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ABSTRACT

This paper presents a new approach to extracting a low-

dimensional i-vector from a speech segment to represent

acoustic information irrelevant to phonetic classification.

Compared with the traditional i-vector approach, a full factor

analysis model with a residual term is used. New proce-

dures for hyperparameter estimation and i-vector extraction

are derived and presented. The proposed i-vector approach

is applied to acoustic sniffing for irrelevant variability nor-

malization based acoustic model training in large vocabulary

continuous speech recognition. Its effectiveness is confirmed

by experimental results on Switchboard-1 conversational

telephone speech transcription task.

Index Terms— i-vector, acoustic model, irrelevant vari-

ability normalization, unsupervised adaption, LVCSR

1. INTRODUCTION

Recently, a so-called i-vector approach [1] was proposed to

extract a low-dimensional feature vector from a speech seg-

ment to represent speaker information, which has been suc-

cessfully applied to speaker verification and become popu-

lar in speaker recognition community (e.g., [2, 11]). In [1],

important information on how to estimate hyperparameters

(a.k.a. total variability matrix [1]) was missing and readers

were referred to [7] for such technical details instead. How-

ever, because so-called “Baum-Welch” statistics (instead of

“Viterbi” ones) were used to extract an i-vector from each

speech segment, the theoretical justification and derivation in

[7] cannot be used to justify the practice in [1] for both i-

vector extraction and hyperparameter estimation. In [18], we

explain the theoretical justification of the i-vector extraction

approach borrowed from [1] and present our version of hy-

perparameter estimation procedure. In [2, 11], readers were

referred to [6] for technical details of hyperparameter estima-

tion, but it seems the method used in [2] for hyperparame-

ter estimation is the same as we did and described in [18].

This work was done when Yu Zhang was intern in Microsoft Research

Asia, Beijing, China.

In [18], an i-vector based approach was applied to clustering

training data so that multiple sets of acoustic models can be

trained to improve speech recognition accuracy. In [15], an

i-vector based approach was used for acoustic sniffing in ir-

relevant variability normalization (IVN) based acoustic model

training (e.g., [4, 5, 13, 17]) for large vocabulary continuous

speech recognition (LVCSR). In all of the above work, a sim-

plified factor analysis model without residual term is used. In

this paper, we extend the i-vector approach by using a full

factor analysis model with a residual term. New procedures

for hyperparameter estimation and i-vector extraction are de-

rived and presented. The proposed i-vector approach is ap-

plied to acoustic sniffing for IVN-based acoustic model train-

ing in LVCSR.

The rest of the paper is organized as follows. In Section

2, we present the formulation of the new i-vector approach.

In Section 3, we describe how we apply i-vector approach to

IVN-based framework. In Section 4, we report experimen-

tal results on Switchboard-1 conversational telephone speech

transcription task. Finally, we conclude the paper in Section

5.

2. NEW I-VECTOR APPROACH

2.1. Data Model

Suppose we are given a set of training data denoted as Y =

{Yi|i = 1, 2, . . . , I}, where Yi = (y
(i)
1 ,y

(i)
2 , . . . ,y

(i)
Ti
) is a

sequence ofD-dimensional feature vectors extracted from the

i-th training speech segment. From Y , a Gaussian mixture

model can be trained using a maximum likelihood approach

to serve as a so-called Universal Background Model (UBM):

p(y) =
K
∑

k=1

ckN (y;mk,Rk) (1)

where ck’s are mixture coefficients, N (·;mk,Rk) is a nor-

mal distribution with a D-dimensional mean vector mk and

a D ×D diagonal covariance matrix Rk . Let M0 denote the

(D ·K)-dimensional supervector by concatenating the mk’s
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Fig. 1. A graphical model representation of our new i-vector

approach.

and R0 denote the (D · K) × (D · K) block-diagonal ma-

trix with Rk as its k-th block component. Let’s use Ω =
{ck,mk,Rk|k = 1, . . . ,K} to denote the set of UBM-GMM

parameters.

2.2. i-Vector Extraction

Given a speech segment Yi, let’s use a (D ·K)-dimensional

random supervector M(i) to characterize its variability inde-

pendent of linguistic content, which relates to M0 according

to the following full factor analysis model:

{

M(i) = M0 + Tw(i) + ε(i),
w(i) ∼ N (·;0, I), ε(i) ∼ N (·;0,Ψ),

(2)

where T is a fixed but unknown (D ·K)×F rectangular ma-

trix of low rank (i.e., F � (D·K)), w(i) is an F -dimensional

random vector, ε(i) is a (D ·K)-dimensional random vector,

andΨ = diag{ψ1, ψ2, . . . , ψDK} is a positive definite diago-

nal matrix. A graphical model representation is shown in Fig.

