
Subdivision Models in a Freeform Sketching System

Wai Kit Addy Ngan

Advisor: Professor Adam Finkelstein
Second Reader: Professor David Dobkin

Submitted in Partial Fulfillment
of the Requirements of the Degree of

Bachelor of Science in Engineering

To the Department of Computer Science
of

Princeton University

May 7, 2001

I pledge my honor that this thesis represents my own work in accordance with Princeton Uni-

versity regulations.

———————————————————–

Dedicated to my loving mum, dad and brother.

Abstract

This thesis presents the usage of subdivision models in our 3D sketching system. Sub-

division surfaces are extremely suitable for our system because of its support for arbitrary

topology, its natural smoothing through refinement, its ability to model creases and corners,

etc. We give a brief presentation of some important properties of subdivision surfaces, before

describing the Freeform Sketch system. Freeform Sketch is a direct modeling system we de-

velop that utilize gestural input for both modeling commands and geometric descriptions. It

is part of an effort to greatly simplify the modeling process, by sacrificing some precise con-

trol on the surface. However, with a support of some basic primitives, in addition to editing

tools including oversketching, trimming and joining, the class of shapes we are able to model

exceed that of previous work, with higher quality. One main focus of the thesis is on the trim-

ming operation, which is non-trivial for subdivision surface. We propose an algorithm that

support approximate trimming through remeshing and fitting, while adding no extra details to

the surface.

Acknowledgement

First, I would like to thank Professor Adam Finkelstein for being my thesis advisor and for

all of his help and support over the year. Also I would like to thank Professor David Dobkin

for being my second reader. I want to thank Lee Markosian for getting me excited about

this project, giving me valuable guidance all the way along, and teaching me everything from

computer graphics to coding skills. And thanks go to Lena Petrovic, my graduate student

partner, for all her hard work and help. I would also like to take this chance to thank Professor

Thomas Funkhouser, whom I worked with throughtout my junior year and the following

summer, for all of his excellent ideas and advices, and for all the meetings we had that went

over 6 o’clock in the evening.

Of course, this work would not be possible without the support of my best friends, Yee

Wai, Irene and Kueh, for always coming to the graphics lab to give me company, to assure

that I am not alone. Thanks to long-time graphics lab warrior Matt, for all the good time, good

music, and good movie trailers we share in the lab. I want to thank my parents and brother for

their love and support. Finally I would like to thank Hang Seng Bank (Hong Kong) for the

generous scholarship over the past four years, without which I would not be able to enjoy the

most fruitful and exciting education in Princeton. Thank you all!

