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Abstract. In this paper, we explore the use of over-complete spher-
ical wavelets in shape analysis of closed 2D surfaces. Previous work
has demonstrated, theoretically and practically, the advantages of over-
complete over bi-orthogonal spherical wavelets. Here we present a de-
tailed formulation of over-complete wavelets, as well as shape analysis
experiments of cortical folding development using them. Our experiments
verify in a quantitative fashion existing qualitative theories of neuro-
anatomical development. Furthermore, the experiments reveal novel in-
sights into neuro-anatomical development not previously documented.

1 Introduction

In this paper, we explore the use of overcomplete spherical wavelets [1,16] for
shape analysis of closed 2D surfaces. Wavelets offer a tradeoff between entirely
local and global features more commonly used in shape analysis.

In the Euclidean space, a pixel representation of an image provides precise
pointwise features, but suffers from noise and can benefit from a multiscale repre-
sentation using global contextual information. At the other extreme, the Fourier
transform creates a global summary of an image at the expense of localization
ability. The orthogonal/bi-orthogonal wavelet transform [5] provides a tradeoff
between pixel-wise and Fourier representation by projecting an image onto basis
functions with compact support, at different spatial scales and locations.

Unfortunately, each level of the multi-scale orthogonal/bi-orthogonal wavelet
transform suffers from sampling aliasing. Practically, this results in a loss of
translational invariance: translation of an image by even one pixel causes dra-
matic changes in the wavelet coefficients [13]. A related problem is unidentifiabil-
ity [13,18]. Suppose a tumor of a certain size exists at a certain spatial location.
Ideally, one would want a large wavelet coefficient at that particular scale and
spatial location. But due to undersampling, the tumor’s location might not be
sampled at that scale, resulting in two moderate wavelet coefficients on either
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side of the actual tumor. Considering coefficients from that scale leads to a false
hypothesis of the existence of two moderate-sized tumors.

Over-complete wavelets resolve these problems by ensuring each wavelet scale
is sufficiently sampled [13]. Overcomplete transforms result in more coefficients
than pixels, hence the name “overcomplete”. This inefficiency is compensated
for by their increased accuracy and robustness.

Pioneering work using landmarks for shape analysis include the Procrustes
method [8] and active shape models (ASM) [4]. The individual landmarks provide
precise local information about the shape, but lack global contextual informa-
tion. ASM performs principal component analysis on the landmarks of training
images, thus avoiding some limitations of landmark-based methods. However,
this requires training data, while we are interested in generic shape representa-
tions.

The desire for a global shape representation motivates the introduction of
global basis functions. Since closed 2D shapes can be spherically parameterized,
one can treat each coordinate function {x, y, z} of a closed 2D surface as a spher-
ical image and project it onto spherical bases, such as spherical harmonics [2]
and polynomials [14].

Schroder and Sweldens [12] proposed the bi-orthogonal spherical wavelet
transform for scalar spherical images. The application of these wavelets to closed
2D surfaces demonstrated great utility in both segmentation and shape analy-
sis [11,17]. Unfortunately, the bi-orthogonal wavelet transform on the sphere
suffers from the same aliasing problems observed in Euclidean images. Over-
complete spherical wavelets [1,16] overcome these problems by ensuring suffi-
cient sampling at each scale and have been shown to be both more robust and
more sensitive to group differences than bi-orthogonal spherical wavelets in shape
analysis [18].

In this paper, we present a detailed formulation of overcomplete spherical
wavelets and incorporate them into the growth model of neonatal cortical folding,
extending the experiments in the workshop paper [18]. Our analysis yields quan-
titative characterizations of cortical folding development consistent with previous
studies, which were based on visual inspection of post-mortem brains [3]. The
results also provide novel insights into neuro-anatomical development, suggest-
ing directions for future experimental verification, and potentially providing a
basis for early detection of neurodevelopmental disorders.

2 Overcomplete Spherical Wavelets for Shape Analysis

In this section, we outline the theory and implementation details of overcom-
plete spherical wavelets for shape analysis. While several related formulations of
wavelet transforms on the sphere exist, we follow the continuous spherical filter
bank and sampling framework of [16].

