter. Then (referring to Equation 4)

p(β) ∝ exp
(
−1

2
| L−1β |2

)
,

and L−1 will amplify high-frequency components of β since it is the inverse of a low-pass

filter. It is clear that this form of prior model on bias fields will have lower probabilities

to the extent that the bias field contains high-frequency components.

Further, ψβ may be chosen to be a banded matrix, this will occur if L represents a

FIR (finite impulse-response) low-pass filter. Equation 16 may be written in the following

way [
I + ψβψ−1

]
β̂ = ψβR .
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In this case, calculating ψβR is tractable, since ψβ is banded, and solving the linear system

for β̂ will also be tractable, since [I + ψβψ−1] is banded (note that ψ−1 is diagonal).

2.3 Determination of the Linear Operator H

In this section we discuss the linear operator H, including its relation to the prior model

on bias fields. We argue that H will be a linear low-pass filter, and describe a particularly

efficient filter.

2.3.1 Discussion

We have taken a Bayesian approach to estimating the bias field and tissue classes, and

a formal prior model on bias fields has been assumed. This approach has allowed us to

derive a version of the EM algorithm for this application. The operator H is related to

the prior on the bias field via ψ−1
β and to the measurement noise via ψ−1 (Equation 17)

. Ideally, H would be determined by estimating the covariance ψβ , but given the size of

this matrix, such an approach is impractical.

As pointed out above, H is the MAP estimator of the bias field when the tissue

probabilities are known, (the “complete-data” case with the EM algorithm). As such, H

is an optimal estimator (with respect to the Gaussian modeling), and is also the optimal

linear least squares estimator (LLSE) for arbitrary zero-mean models of the bias field

whose second-order statistics are characterized by ψβ .

Optimal filters may often be equivalently characterized within the related formalisms

of estimation theory and random processes. Although filters are perhaps more commonly

described within the framework of random processes, we have used estimation theory in

order to derive the EM algorithm for this application. H is essentially equivalent to the

LLSE for discrete random processes with given second order statistics (auto-correlation

functions). Such estimators are characterized by the Wiener-Hopf equations. Applica-

tions of Wiener filtering are often approached via Fourier transform methods, yielding a

filter frequency response in terms of the power spectra of the signal and noise. In such

applications, the noise spectra are often known, and the signal spectra are sometimes

estimated using techniques of spectral estimation.

A frequent problem that arises in filter design (the present complete-data case in-

cluded) is that of estimating a slowly-varying signal that has been contaminated with

white noise. The optimal filter in such situations will be a low-pass filter [20, Section 9.2].

In practice, it is difficult to obtain the optimal linear filter. H may be instead chosen

as a good engineering approximation of the optimal linear filter (this approach is described

in more detail below). In this case, Equations 18 and 19 are still a useful estimator for the

missing data case, and the good convergence properties of the EM algorithm still apply.
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This is the approach we have taken in our implementations, where the filter was selected

empirically.

Examination of the bias fields displayed in Figures 6 and 11 shows that they are

slowly varying. While the low-pass filters H we have used in practice are not the optimal

filters for estimating these bias fields, they are reasonable choices, and may correspond

to reasonable subjective estimates of the unknown probability law for bias fields, in the

sense described by Friden [21, Chapter 16]. In the end, they are justified empirically by

the good results obtained via their use. Because ψβ is required to be positive definite, not

all choices of low-pass filter H will correspond to formally valid prior models on the bias

field.

2.3.2 Computationally Efficient Filter

As argued above, the optimal H will be a linear low-pass filter, when tissue class is

constant. We have employed a particularly efficient filter that is characterized as follows

β̂i =
[FR]i

[Fψ−11]i
(21)

where

1 ≡ (1, 1, 1, . . . , 1)T .

The filter specified above is clearly linear in the mean residual, and it will be a low-pass

filter when the tissue class is constant, provided that F is a low-pass filter. It has been

designed to have unity DC gain – a spatially constant shift in Y induces the same constant

shift in β̂. If F is chosen to be a computationally efficient low-pass filter, then the filter

specified by Equation 21 will also be computationally efficient.

2.4 Equal Covariance Case

The formalism simplifies somewhat when the tissue classes have the same covariance. In

this case, ψ−1
j = ψ−1 and

ψ−1
ii =

∑
j

Wijψ
−1 = ψ−1

so that

ψ−1 = DIAG(ψ−1, ψ−1, ψ−1, . . . ψ−1) .