iv

List of Figures

1.1 Screen shot from 3ds max 4. [1] . 2

1.2 Class of shapes modeled in (a)Teddy and (b)SKETCH 3

2.1 Subdivision curve. [19, Chapter 2] . 6

2.2 Subdivision Surface. 7

2.3 Refinement of one triangle by splitting each edge. 8

2.4 The neighborhood around a vertex vr of valence n. 9

2.5 Masks for Loop subdivision . 10

2.6 Masks for creases and corners. [8] . 11

2.7 Geri’s game, depicting models with creases of variable sharpness (Pixar). . . 11

2.8 Different triangulations of the same shape give different results after subdivi-

sion. [14] . 12

2.9 Ripples on a surface generated by the Loop scheme near a vertex of large

valence. [19] . 13

3.1 Inflation in Teddy. [10] . 15

3.2 Steps to build a mug with a handle . 16

v

LIST OF FIGURES vi

3.2 Steps to build a mug with a handle (2) . 17

3.3 Pen and tablet input for our system. 19

3.4 Four class of gestures recognized . 20

4.1 Oversketching curve. 23

4.2 Primitive surfaces. 26

5.1 Result from [11] . 31

5.2 Creating the hole . 32

5.3 Remeshing . 33

5.4 Edge operations include swap, split and collapse. 35

5.5 Edge swap. 36

5.6 Error angle. 36

5.7 Oversampling effect if no fitting is performed 38

5.8 Error due to reposition. 39

5.9 Improved approximation with fitting. 40

6.1 Models we made in Freeform Sketch (1). 43

6.2 Trimming of a surface. 44

6.3 A face built using trim and join on a tube. 44

7.1 Bumps after remeshing . 46

Contents

Acknowledgement iv

1 Introduction 1

2 Background 5

2.1 Subdivision . 5

2.1.1 Introduction . 5

2.1.2 Basic Concept . 6

2.1.3 Properties . 7

2.1.4 Creases and Corners . 10

2.1.5 Dependency on triangulations . 12

3 Modeling by Sketching 14

3.1 An Illustrated Example . 15

3.2 Gestural Input . 18

3.3 Primitive Shapes . 20

vii

CONTENTS viii

3.4 Trim and Join . 20

3.5 Oversketching . 20

3.6 Dependency Hierarchy . 21

4 Primitives 22

4.1 Curves . 22

4.1.1 Creation . 22

4.1.2 Oversketching . 23

4.1.3 Issues on resolution . 24

4.2 Surfaces . 25

5 Trimming and Joining 28

5.1 Introduction . 28

5.2 Related Works . 30

5.2.1 Trimming Subdivision Surfaces - Litke et al. 30

5.2.2 Approximate Boolean operations - Kristjansson et al. 31

5.3 Creating the hole . 32

5.4 Remeshing . 33

5.4.1 Repositioning . 34

5.4.2 Modify Connectivity . 34

5.5 Fitting . 37

5.6 Alternatives to fitting . 41

CONTENTS ix

5.7 Joining . 41

6 Results 42

7 Discussion and Conclusion 45

A Mathematical Properties of Subdivision Surfaces 48

Chapter 1

Introduction

3D modeling has always been important in computer graphics and CAGD1. Animation, ren-

dering, physical simulation, mechanical and architectural designs are all heavily dependent

on the ability of modeling shapes in 3D. Well-known representations for 3D models include

polygonal meshes, patches(commonly NURBS2 patches), quadrics, implicit surfaces, and

other variations. While these techniques have been developed extensively in the past few

decades and commonly adopted in different disciplines, they all have some notable shortcom-

ings. For example, polygonal meshes have limited resolution and a large number of polygons

are required to represent smooth surfaces; representations using patches require special han-

dling along boundaries of the patches to enforce continuity; and local editing is hard for

implicit surfaces. On the other hand, the comparably new techniques of subdivision surfaces,

combining the strength of polygonal and patch representation, have started to get wide atten-

tion in the past few years and have become the newest feature in commercial packages. 3

However, previous work on subdivision surfaces has primarily focused on specifying subdivi-

sion rules and analysis of their properties, provided with a control mesh. For example, Hoppe

et al. presented work on fitting subdivision surfaces to pre-existing sampled data points [8].

However, not much work has been done for building subdivision surfaces from scratch. In

3ds max 4, for example, subdivision is supported primarily as a finishing tool that provides

1Computer Assisted Geometric Design
2Non-Uniform Rational B-spline
3Subdivision surfaces are supported in 3ds max 4 and Maya 3 Unlimited.

1

CHAPTER 1. INTRODUCTION 2

smoothing and details addition, rather than as a modeling tool. Indeed, the user is required

to put considerations on the triangulations of the mesh to ensure subdivision can give a nice

result. This thesis is focused on methods of building up subdivision models, in the context of

our Freeform Sketch system, which is described in the next paragraph. More details on the

properties of subdivision surfaces will be described in Chapter 2.