Continuous Spherical Filter Bank Theory. In the Euclidean domain, con-
volution is defined as the inner product of two functions translated relative to
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each other. In the spherical domain, we define spherical convolution as the inner
product between spherical functions rotated relative to each other.

Let I(θ, φ) be a spherical scalar image (function) and {˜hn(θ, φ)}N
n=1 be a set

of N spherical scalar filters (functions) parameterized by the spherical coor-
dinates (θ, φ). We apply each filter ˜hn to the image via spherical convolution,
resulting in the continuous outputs wn = I�˜hn. In wavelet theory, {˜hn} are called
the analysis filters. We can then convolve {wn} with another set of spherical fil-
ters {hn}, called the synthesis filters, producing reconstructed image components
̂In = wn � hn. We define ̂I =

∑

n
̂In to be the reconstructed image.

If {˜hn, hn}N
n=1 are such that ̂I = I for all input images I, the analysis-synthesis

filter bank is invertible and {wn} is a lossless representation of the original image
I. In particular, if the filters {˜hn} are dilated versions of a template filter, then
{wn} is a continuous wavelet transformation (CWT) that captures the original
image properties at multiple scales. While conceptually similar to the Euclidean
case, there are significant differences between planar and spherical convolutions.
For example, unless ˜hn is axisymmetric (i.e., radially symmetric about the north
pole), wn is a function on SO(3) rather than a spherical function.

For a general non-axisymmetric analysis-synthesis filter bank, the relationship
between the input and reconstructed image is as follows [16]:

̂I l,m = I l,m 8π2

2l + 1

N
∑

n=1

l
∑

m′=−l

[

hl,m′
n

] [

˜hl,m′
n

]∗
(1)

where I l,m is the degree l and order m spherical harmonic coefficient of function
I(θ, φ) and ∗ denotes complex conjugation. We define the frequency response of
a filter bank to be

H
˜h,h(l) =

8π2

2l + 1

N
∑

n=1

l
∑

m=−l

[hl,m
n ][˜hl,m

n ]∗. (2)

It is easy to see that a filter bank is invertible if and only if its frequency response
H

˜h,h(l) is equal to 1 for all l such that I l,m �= 0.
We now construct a spherical continuous wavelet transform (SCWT). We

define the analysis filters ˜hn = Dnψ to be dilations of a template wavelet ψ and

hl,m
n =

{

1
H

˜h,˜h
(l)

˜hl,m
n for H

˜h,˜h(l) > 0

0 otherwise
(3)

One can verify that this analysis-synthesis filter bank is invertible for frequencies
(l, m) for which H

˜h,˜h(l) �= 0.

Sampling Theory for SCWT. In the above formulation, the spherical im-
ages, filters and SCWT are defined continuously. While fast algorithms exist
for computing and representing these continuous functions via coefficients of
basis functions (e.g., spherical harmonics, and wigner-D functions), in practice,
effective analysis requires sampling the SCWT. The sampling scheme and the
discrete convolution between the wavelet samples and the continuous synthesis
filter bank must be defined in a way that ensures invertibility.
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It turns out that for axisymmetric analysis-synthesis filter banks of a finite
spherical harmonic degree, latitude-longitude (lat-lon) sampling – at a sufficient
rate dependent on the maximum spherical harmonic degree – guarantees that the
filter bank has the same frequency response under the continuous and discrete
convolution [16]. Thus an invertible continuous filter bank remains invertible
under sampling and discrete convolution. The sampling guarantee implies that
we can sample the SCWT defined in Eq. (3) while maintaining invertibility.

Implementation. In practice, we first establish a minimal metric-distortion
spherical coordinate system [6] for an input shape consisting of mesh vertices
{xi, yi, zi}, resulting in the coordinate samples {x(θi, φi), y(θi, φi), z(θi, φi)}.
Fast spherical convolution requires representing the coordinate functions in the
spherical harmonic domain. We interpolate the coordinate samples onto the lat-
lon grid and use the fast spherical harmonic transform [9] to obtain the spherical
harmonic coefficients {xl,m, yl,m, zl,m}. We verify by visual inspection and by
computing percentage errors that interpolation errors are small.