1. In [1], T is called the total variability matrix. Different

from [1], we add a residual term ε to model the variabilities

not captured by the total variability matrix.

Given Yi, Ω, T and Ψ, the i-vector is defined as the solu-
tion of the following optimization problem:

ŵ(i) = argmax
w(i)

Ti∏

t=1

K∏

k=1

N (y
(i)
t ;Mk(i),Rk)

P (k|y
(i)
t

,Ω)
p(w(i))

(3)

where Mk(i) is the k-th D-dimensional subvector of M(i),
and

P (k|y
(i)
t ,Ω) =

ckN (y
(i)
t ;mk,Rk)

∑K

l=1 clN (y
(i)
t ;ml,Rl)

.

The closed-form solution of the above problem gives the i-

vector extraction formula as follows:

ŵ(i) = ζ−1T>γ−1
Ψ

−1R−1
Γy(i) (4)

where

ζ = (I + T>(Ψ+ Γ(i)−1R)−1T )−1 (5)

γ = Γ(i)R−1 +Ψ
−1. (6)

In the above equations, Γ(i) is a (D · K) × (D · K) block-

diagonal matrix with γk(i)ID×D as its k-th block component;

Γy(i) is a (D ·K)-dimensional supervector with Γy,k(i) as its

k-th D-dimensional subvector. The “Baum-Welch” statistics

γk(i) and Γy,k(i) are calculated as follows:

γk(i) =

Ti
∑

t=1

P (k|y
(i)
t ,Ω) (7)

Γy,k(i) =

Ti
∑

t=1

P (k|y
(i)
t ,Ω)(y

(i)
t −mk) . (8)

2.3. Hyperparameter Estimation

Given the training data Y and the pre-trained UBM-GMM Ω,

the hyperparameters T and Ψ can be estimated by maximiz-

ing the following objective function:

F(T ,Ψ) =

I
∏

i=1

∫

p(Yi|M(i))p(M(i)|T ,Ψ)dM(i). (9)

Although it is possible to use variational Bayesian approach to

solve the above problem, for simplicity, we use the following

approximation to ease the problem:

p(Yi|M(i)) '
Ti
∏

t=1

K
∏

k=1

N (y
(i)
t ;Mk(i),Rk)

P (k|y
(i)
t

,Ω).

Consequently, an EM-like algorithm can be used to solve the

above simplified problem. The procedure for estimating T

and Ψ is described as follows:

Step 1: Initialization

Set the initial value of each element in T randomly from

[Th1, Th2] and the initial value of each element in Ψ ran-

domly from [Th3, Th4] + Th5, where Th1, Th2, Th3 ≥ 0,

Th4 > 0, and Th5 > 0 are five control parameters. For each

training speech segment, calculate the corresponding “Baum-

Welch” statistics as in Eqs. (7) and (8).

Step 2: E-step

For each training speech segment Yi, calculate the pos-

terior expectation of the relevant terms using the sufficient

statistics and the current estimation of T and Ψ as follows:

E[w(i)] = ζ−1T>γ−1
Ψ

−1R−1
Γy(i)

E[ε(i)] = γ−1(−β>ζ−1T>γ−1
Ψ

−1 + I)R−1
Γy(i)

E[w(i)w(i)>] = E[w(i)]E[w(i)>] + ζ−1

E[ε(i)ε(i)>] = E[ε(i)]E[ε(i)>] + γ−1(I + β>ζ−1βγ−1)

E[ε(i)w(i)>] = E[ε(i)]E[w(i)>]− γ−1β>ζ−1



where ζ and γ are defined in Eqs. (5) and (6), and

β = T>R−1
Γ(i) .

Step 3: M-step

Update Ψ directly as follows:

Ψ =
1

I

I
∑

i=1

E[ε(i)ε(i)>] (10)

and solve the following equation to update T :

I
∑

i=1

Γ(i)TE[w(i)w(i)>]

=

I
∑

i=1

(Γy(i)E[w(i)>]− Γ(i)E[ε(i)w(i)>]). (11)

Step 4: Repeat or stop

Repeat Step 2 to Step 3 for a fixed number of iterations

or until the objective function in Eq. (9) converges.