In this case H will be essentially a shift-invariant linear filter, provided that the bias

model is stationary. The expression for the mean residual simplifies to the following

matrix expression

R = ψ−1[Y −WU ]

where W is the matrix of the weights Wij, and U is a column vector containing the class

mean intensities U ≡ (µ1, µ2, . . . , µm)T .
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In the case of scalar data, ψ−1 = 1
σ2 , and the bias estimator may be written as

β̂ =
[
I + σ2ψ−1

β

]−1
[Y −WU ] . (22)

This expression for the bias estimator was previously reported in [22], along with scalar

formulas for the weights. The bias estimator of Equation 22 is particularly simple when

the bias model is stationary. It is a shift-invariant linear low-pass filter applied to the

difference between the observed intensities and a prediction of the signal that is based on

the weights (which are a good estimator of tissue class).

2.5 Non-Parametric Generalization

This section describes an extension of the segmentation method that uses a form of non-

parametric tissue class conditional intensity models that are described in [23]. The mo-

tivation was to bring the benefits of intensity inhomogeneity correction to applications

that were currently being processed in the manner of [23].

The method that was described in previous sections has two main components: tissue

classification and bias field estimation. Our approach in the extended method has been

to use the same basic iteration, and to replace the tissue classification component with

the technique described in [23]. In more detail, we use the intensity probability densities

described in [23] for the calculation of the weights in the E step, and substitute approxi-

mations of the means and covariances of the non-parametric densities for the means and

covariances that appear in Equations 14 and 15.

The classifier described in [23] uses the Parzen Window representation for non-parametric

probability densities [24] that are derived from training data . The tissue class conditional

models may be written as follows,

pX(Xi | Γi = tissue-class-j) =
1

nj

∑
k

Gψ0(Xi −Xkj) , (23)

where Xi is the MR intensity at voxel i, Gψ0(x) is a radially-symmetric Gaussian density,

and Xkj are the intensities of the nj training points for tissue class j.

The non-parametric tissue class conditional intensity models are derived from training

in the “natural” MR intensities. In view of our logarithmic transformation of the intensity

data (Equation 1), we use the following standard formula for transforming probability

densities,

pY (Yi | Γi) =
pX(g−1(Yi) | Γi)
∂g
∂Xi
| g−1(Yi) |

.

For double-echo data the resulting expression for the probability density on log-transformed

data is

pY (Yi | Γi) = exp(Y1) exp(Y2)pX((exp(Y1), exp(Y2))T | Γi) ,
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where pX is the non-parametric density described in Equation 23.

In the expression for the weights (Equation 18), we use the non-parametric class

conditional densities pY (Yi−βi | Γi) in place of the Gaussian densities GψΓi
(Yi−µ(Γi)−βi).

In the expressions for the average residual (Equation 14) and average covariance (Equa-

tion 15) we approximate with the empirical tissue class means and covariances from the

log transformed training data, as follows,

µj =
1

nj

∑
k

Ykj

and

ψj =
1

nj

∑
k

(Ykj − µj)(Ykj − µj)T ,

where Ykj = g(Xkj) are the nj log-transformed intensities of the training points for tissue

class j.

The resulting iterative algorithm is a simple generalization from the Gaussian the-

ory developed in the previous sections. This method was designed to be a compatible

replacement for an existing method [23] that did not address the issue of intensity in-

homogeneities. While the extended method is not technically an instance of the EM

algorithm, it has proven to be robust in practice. Results obtained using the method are

described in Section 3.2.

2.6 Implementations

2.6.1 Single-Channel Implementation

The single-channel results described in Section 3.1 were obtained using an implementation

of the adaptive segmentation method as described in Section 2.4, that was coded in the

C programming language. This single-channel, 2D implementation accommodates two

tissue classes, and uses a pre-defined region of interest (ROI) to limit the part of the

image to be classified and gain-corrected.

The algorithm of Section 2.2 has been initiated on the “E step”, Equation 18, with a

flat initial bias field, and on the “M step”, Equation 19, with equal tissue class probabil-

ities.

Iterated moving-average low-pass filters [25] have been used for the operator H in

Equation 19. These filters have a low computational cost that is independent of the

width of their support (amount of smoothing). The filters have been adapted to only

operate in the ROI, and to adjust the effective averaging window at boundaries to confine

influence to the ROI. These filters are shift-invariant, except at the boundary regions.