For multi-scale shape analysis, we choose the template wavelet ψ to be the
Laplacian-of-Gaussian [18]. We compute the SCWT of each coordinate function
via convolutions with the analysis-synthesis filter bank in the spherical harmonic
domain. As required by the sampling theories, the wavelet coefficients are sam-
pled onto the lat-lon grid. For computational convenience, we interpolate the
sampled wavelet coefficients onto a subdivided icosahedron grid (160k vertices).
Theoretically, the coarser wavelet scales require smaller number of samples to
prevent aliasing. In this work, we over-sample the wavelets coefficients on the
same dense grid at all scales to increase the precision of our analysis. By re-
interpolating the wavelet coefficient samples from the subdivided icosahedron
back to the lat-lon grid, we again verify that interpolation errors are small.

Since metric distortion is invariant under rotations of the coordinate sys-
tem, the resulting shape analysis is also rotation invariant, unlike bi-orthogonal
wavelets. Rotational invariance of the overcomplete wavelet transform was the-
oretically and experimentally demonstrated in [18].

To summarize, given an input shape as a set of mesh vertices {xi, yi, zi},
the spherical wavelet transforms output a set of wavelet coefficients samples
{wj

n(x), wj
n(y), wj

n(z)} on the subdivided icosahedron grid, where j denotes the
vertex index on the grid and n denotes the index of the filter, which corresponds
directly to the resolution level of the wavelet transform.

3 Experiments and Discussion

Cortical folds in humans start developing at about 9 weeks in gestation and
change dramatically until birth. The mechanism involved remains unclear. Cor-
tical folds are known to correlate with function and cytoarchitecture [7]. The
study of the folding formation process can therefore deepen our understanding
of structure-function relationship and neurological diseases originating from ab-
normal structural and functional connectivity in neuro-development. A previous
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postmortem study reports regional and hemispheric differences in folding pat-
terns in gestation [3]. Recent advances in MR imaging allow us to study the
cortical folding pattern of premature newborns in-vivo.

We consider 11 MRI scans of eight normal neonates at gestational ages of
30.57, 31.1, 34, 37.71, 38.1, 38.4, 39.72, and 40.43 weeks, and three children (2,
3 and 7 years old). The cortical surfaces corresponding to the gray-white matter
boundary were manually segmented, automatically registered [6] and manually
checked for correspondence. We then apply the overcomplete spherical wavelets
and employ the Gompertz function [15] to characterize the folding development:

F (t) = me−e−r(t−p)
+ ε(t) (4)

where F (t) is some feature derived from the wavelet coefficients
wt(x), wt(y), wt(z) at age t [17]. m is the maximum value of F at matu-
rity, r is the maximum growth rate, p is the age of fastest growth and ε(t) is
i.i.d. zero mean Gaussian noise. We assume a zero mean Gaussian prior on m,
p, and r and estimate them using the maximum-a-posteriori framework. The
variance of the Gaussian noise and priors on m, p and r are tuned via cross-
validation. We estimate the confidence intervals of the estimated parameters
using the Laplace approximation [10] and measure the goodness-of-fit with an
R2 statistic. An R2 of 0.6 implies the model explains 60% of the variation in
the data, and is considered a good fit.

Global Analysis of Folding Development. At each frequency level n ∈
{0, . . . , 4}, for each cortical surface, we compute Fn(t) =

∑J
j=1 wj

n,t(x)2 +
wj

n,t(y)2 + wj
n,t(z)2, where t is the age of the subject and J is the number of

sampled wavelet coefficients per level. Fn(t) summarizes the amount of cortical
folding at the n-th scale: coefficients on the coarser level add details to the pri-
mary folds while coefficients on the finer level contribute to the smaller folds.
For each wavelet level n, we then regress Fn(t) against time t using Eq. (4). A
good fit indicates that folding development at that scale obeys the characteristic
of the Gompertz curve: fast exponential growth followed by slowing down and
tapering off.

The estimated model parameters provide intuitive notions of growth. Fig. 1
shows that the speed of folding development r increases from level 0 to level 2 in
both hemispheres and the age of fastest folding development p increases mono-
tonically with frequency levels from approximately 29 to 33 weeks. The maximum
development ages and speeds are significantly different across frequency levels.
This temporal developmental order from the larger scale folds to smaller scale
folds is consistent with the postmortem study [3] and more salient than in the
previous imaging study based on bi-orthogonal spherical wavelets [17].

