Back to Item 9: Use destructors to prevent resource leaks   
  Continue to Item 11: Prevent exceptions from leaving destructors

Item 10:  Prevent resource leaks in constructors.

Imagine you're developing software for a multimedia address book. Such an address book might hold, in addition to the usual textual information of a person's name, address, and phone numbers, a picture of the person and the sound of their voice (possibly giving the proper pronunciation of their name).

To implement the book, you might come up with a design like this:

Each BookEntry must have name data, so you require that as a constructor argument (see Item 3), but the other fields — the person's address and the names of files containing image and audio data — are optional. Note the use of the list class to hold the person's phone numbers. This is one of several container classes that are part of the standard C++ library (see Item E49 and Item 35).

A straightforward way to write the BookEntry constructor and destructor is as follows:

The constructor initializes the pointers theImage and theAudioClip to null, then makes them point to real objects if the corresponding arguments are non-empty strings. The destructor deletes both pointers, thus ensuring that a BookEntry object doesn't give rise to a resource leak. Because C++ guarantees it's safe to delete null pointers, BookEntry's destructor need not check to see if the pointers actually point to something before deleting them.

Everything looks fine here, and under normal conditions everything is fine, but under abnormal conditions — under exceptional conditions — things are not fine at all.

Consider what will happen if an exception is thrown during execution of this part of the BookEntry constructor:

An exception might arise because operator new (see Item 8) is unable to allocate enough memory for an AudioClip object. One might also arise because the AudioClip constructor itself throws an exception. Regardless of the cause of the exception, if one is thrown within the BookEntry constructor, it will be propagated to the site where the BookEntry object is being created.

Now, if an exception is thrown during creation of the object theAudioClip is supposed to point to (thus transferring control out of the BookEntry constructor), who deletes the object that theImage already points to? The obvious answer is that BookEntry's destructor does, but the obvious answer is wrong. BookEntry's destructor will never be called. Never.

C++ destroys only fully constructed objects, and an object isn't fully constructed until its constructor has run to completion. So if a BookEntry object b is created as a local object,

and an exception is thrown during construction of b, b's destructor will not be called. Furthermore, if you try to take matters into your own hands by allocating b on the heap and then calling delete if an exception is thrown,

you'll find that the Image object allocated inside BookEntry's constructor is still lost, because no assignment is made to pb unless the new operation succeeds. If BookEntry's constructor throws an exception, pb will be the null pointer, so deleting it in the catch block does nothing except make you feel better about yourself. Using the smart pointer class auto_ptr<BookEntry> (see Item 9) instead of a raw BookEntry* won't do you any good either, because the assignment to pb still won't be made unless the new operation succeeds.

There is a reason why C++ refuses to call destructors for objects that haven't been fully constructed, and it's not simply to make your life more difficult. It's because it would, in many cases, be a nonsensical thing — possibly a harmful thing — to do. If a destructor were invoked on an object that wasn't fully constructed, how would the destructor know what to do? The only way it could know would be if bits had been added to each object indicating how much of the constructor had been executed. Then the destructor could check the bits and (maybe) figure out what actions to take. Such bookkeeping would slow down constructors, and it would make each object larger, too. C++ avoids this overhead, but the price you pay is that partially constructed objects aren't automatically destroyed. (For an example of a similar trade-off involving efficiency and program behavior, turn to Item E13.)

Because C++ won't clean up after objects that throw exceptions during construction, you must design your constructors so that they clean up after themselves. Often, this involves simply catching all possible exceptions, executing some cleanup code, then rethrowing the exception so it continues to propagate. This strategy can be incorporated into the BookEntry constructor like this:

There is no need to worry about BookEntry's non-pointer data members. Data members are automatically initialized before a class's constructor is called, so if a BookEntry constructor body begins executing, the object's theName, theAddress, and thePhones data members have already been fully constructed. As fully constructed objects, these data members will be automatically destroyed when the BookEntry object containing them is, and there is no need for you to intervene. Of course, if these objects' constructors call functions that might throw exceptions, those constructors have to worry about catching the exceptions and performing any necessary cleanup before allowing them to propagate.

You may have noticed that the statements in BookEntry's catch block are almost the same as those in BookEntry's destructor. Code duplication here is no more tolerable than it is anywhere else, so the best way to structure things is to move the common code into a private helper function and have both the constructor and the destructor call it:

This is nice, but it doesn't put the topic to rest. Let us suppose we design our BookEntry class slightly differently so that theImage and theAudioClip are constant pointers:

Such pointers must be initialized via the member initialization lists of BookEntry's constructors, because there is no other way to give const pointers a value (see Item E12). A common temptation is to initialize theImage and theAudioClip like this,

but this leads to the problem we originally wanted to eliminate: if an exception is thrown during initialization of theAudioClip, the object pointed to by theImage is never destroyed. Furthermore, we can't solve the problem by adding try and catch blocks to the constructor, because try and catch are statements, and member initialization lists allow only expressions. (That's why we had to use the ?: syntax instead of the if-then-else syntax in the initialization of theImage and theAudioClip.)

Nevertheless, the only way to perform cleanup chores before exceptions propagate out of a constructor is to catch those exceptions, so if we can't put try and catch in a member initialization list, we'll have to put them somewhere else. One possibility is inside private member functions that return pointers with which theImage and theAudioClip should be initialized:

This is perfectly kosher, and it even solves the problem we've been laboring to overcome. The drawback is that code that conceptually belongs in a constructor is now dispersed across several functions, and that's a maintenance headache.

A better solution is to adopt the advice of Item 9 and treat the objects pointed to by theImage and theAudioClip as resources to be managed by local objects. This solution takes advantage of the facts that both theImage and theAudioClip are pointers to dynamically allocated objects and that those objects should be deleted when the pointers themselves go away. This is precisely the set of conditions for which the auto_ptr classes (see Item 9) were designed. We can therefore change the raw pointer types of theImage and theAudioClip to their auto_ptr equivalents:

Doing this makes BookEntry's constructor leak-safe in the presence of exceptions, and it lets us initialize theImage and theAudioClip using the member initialization list:

In this design, if an exception is thrown during initialization of theAudioClip, theImage is already a fully constructed object, so it will automatically be destroyed, just like theName, theAddress, and thePhones. Furthermore, because theImage and theAudioClip are now objects, they'll be destroyed automatically when the BookEntry object containing them is. Hence there's no need to manually delete what they point to. That simplifies BookEntry's destructor considerably:

This means you could eliminate BookEntry's destructor entirely.

It all adds up to this: if you replace pointer class members with their corresponding auto_ptr objects, you fortify your constructors against resource leaks in the presence of exceptions, you eliminate the need to manually deallocate resources in destructors, and you allow const member pointers to be handled in the same graceful fashion as non-const pointers.

Dealing with the possibility of exceptions during construction can be tricky, but auto_ptr (and auto_ptr-like classes) can eliminate most of the drudgery. Their use leaves behind code that's not only easy to understand, it's robust in the face of exceptions, too.

Back to Item 9: Use destructors to prevent resource leaks   
  Continue to Item 11: Prevent exceptions from leaving destructors