Averaging window widths of 11 – 30 pixels were used. One to four filtering passes have

been used with similar results. Usually, one pass is used for the sake of efficiency. A

uniform distribution was used for the prior on tissue class.
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In a typical case, the program was run until the estimates stabilized, typically in 5 –

10 iterations, requiring approximately .5 second per iteration (per 2562 slice) on a Sun

Microsystems Sparcstation 10 [26].

2.6.2 Two-Channel Implementation

The double-echo results described in Section 3.2 were obtained using an implementation

of the non-parametric extension that is described in Section 2.5. This implementation is

also coded in the C programming language. It accommodates 2 channel data (typically

registered proton-density and T2-weighted images), and multiple (more than two) tissue

classes having un-equal covariances. Because it can model the important intensities in

the imagery (including the background signal) it is able to correct and segment brain

images without the need for a previously generated ROI. It uses the computationally-

efficient filter described in Section 2.3.2, F is implemented as a moving average filter.

Both uniform and non-uniform distributions have been used for the prior on tissue class.

In a typical case, the program was run until the estimates stabilized, typically in 5 –

10 iterations, requiring approximately 2 seconds per iteration (per 2562 slice pair) on a

Sun Microsystems Sparcstation 10 [26].

3 Results

In this section we describe the application of adaptive segmentation to segmentation of

the human brain from spin-echo and gradient-echo images. Examples are shown for the

following types of brain images: axial (dual-echo spin-echo), coronal (3DFT gradient-echo

T1-weighted) all using a conventional head coil; and a sagittal section acquired using a

surface coil. An additional example is shown for a synthetic image.

All of the MR images shown in this section were obtained using a General Electric

Signa 1.5 Tesla clinical MR imager [27]. An anisotropic diffusion filter developed by Gerig

et al. [28] was used as a pre-processing step to reduce noise.

The method has been found to be substantially insensitive to parameter settings.

For a given type of acquisition, intensity variations across patients, scans, and equipment

changes have been accommodated in the estimated bias fields without the need for manual

intervention. In this sense, the method is fully automatic for segmenting healthy brain

tissue.

3.1 Single-Channel Examples

This section shows a selection of results obtained using the single-channel implementation

that is described in Sections 2.4 and 2.6.1. Operating parameters (tissue model parameters
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and filter parameters) were selected manually.

3.1.1 Synthetic Example

Figure 1 shows a synthetic test image. This image contains the sum of a checkerboard

pattern and a sinusoidal pattern of slightly higher spatial frequency. The checkerboard is

intended to represent two tissue classes, while the spatial sinusoid is meant to represent

an intensity inhomogeneity.

The initial segmentation appears on the right in Figure 1. This result is equivalent

to that which would be obtained from a conventional two-class gaussian classifier oper-

ating on the synthetic image. The sinusoidal “inhomogeneity’ has clearly disturbed the

classification.

Figure 2 shows the final segmentation and bias field that result from running the

iteration to convergence. The method has succeeded in correcting and classifying the

data.

This example would be difficult to correct using homomorphic filtering approaches to

intensity correction, since the signal and contaminant are not well separated spectrally.

Homomorphic filtering is discussed in more detail in Section 5.

3.1.2 Coronal Brain Slices

Slice Example Figure 3 shows the input image, a slice from a coronal 3DFT gradient-

echo T1-weighted acquisition. The brain tissue ROI was generated manually. Figure 4

shows the initial white matter probabilities and segmentation. These results are equivalent

to that which would be obtained using a conventional two-class gaussian classifier. Figure

5 shows the final white matter probabilities and segmentation resulting from adaptive

segmentation. Figure 6 shows the final bias field estimate. The largest value of the input

data was 85, while the difference between the largest and smallest values of the bias

correction was about 10.

Note the significant improvement in the right temporal area. In the initial segmenta-

tion the white matter is completely absent in the binarization.

3D Example The method was used to segment a complete coronal data set consisting

of 124 slices that are similar to the one described above.

In Figure 7 the exterior gray matter surface of the brain is shown for reference. This

surface lies just inside the brain ROI, which was generated semi-automatically as in [11].

Figure 8 shows the white matter surface, as determined by adaptive segmentation while

Figure 9 shows the result obtained without intensity correction, which is equivalent to

that of conventional intensity-based segmentation. Note the generally ragged appearance

and the absence of the temporal white matter structures.
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The 3D renderings were generated using the dividing cubes algorithm [29].