3. I-VECTOR APPROACH TO ACOUSTIC SNIFFING

FOR IVN-BASED TRAINING

3.1. Feature Extraction using LDA

As described above, given the training corpus, a raw F -

dimensional i-vector can be extracted from each training

speech segment. If meta data (e.g., speaker ID in our experi-

ments) for each speech segment is available, this information

can be used (e.g., each speaker ID can be used as a class label

in our experiments) to train an F1×F LDA transform matrix,

which can be used to transform each raw i-vector into a lower

dimensional (i.e., F1 ≤ F ) yet more discriminative feature

space.

3.2. Acoustic Condition Clustering using i-Vectors

Given the set of raw or LDA-transformed training i-vectors,

we use a hierarchical divisive clustering algorithm, namely

LBG algorithm [9], to cluster them into multiple clusters. Ei-

ther a Euclidean distance is used to measure the dissimilarity

between two i-vectors, ŵ(i) and ŵ(j), or a cosine measure is

used to measure the similarity between two i-vectors. In the

latter case, we normalize each i-vector to have a unit norm so

that the following cosine similarity measure can be used:

sim(ŵ(i), ŵ(j)) = ŵ(i)>ŵ(j). (12)

Furthermore, given the above cosine similarity measure, it

can be proven that the centroid, c(w), of a cluster consisting
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Fig. 2. An illustration of IVN-based framework for acoustic

modeling, training and adaptation.

of n unit-norm vectors, ŵ(1), ŵ(2), . . . , ŵ(n), can be calcu-

lated as follows:

c(w) = argmax
c

n
∑

i=1

sim(ŵ(i), c)

=

{ ∑
n

i=1 ŵ(i)

||
∑

n

i=1 ŵ(i)|| if
∑n

i=1 ŵ(i) 6= 0

0 otherwise
. (13)

After the convergence of the LBG clustering algorithm, we

obtain E clusters of i-vectors with their centroids denoted as

c
(w)
1 , c

(w)
2 , . . . , c

(w)
E , respectively. Then the speech segments

in training set can be distributed to different clusters accord-

ing to the one-to-one relationship with the corresponding i-

vectors. By doing so, all the feature vectors from the same

cluster will share a single linear feature transform in IVN-

based acoustic model training (to be explained in the next

subsection) and the total number of feature transforms equals

the number of clusters.

3.3. i-Vector Approach to Acoustic Sniffing for IVN-

based Training

In a state-of-the-art LVCSR system, robust acoustic model is

usually trained by using a large amount of diversified train-

ing utterances. However, due to various kind of variabil-

ities (e.g., speakers, environments, channels), conventional

model training procedures may lead to a set of diffused mod-

els fitting the variabilities irrelevant to phonetic classifica-

tion. To address this problem, an IVN-based approach can

be used (e.g., [4, 5, 13, 17]). Fig. 2 illustrates how it works

for acoustic modeling, training and adaptation. In the off-

line training stage (upper part), a set of feature transforms

along with the generic Hidden Markov Models (HMMs) are

trained using a Maximum Likelihood (ML) [4, 13] or Dis-

criminative Training (DT) [17] criterion. The feature trans-

forms are used to normalize the irrelevant variabilities of dif-

ferent acoustic conditions. Given a speech segment (e.g., sev-

eral frames of speech, an utterance, or several utterances),

the “acoustic sniffing” module is responsible for detecting the



corresponding acoustic condition and choosing the most ap-

propriate transform(s) accordingly. In the recognition stage

(lower part), given an unknown speech segment, the “acous-

tic sniffing” module is used again for choosing the pre-trained

IVN transform(s). The transformed feature vector sequence

is then decoded using a conventional LVCSR decoder. Af-

ter the first-pass recognition, unsupervised adaptation can be

performed to adapt the selected feature transform(s). There-

fore, an improved recognition accuracy can be achieved in the

second-pass decoding.

In this study, the following feature transformation (FT)

function is used:

xt = F(yt;Θ) = A(e)yt + b(e) (14)

where yt is the t-th D-dimensional feature vector of the in-

put feature vector sequence Y ; xt is the transformed fea-

ture vector; e is a label (transform index) informed by the

“Acoustic Sniffing” module for the D×D nonsingular trans-

formation matrix A(e) and D-dimensional bias vector b(e);

and Θ = {A(e), b(e)|e = 1, 2, · · · , E} denotes the set of fea-

ture transformation parameters with E being the total number

of tied linear transforms. For the convenience of notation,

we also use hereinafter F(Y ;Θ) to denote the transformed

version of a speech segment Y by transforming individual

feature vector yt of Y as defined in Eq. (14).

