Experimental Analysis of BRDF Models

Addy Ngan¹ Frédo Durand¹ Wojciech Matusik²

MIT CSAIL¹ MERL²

Eurographics Symposium on Rendering 2005

Goal

Evaluate the performance of analytical reflectance models Based on measured data

Background

Bidirectional Reflectance Distribution Function

BRDF

 Bidirectional Reflectance Distribution Function

 $\bullet \rho(\theta_i,\phi_i;\theta_o,\phi_o)$

BRDF

 Bidirectional Reflectance Distribution Function
 $\rho(\theta_i, \phi_i; \theta_o, \phi_o)$

- Isotropic material
 - Invariant when material is rotated
 - BRDF is 3D

Previous Measurements

- Columbia-Utrecht Reflectance and Texture Database
 - ~60 materials, 205 measurements per BRDF
- Cornell's measurements
 - ~10 materials, 1439 measurements per BRDF
- Bonn BTF Database
 - 6 materials, 6561 view/light combinations
- Matusik's image-based measurements
 - ~100 materials, ~10⁶ measurements per BRDF
 - Include metals, plastic, paints, fabrics.

BRDF Models

- Phenomenological
 - Phong [75]Blinn-Phong [77]
 - Ward [92]
 - Lafortune et al. [97]
 - Ashikhmin et al. [00]
- Physical
 - Cook-Torrance [81]
 - He et al. [91]

Lafortune [97]

Cook-Torrance [81]

Outline

Background

- □ BRDF Measurements
- BRDF Fitting
- Isotropic materials results
- Anisotropic materials results
- Conclusion

BRDF Measurements

Isotropic : Data from Matusik [03]

- 100 materials chosen
- Reprocessed to remove unreliable data
 - Flare
 - Near grazing angle

□ Anisotropic : New acquisition

Anisotropic Measurements

□ Similar to Lu et al. [00]

Anisotropic Measurements

- 4 materials measured (brushed aluminum, satins, velvet)
 - Each: 18 hours acquisition time, 30GB raw data
 - Tabulated into bins in 2° intervals (~10⁸ bins)
 - 10-20% bins populated

Outline

- Background
- BRDF Measurements
- □ BRDF Fitting
- □ Isotropic materials results
- Anisotropic materials results
- Conclusion

Target models: Blinn-Phong, Cook-Torrance, He et al., Lafortune et al., Ward, Ashikhmin-Shirley

- Metric:
 - RMS of $(\rho_{\text{measured}} M(\mathbf{p}))$ (cos θ_i)
 - Linear w.r.t. diffuse/specular intensity

BRDF Fitting

Other potential metrics

- Logarithmic remapping
 - Arbitrary scale
 - Highlights overly blurry
- Perceptual metrics
 - Context dependent
 - □ Costly to compute/fit
 - Intensity parameters become nonlinear optimization less stable

Outline

- Background
- BRDF Measurements
- □ BRDF Fitting
- □ Isotropic materials results
- Anisotropic materials results
- Conclusion

Fitting Errors

Acquired data

Acquired data

Cook-Torrance

Acquired data

Acquired data

Ward

Acquired data

Lafortune

Dark blue paint – error plots

Cook-Torrance fit, incidence plane, 4 different incident angles

Lafortune Lobe

Distorted highlights near grazing angle

Acquired data – gold paint

Lafortune fit

Lafortune Lobe

Distorted highlights near grazing angle

Acquired data – nickel

Lafortune fit

Lobe Comparison

- Half vector lobe
 - Gradually narrower when approaching grazing

Mirror lobe

Always circular

Half vector lobe

Consistent with what we observe in the dataset.