3.1.3 Sagittal Slice obtained with Surface Coil

This section shows results obtained by using the method on a sagittal surface coil brain

image. Surface coil images are frequently used in functional and interventional MRI

because of their high signal-to-noise ratio in the vicinity of the coil, however, this type

of data has severe intensity inhomogeneities. The five-inch receive-only surface coil was

positioned at the back of the head. Figure 10 shows the intensity image in the upper

position, after having been windowed for viewing the occipital area. Note that “optimal

viewing” of the image in the occipital region prevents the visualization of the rest of the

image. The lower position of Figure 10 shows the gray matter probabilities resulting from

starting the algorithm on the “M” step and running for one cycle. This result is equivalent

to that which might be obtained using linear methods of intensity correction, see Section

5 for additional discussion. A brain ROI was generated manually.

Figure 11 shows the final gray matter probability in the upper position and the final

bias field estimate in the lower image. Figure 12 shows the corrected intensity image. Here

the gain field estimate has been applied as a correction in the ROI. Note the dramatic

improvement in “viewability” – the entire brain area is now visible, although (inevitably)

the noise level is higher in the frontal brain tissue that is farthest from the surface coil.

Also note that despite the serious gradient in the data the gray matter / white matter

contrast is consistent in the entire corrected image.

3.2 Automated Segmentation of Double-Echo Spin-Echo MRI

Data

The results shown in this section were obtained using the non-parametric extended method

described in Sections 2.5 and 2.6.2.

3.2.1 Double-Echo Axial Example

This section demonstrates results for one slice of a double-echo axial acquisition of a

normal volunteer.

Figure 13 shows one slice of registered proton-density and T2-weighted images. The

corresponding initial and final segmentations are shown in Figure 14 in the upper and

lower positions, respectively. The tissues are encoded from black to white as follows:

background, subcutaneous fat, CSF, gray matter, white matter. The initial segmentation

is substantially erroneous because of static gain discrepancies between the tissue intensity

models and the data, in addition to spatial inhomogeneities. This result is equivalent to

that which would be obtained with conventional non-parametric segmentation [23]. The
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final segmentation shows that the method has been able to adapt to the intensities present

in the data. We have found that the method can reliably segment such MRI data across

patients and equipment upgrades without any adjustment or intervention.

Figures 15 and 16 show the final weights for selected tissue classes. As pointed out in

Section 2.2, these weights are a good indicator of tissue class. The final segmentation was

obtained by choosing the tissue class with the largest weight at each voxel.

3.2.2 Multiple Sclerosis Data

This section describes results recently obtained for segmenting MR images from a large,

longitudinal study of several dozen patients with multiple sclerosis (MS) [30].

Figures 17 and 18 show a sequence of registered proton-density and T2-weighted im-

ages for a single multiple-sclerosis patient with multiple white matter lesions. These

images represent the same section from 20 scans over time after they were spatially reg-

istered using the method described in [31, 32].

The same tissue class conditional intensity models were used to segment all sections.

The results without intensity correction are shown in Figure 19. Tissues are encoded from

black to white as follows: background, subcutaneous fat, gray matter, CSF, lesions, white

matter. These results are equivalent to those which would be obtained using conventional

non-parametric intensity-based segmentation (which would more typically be used with

per-scan manual training). These results show many gross misclassifications and demon-

strate that conventional intensity-based segmentation is unfeasible in this application, at

least without per-scan training. Even with per-scan training, significant asymmetries will

remain in the results due to the spatial intensity inhomogeneities present in the data.

Results using adaptive segmentation are shown in Figure 20 using the same tissue encod-

ing. Good stability and symmetry of the cortical gray matter structures are apparent.

Similar results have been obtained in processing 23 complete scans for each of 47 pa-

tients participating in the study mentioned above, without the need for retraining or

manually-generating regions-of-interest. This has facilitated monitoring the evolution of

specific white matter lesions over time. Thus, fully automatic segmentation of clinical

MRI data has been demonstrated in more than 1000 complete scans, without the need

for per-patient or per-scan training or adjustments. The exams occurred over a 2.5 year

period that included a major MR equipment upgrade.

4 Comparison to Manual and Supervised Segmenta-

tion

This section describes a comparison of adaptive segmentation to manual and supervised

segmentation methods in segmenting white matter and gray matter. The single-channel
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implementation that is described in Sections 2.4 and 2.6.1 was used. In the first test,

adaptive segmentation was compared to manual segmentations (outlining of structures

performed by experienced raters). In the second test, adaptive segmentation was com-

pared to supervised multivariate classification. The images, manual segmentations, and

supervised segmentations are described in [23].