In IVN-based framework, the acoustic sniffing module is

essential for both training and recognition. As mentioned pre-

viously, in [15], the old i-vector based approach was used for

acoustic sniffing and promising results were achieved. In this

study, we compare the effectiveness of the newly proposed

i-vector approach with the old one in this context. Given a

speech segment Y , i-vector based acoustic sniffing can be

done as follows:

Step 1: Calculate Baum-Welch sufficient statistics defined

by Eqs. (7) and (8) using UBM-GMM.

Step 2: Extract an i-vector from Y using the calculated suf-

ficient statistics and the pre-trained hyperparameters T

and Ψ. Do LDA feature transformation if applicable.

Further normalize the i-vector to have a unit norm if

cosine similarity measure is used. Let’s use ŵ to de-

note the final processed i-vector.

Step 3: Classify the i-vector ŵ into a cluster, e, as follows:

• If Euclidean distance is used as a dissimilarity

measure,

e = argmin
l=1,2,...,E

EuclideanDistance(ŵ, c
(w)
l );

• If cosine similarity measure is used,

e = argmax
l=1,2,...,E

sim(ŵ, c
(w)
l ) .

The pre-trained linear feature transform from the corre-

sponding cluster e will be used for feature transforma-

tion.

The same acoustic sniffing procedure is used in both training

and recognition stages.

Let’s assume that each basic speech unit in our speech rec-

ognizer is modeled by a Gaussian mixture continuous density

HMM (CDHMM), whose parameters are denoted as λ. Let

Λ = {λ} denote the set of CDHMM parameters. By using

the above acoustic sniffing technique, a set of labels for lin-

ear transforms E = {ei|i = 1, 2, . . . , I} can be derived from

the training data Y . The IVN-based ML training is to maxi-

mize, by adjusting feature transform parameters Θ and HMM

parameters Λ, the following likelihood function

F (Θ,Λ) =

I
∏

i=1

p(Yi|Θ,Λ, E)

=

I
∏

i=1

{p(F(Yi;Θ)|Λ) · | det(A(ei))|Ti (15)

where ei is the acoustic condition label identified by acoustic

sniffing for the training speech segment Yi. A method of al-

ternating variables can then be used to maximize the above

objective function as described in [4, 13].

4. EXPERIMENTS AND RESULTS

4.1. Experimental Setup

Switchboard-1 conversational telephone speech transcription

task [3] was used in our experiments. We used 4,870 sides of

conversations (about 300 hours of speech) from 520 speakers

in training, and 40 sides of conversations (about 2 hours of

speech) from the 2000 Hub5 evaluation for testing. The min-

imum, maximum and average lengths of the utterances are

0.21s, 21.02s, and 4.47s in the training set and 0.53s, 15.50s,

and 4.01s in the testing set, respectively.

For front-end feature extraction, we used 39 PLP E D A

(in HTK’s terminology [16]) features. Conversation-side

based mean and variance normalization was applied for both

training and testing utterances. For acoustic modeling, we

used phonetic decision tree based tied-state triphone GMM-

HMMs with 9,302 states and 40 Gaussian components per

state. Our recognition vocabulary contained 22,641 unique

words. The pronunciation lexicon contained multiple pro-

nunciations per word with a total of 28,649 unique pronunci-

ations. A trigram language model trained on the transcription

of the Switchboard-1 training data and broadcast news data

was used in decoding. All of the recognition experiments

were performed with a Microsoft in-house decoder as in

[17] and the results were evaluated by using the NIST Scor-

ing Toolkit SCTK [12]. Our ML-trained baseline system

achieves a word error rate (WER) of 30.0%.



Table 1. Comparison of two i-vector based approaches for

utterance-based acoustic condition clustering by using aver-

age speaker purity (in %) as a quality measure of clustering

result on training set.

(Dis)similarity Measure Cosine Euclidean

i-Vector Approach New Old New Old

No LDA, F = 600 37.8 36.8 38.7 35.2

LDA, F1 = 600 58.6 51.5 57.5 55.0

LDA, F1 = 400 51.0 50.3 51.5 50.0

LDA, F1 = 200 41.2 38.1 44.9 43.0

For each speech utterance in both training and testing

data, two raw i-vectors are extracted by using the new and

old i-vector approaches, respectively. The settings of rel-

evant control parameters are as follows: The number of

UBM-GMM componentsK = 1, 024; The dimension of raw

i-vector F = 600; The number of iterations for updating T

and Ψ is 15; The thresholds for initializing T and Ψ are set

as Th1 = Th3 = 0, Th2 = Th4 = 0.01, Th5 = 0.001 under

the guidance of the dynamic range of the variance values in

UBM-GMM. It is noted that too large initial values may lead

to numerical problems in training T .