Furthermore, we find that in the left hemisphere, the fastest folding develop-
ment occurs at a younger age than in the right at all levels (Fig. 1b), suggesting
that cortical folds in the left hemisphere develop earlier, but slower than the
right (Fig. 1a). In the postmortem study [3], structures in the temporal lobe,
including the superior frontal, superior temporal and transverse temporal gyri
were found to appear at an earlier gestational age on the right hemisphere. In
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(a) Maximum growth rate (1/week)
for each wavelet scale

(b) Age (weeks) of fastest growth for
each wavelet scale

Fig. 1. Summary of Gompertz model fit to the global wavelet energies for wavelet scales
{0, . . . , 4}. Parameters of the Gompertz model provide intuitive notion of growth. Red
bars indicate 90% confidence intervals.

contrast, our result predicts an earlier folding development age, but a slower
development speed on the left. The inconsistency between the two studies is
probably due to a difference in definitions. For example, the definition of age of
appearance in [3] is different from the age of fastest development in our model.

Regional Analysis of Folding Development. At each frequency level n ∈
{0, . . . , 4}, for each cortical surface, and for each spatial location j, we compute
Fn,j(t) = wj

n,t(x)2 + wj
n,t(y)2 + wj

n,t(z)2. Once again, we regress Fn,j(t) against
t using Eq. (4) and study both when and where folding of the cortical surface
occurs at different spatial scales.

Fig. 2 shows the results of the regional analysis. At each frequency scale, spa-
tial locations with R2 > 0.6 are color-coded with the corresponding development
speed and age, and superimposed on the youngest newborn surface. To visual-
ize the different spatial scales, the support of the corresponding wavelet basis
function at that scale is shown in dark gray around each color-coded vertex.

Consistent with the global development results, regions that develop earlier
(darker blue) also grow more slowly (more red). For example, the lateral side
of the parietal lobe on the left hemisphere develops earlier than the right, but
at a slower speed. In particular, the post-central sulcus and inter-parietal sulcus
develop two weeks earlier in the left hemisphere than in the right.

Also consistent with the global analysis, we find that larger folds develop
earlier but slower. On the lateral side, the pre- and post-central gyri develop the
fastest during 30-31 weeks in both hemispheres while smaller structures such as
supramarginal and angular gyri develop the fastest at much later time, as can
be seen on level 3. Another example is the superior temporal gyrus developing
much earlier than the smaller middle and inferior temporal gyri.

Discussion. Modeling cortical folding in the wavelet domain allows us to lo-
calize and study its regional development. Consistent with previous studies, we
find that larger cortical folds develop at younger gestational ages with slower
speeds. We also find that the left hemisphere develops earlier but slower than
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Maximum Growth Rate Age of Maximum Growth
Left Hemi. Right Hemi. Left Hemi. Right Hemi.
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Fig. 2. Regional Growth Pattern. Colored regions indicated areas whose wavelet co-
efficients fit well to the Gompertz model. Each region has an accompanying support
region shown in dark gray. The size of the supports correspond to the support of the
wavelet basis at that scale, which decreases with increasing level.
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the right. The study of individual wavelet coefficients detects and quantifies the
regional differences in folding development at different spatial scales.

Because the overcomplete wavelet bases are not orthogonal, the correlation
between wavelet coefficients at different levels should be taken into account, re-
quiring further development of computational methods that model such depen-
dencies. We note that for orthogonal representations, this problem is avoided at
the price of losing rotational invariance and sensitivity.

While more analysis is needed to characterize the probability of false posi-
tives in the local analyses, our general agreement with the postmortem study [3]
is encouraging. Furthermore, the improvement over biorthogonal wavelets is
grounded in rigorous wavelet theory that cannot be attributed to multiple
comparisons.

4 Conclusion

In this work, we explore the use of over-complete spherical wavelets in cortical
shape analysis. We present a theoretic formulation of over-complete spherical
wavelet filter banks and demonstrate their application on a study of cortical
folding in newborns. Our experiments quantitatively verify previous experiments
based on visual examination of postmortem brains and offer new insights into
neuro-anatomical development.
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