Adaptive segmentation was applied to a single slice of an axial proton-density spin-

echo image, using a brain-tissue ROI. The ROI was obtained by selecting those pixels that

were labeled as brain tissue by four of the five raters in the manual segmentations. The

amount of difference between segmentations was calculated as the percentage of pixels in

the ROI having different labels.

4.1 Comparison to Manual Segmentation

Table 1 shows the results of comparing the method to segmentations performed manually

by experienced raters. The percentage of difference within the brain ROI is shown for

comparisons within a group consisting of the manual segmentations and the segmenta-

tion resulting from Adaptive Segmentation. The percentage of difference between two

segmentations was calculated by dividing the number of differently labeled pixels within

the ROI by the total number of pixels within the ROI. The lower part of the table shows

the average of the percentages of difference from the other segmentations. The adaptive

segmentation is consistent with the manual segmentations in the sense that it does not

have the largest average difference.

4.2 Comparison to Supervised Classification

Table 2 shows the results of comparing the method to segmentations performed by the

same expert raters using a supervised segmentation method described in [23]. In this

test, percentages of difference within the ROI are displayed for comparisons of the su-

pervised segmentations and the adaptive segmentations with the manual segmentations

described above. The average percentage of difference (calculated as above) from the

manual segmentations is also shown. The adaptive segmentation is seen to have less av-

erage difference from the manual segmentations than the supervised segmentations, so in

this test, its performance is better.

5 Discussion

The algorithm that has been described has two components, estimation of tissue class

probability, and gain field estimation. Our contribution has been to combine them in an
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Rater A Rater B Rater C Rater D Rater E Adaptive

Rater A 0.0 13.97 20.64 15.82 12.72 21.33

Rater B 13.97 0.0 22.16 15.99 15.11 20.67

Rater C 20.64 22.16 0.0 23.25 20.14 19.45

Rater D 15.82 15.99 23.25 0.0 15.30 23.02

Rater E 12.72 15.11 20.14 15.30 0.0 20.71

Adaptive 21.33 20.67 19.45 23.02 20.71 0.0

Average 16.90 17.58 21.13 18.58 16.80 21.04

Table 1: Percentage Differences among Manual and Adaptive Segmentations: Adaptive

Segmentation is Consistent with Manual Segmentations

Manual Supervised Segmentation by

Segmentation by Rater A Rater B Rater C Rater D Rater E Adaptive

Rater A 25.22 22.52 23.04 22.51 22.29 21.33

Rater B 23.86 21.43 21.45 21.32 20.92 20.67

Rater C 19.55 21.19 18.21 21.08 18.13 19.45

Rater D 27.45 25.68 25.78 25.47 25.08 23.02

Rater E 24.61 23.15 22.75 22.87 22.11 20.71

Average 24.15 22.79 22.25 22.65 21.71 21.04

Table 2: Percentages of Difference from Manual Segmentations of Supervised and Adap-

tive Segmentations: Adaptive Segmentation shows better Agreement with Manual Seg-

mentation than Supervised Segmentation
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iterative scheme that yields a powerful new method for estimating both tissue class and

gain field.

The use of multi-channel statistical intensity classifiers was pioneered by Vannier et

al.[8]. The classification component of adaptive segmentation is similar to the method

described by Gerig et al. and Cline et al. [10, 11]. They used Maximum-Likelihood

classification of voxels using normal models with two-channel MR intensity signals and a

semi-automatic way of isolating the brain using connectivity. The classification component

of the non-parametric extended method is equivalent to that described [23].

The bias field estimation component of adaptive segmentation method is somewhat

similar to homomorphic filtering (HMF) approaches that have been reported. Lufkin

et al. [12] and Axel et al. [13] describe approaches for controlling the dynamic range of

surface-coil MR images. A low-pass-filtered version of the image is taken as an estimate

of the gain field, and used to correct the image. Lim and Pfferbaum [14] use a similar

approach to filtering that handles the boundary in a novel way, and apply intensity-based

segmentation to the result.