To handle large-scale training data, the hyperparameter

estimation tool for i-vector extraction, tools for LBG clus-

tering and GMM training have been implemented based

upon MSR Asia’s HPC-based speech training platform.

This training platform was developed on top of Microsoft

Windows HPC Server, and optimized for various speech

training and other machine learning algorithms. With this

high-performance parallel computing platform, we can run

experiments very efficiently for large-scale tasks.

4.2. Comparison of i-Vector Approaches for Acoustic

Condition Clustering

For Switchboard-1 corpus, the speaker variability is proba-

bly the primary factor we need to deal with. To compare the

effect of new and old i-vector approaches for acoustic condi-

tion clustering, we use the following Average Speaker Purity

(ASP) criterion adapted from [8] to measure the quality of

clustering result:

ASP =

∑S

s=1 ps · ns
∑S

s=1 ns

(16)

where S is the number of speakers, ns is the number of ut-

terances spoken by the speaker s, and ps is the speaker purity

for the speaker s defined as

ps =
E
∑

e=1

n2
es

n2
s

(17)

with nes being the number of utterances in cluster e spoken

by the speaker s. The higher the ASP, the lesser the degree

Table 2. Comparison of two i-vector based approaches for

IVN-based ML training by using recognition word error rate

(WER in %) as performance metric. Our ML-trained baseline

system achieves a WER of 30.0%.

(Dis)similarity Measure Cosine Euclidean

i-Vector Approach New Old New Old

No LDA, F = 600 27.1 27.3 27.1 27.3

LDA, F1 = 600 26.7 26.8 26.7 26.9

LDA, F1 = 400 26.5 27.0 26.6 26.9

LDA, F1 = 200 26.8 27.5 27.0 27.4

of splitting utterances from the same speaker across multiple

clusters.

Table 1 gives a comparison of the new and old i-vector

approaches for utterance-based acoustic condition clustering

in terms of ASP (in %) for the cases of using cosine simi-

larity measure and Euclidean distance dissimilarity measure

respectively. Eight clusters are generated. It is observed

that the new i-vector approach achieves consistently better

ASP scores in comparison with that of old i-vector approach.

Understandably, after LDA transformation, much better ASP

scores are achieved in comparison with the cases without

using LDA, because the LDA-transformed i-vectors are more

“speaker discriminative”. When LDA is used, the lower the

i-vector dimensions, the worse the ASP scores. According

to the above results, we conjecture that the new i-vector ap-

proach may perform better than the old i-vector approach for

speaker recognition applications.

4.3. Comparison of i-Vector Approaches for IVN-based

Training

We also compared two i-vector based approaches to acoustic

sniffing for IVN-based ML training of acoustic models when

the cosine similarity measure and Euclidean distance dissimi-

larity measure are used respectively. The results (WER in %)

are summarized in Table 2. In this set of experiments, again 8

acoustic conditions (therefore 8 IVN feature transforms) were

used. For the case of using cosine similarity measure and no

LDA, after 40 main cycles of IVN-based ML training [13], the

new i-vector based acoustic sniffing method achieves a WER

of 27.1%, which is slightly better than the WER of 27.3% us-

ing the old i-vector approach. After LDA transform, the WER

of the new i-vector approach reduces to 26.7% and 26.5% for

the dimensions of 600 and 400 respectively. Further reduction

of the i-vector dimension to 200 incurs significant WER in-

crease for the old approach. The new i-vector approach works

well in a wider range of i-vector dimension. Similar observa-

tions can be made for the cases of using Euclidean distance

dissimilarity measure. All the IVN-trained systems perform

significantly better than the baseline system.



5. CONCLUSION AND DISCUSSION

In this paper, we have proposed a new approach to extract-

ing a low-dimensional i-vector from a speech segment to

represent acoustic information irrelevant to phonetic classi-

fication. Compared with the traditional i-vector approach, a

full factor analysis model with a residual term is used. New

procedures for hyperparameter estimation and i-vector ex-

traction are derived and presented. The experimental results

on Switchboard-1 corpus demonstrated that the proposed i-

vector approach performs better than the old approach for im-

proving speaker clustering result as measured by a so-called

Average Speaker Purity (ASP) criterion, and for improving

recognition accuracy in an IVN-based framework for speech

recognition.

Ongoing and future works on this topic include:

• to verify the effectiveness of the IVN-based framework

for even larger scale ASR tasks;

• to investigate better discriminative feature extraction

methods (e.g., [10, 14]) when the cosine measure is

used to compare the similarity of two i-vectors;

• to study the effectiveness of the new i-vector approach

for speaker recognition applications.

We will report those results elsewhere once they become

available.
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