More details in the paper

Example: Plot of "PVC" BRDF at 55° incidence

Observations - numerical

Rough order of quality

- He, Cook-Torrance, Ashikhmin
- Lafortune
- Ward
- Blinn-Phong

Poor fit

Observations - visual

Mirror-like

- metals, some plastics
- All models match well visually
- Glossy
 - paints, some metals, some wood
 - Fresnel effect
 - Distorted shape for Lafortune highlight
- Near diffuse
 - fabrics, paints
 - Fresnel effect

Observations

Some materials impossible to represent with a single lobe

Acquired data

Cook-Torrance

Material – Red Christmas Ball

Adding a second lobe

Some materials impossible to represent with a single lobe

Acquired data

Cook-Torrance 2 lobes

Material – Red Christmas Ball

Outline

Background

- □ BRDF Measurements
- □ BRDF Fitting
- □ Isotropic materials results
- □ Anisotropic materials results
- Conclusion

Anisotropic Materials

Brushed Aluminum

Reasonable qualitative fit

Acquired data

Yellow Satin

Reasonable qualitative fit

Acquired data

Purple Satin

Split highlights

Outline

- Background
- BRDF Measurements
- □ BRDF Fitting
- □ Isotropic materials results
- Anisotropic materials results
 - Estimation of microfacet distribution
- Conclusion

Microfacet Theory

□ [Torrance & Sparrow 1967]

- Surface modeled by tiny mirrors
- Value of BRDF at $(\boldsymbol{\omega_i}, \boldsymbol{\omega_o})$
 - \square # of mirrors oriented halfway between ω_i and ω_o
 - Modulated by Fresnel, shadowing/masking

Estimating the MF distribution

Ashikhmin's microfacet-based BRDF generator [00]

~ Shadowing/Masking (Depend on the full distribution)

Estimating the MF distribution

□ Rearranging terms:

$$\rho(\boldsymbol{\omega}_{i},\boldsymbol{\omega}_{o}) = \frac{p(\boldsymbol{h})F(\boldsymbol{\omega}_{i}\cdot\boldsymbol{h})\langle\boldsymbol{h}\cdot\boldsymbol{n}\rangle}{4g(\boldsymbol{\omega}_{i})g(\boldsymbol{\omega}_{o})}$$

$$p(\boldsymbol{h}) \propto \frac{\rho(\boldsymbol{\omega_i}, \boldsymbol{\omega_o}) F(\boldsymbol{\omega_i} \cdot \boldsymbol{h})}{g(\boldsymbol{\omega_i}) g(\boldsymbol{\omega_o})}$$

Estimating the MF distribution

Measurements

$$p(\boldsymbol{h}) \propto \frac{\rho(\boldsymbol{\omega_i}, \boldsymbol{\omega_o}) F(\boldsymbol{\omega_i} \cdot \boldsymbol{h})}{g(\boldsymbol{\omega_i}) g(\boldsymbol{\omega_o})}$$

 $\square g()$ depends on the distribution \square Iterate to solve for p(h)

- Compute g() using current estimate p(h)
- Estimate p(h) given g()
- Converges quickly in practice

Purple Satin

Split specular reflection

microfacet distribution

Purple Satin

Acquired data

microfacet distribution fit

Brushed Aluminum

Acquired data

microfacet distribution fit

Brushed Aluminum

measured data

microfacet distribution fit

Ward fit

MF-based BRDF generator

□ Expressive

Easy to estimate

- No optimization necessary
- □ Inexpensive to compute

Outline

Background
BRDF Measurements
BRDF Fitting
Isotropic materials re

- Isotropic materials results
- Anisotropic materials results
- □ Conclusion

Conclusion

Isotropic materials

- He, Cook-Torrance, Ashikhmin perform well
 - □ Explicit Fresnel
 - *multiple lobes help
- Half-vector based lobe performs better
- Most materials can be well-represented

Anisotropic materials

- Cases where analytical models cannot match qualitatively
- Estimation of the microfacet distribution is straightforward
- Ashikhmin's MF-based BRDF generator does well

Future Work

Metric

Generalized lobe based on half vector

Efficient acquisition based on the microfacet distribution

Acknowledgement

Eric Chan, Jan Kautz, Jaakko Lehtinen, Daniel Vlasic

- □ NSF CAREER award 0447561
- NSF CISE Research Infrastructure Award (EIA9802220)
- □ Singapore-MIT Alliance

Questions?