When started on the “M Step”, and run for one cycle, adaptive segmentation is equiva-

lent to HMF followed by conventional intensity-based segmentation. We have discovered,

however, that more than one iteration are frequently needed to converge to good re-

sults – indicating that adaptive segmentation is more powerful than HMF followed by

intensity-based segmentation. The essential difference is that adaptive segmentation uti-

lizes evolving knowledge of the tissue type to make increasingly accurate estimates of the

gain field.

Dawant, Zijdenbos and Margolin describe methods for correcting intensities for tissue

classification [15]. In one variant, an operator selected points of a tissue class are used to

regress an intensity correction. In the other method, a preliminary segmentation is used

in determining an intensity correction, which is then used for improved segmentation.

This strategy is somewhat analogous to starting adaptive segmentation on the “E step”

and running it for one and a half cycles. As in the previous case, our results demonstrate

improvement with additional iterations.

Aylward and Coggins describe a two-stage approach that first uses a band-pass inten-

sity corrector. Remaining inhomogeneities are handled by using supervised training to

obtain spatially-varying statistics for classifying the corrected MR data [17].

Several authors have reported methods based on the use of phantoms for intensity

calibration [13, 16]. This approach has the drawback that the geometric relationship of

the coils and the image data is not typically available with the image data (especially with

surface coils). Fiducial markers were used to address this problem in [16]. In addition, the

calibration approach can become complicated because the response of tissue to varying

amounts of RF excitation is significantly non-linear (see [33, Equations 1-3 and 1-16]). In

addition, phantom calibration cannot account for possible gain inhomogeneities induced
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by the interaction of anatomy and the RF coils.

The present work has focused on the correction of intensity inhomogeneities in MR.

The correction of magnetic field inhomogeneities of MR images has received considerable

attention. Such inhomogeneities can cause significant geometrical distortions. An effective

in-vivo correction approach is described in [34].

6 Conclusions

We have demonstrated a new fully-automatic method, called adaptive segmentation, for

segmenting and intensity-correcting MR images.

Adaptive segmentation increases the robustness and level of automation available for

the segmentation of MR images into tissue classes by correcting intra- and inter-scan

intensity inhomogeneities. Via improved segmentation, the approach leads to improved

automatic 3D reconstruction of anatomical structures, for visualization, surgical planning,

disease research, drug therapy evaluation, anatomical reference and other purposes.

Adaptive segmentation also facilitates the post-processing of medical MR images for

improved appearance by correcting intensity inhomogeneities present in the image. This is

especially useful for images derived from surface coils, where the large intensity variations

make it difficult to accommodate the image data on films for viewing.
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[32] W.E.L. Grimson, T. Lozano-Pérez, W. Wells, et al. An Automatic Registration

Method for Frameless Stereotaxy, Image Guided Surgery, and Enhanced Realigy Vi-

sualization. In Proceedings of the Computer Society Conference on Computer Vision

and Pattern Recognition, Seattle, WA., June 1994. IEEE.

[33] D. Stark and Jr. W. Bradley, editors. Magnetic Resonance Imaging. Mosby Year

Book, 1992.

[34] E. Schneider and G.H. Glover. Rapid In-Vivo Proton Shimming. Magn. Resonance

in Med., 18:335–347, 1991.

23



Figure 1: Synthetic image and results of conventional segmenta-

tion

Figure 2: Results of adaptive segmentation and bias field
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Figure 3: Original gradient-echo image.
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Figure 4: Results of conventional two-class Gaussian segmenter:

white matter probability and segmentation
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Figure 5: Results of adaptive segmentation: white matter prob-

ability and segmentation
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Figure 6: Estimated bias field

Figure 7: Gray matter surface
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Figure 8: White matter surface determined by adaptive segmen-

tation

Figure 9: White matter surface determined by conventional

intensity-based segmentation
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Figure 10: Surface-coil image and initial gray matter probability

(equivalent to the use of a linear method of intensity correction)
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Figure 11: Results of adaptive segmentation: gray matter prob-

ability and bias estimate
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Figure 12: Results of adaptive segmentation: corrected image
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Figure 13: Proton-density and T2-weighted images
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Figure 14: Results of conventional non-parametric segmentation

and adaptive segmentation
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Figure 15: Weights for fat and CSF
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Figure 16: Weights for gray matter and white matter
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Figure 17: Multiple sclerosis data: registered proton-density im-

ages
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Figure 18: Multiple sclerosis data: registered T2-weighted im-

ages
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Figure 19: Conventional non-parametric intensity-based segmen-

tation results (without per-scan training)
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Figure 20: Adaptive segmentation results (without per-scan

training)
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