Figure 1.1: Screen shot from 3ds max 4. [1]

During the past academic year I have been working on a modeling system named Freeform

Sketch, with Lee Markosian, Lena Petrovic and Adam Finkelstein. Freeform Sketch has a

different goal from popular commercial packages like 3ds max, Maya, SoftImage, etc. These

packages commonly focus on giving the user ability to precisely manipulate models with max-

imal flexibility. They often expose the controls of the underlying representations to the user

and give a large variety of tools, often with numerous menus, toolboxes and dialog boxes. On

the favorable side, a very wide range of operations are supported, however, the complicated

user interface (See Figure 1.1) often trade off the ease of use. Users are also required to have

substantial knowledge about the underlying representation of the 3D models in order to make

CHAPTER 1. INTRODUCTION 3

good use of the tools. Indeed, even for experts, it is quite a time-consuming and difficult task

to create relatively simple 3D models (e.g.mug,table,teddy bear,etc.) in these packages. Also,

a system that supports high accuracy and precise control is only desirable in some applica-

tions like CAGD. On the other hand, for the casual users, or for cases when stylish models are

preferred to realistic ones, it is often desirable to be able to sketch models in an imprecise way.

More importantly, the ability to do 3D sketching is useful for fast prototyping before using

more sophisticated tools to build the final refined model. Some representative systems in this

direction include SKETCH [18] and Teddy [10]. These two systems provide interfaces that

are simple to learn and use by specializing the modeling process for certain kinds of shapes

– roundish, teddy-bear-like objects in Teddy; and boxy, geometric objects in SKETCH (Fig-

ure 1.2). Using these systems it is indeed surprisingly easy to model relatively sophisticated

shapes, however the classes of shapes for which it is possible (roundish or boxy, respectively)

is restricted. Modeling many kinds of free-form shapes in either SKETCH or Teddy would

be a challenge.

(a) (b)

Figure 1.2: Class of shapes modeled in (a)Teddy and (b)SKETCH

Our system is aimed at a goal similar to Teddy and SKETCH but with the ability to draw

a much larger class of objects. The idea is to retain much of the directness and simplicity

of those systems, while leveraging more of the users’ drawing ability. We provide a direct,

CHAPTER 1. INTRODUCTION 4

gestural interface for modeling. We start by drawing planar and non-planar curves in 3D

using a technique like the one described by Cohen et al. [4]. These 3D curves can then be

used to define a variety of primitives, including ruled surfaces, generalized cylinders, and ex-

truded shapes (See Chapter 4). These shapes can then be further refined by oversketching. In

some respects Freeform Sketch strongly resembles both SKETCH and Teddy, but by adapt-

ing and generalizing the methods of those systems, and incorporating a more sophisticated

model representation based on subdivision surfaces, Freeform Sketch is targeted to produce

significantly more complex, detailed and compelling models.

In our system all curves and surfaces are represented using subdivision techniques, ap-

pealing to its various advantages (See Chapter 2) which are especially suitable for our system.

For example, subdivision naturally provides smoothing, which is important for sketching as

we often desire a smooth surface that approximates but not interpolates the user input. Also,

its support of arbitrary topology is handy for building sophisticated models. For example,

a mug with a handle, which has genus one, is already a non-trivial object to be represented

by patches or implicit surfaces, while no special handling is required using subdivision sur-

faces. Last but not least, its multi-resolution representation supports level-of-detail techniques

naturally, which make our system usable even on low-end computer systems.

While I have been involved mainly in the implementation of the system during the past

year, I have particular interest on the use of subdivision techniques in our system. This the-

sis is thus centered on how we build up and perform various operations on the subdivision

curves/surfaces, including redefinition by oversketching, trimming and joining; and the ad-

vantages and challenges of using subdivision techniques. We will give a brief introduction

to our sketching system in Chapter 3, before we delve into details of our geometric primi-

tives(Chapter 4) and our trimming procedure(Chapter 5). We conclude with the results we

obtained, and a discussion of potential future works.

Chapter 2

Background

As this thesis is focused on subdivision models, we give a brief qualitative discussion of

subdivision in this chapter, while leaving some of the important mathematical properties to

Appendix A. For more in-depth information on subdivision, see [13, 19, 17, 15].

2.1 Subdivision

2.1.1 Introduction

Recently, subdivision surfaces have gained wide attention because of its numerous advantages

over other modeling techniques:

• Arbitrary Topology: A subdivision surface uses a polygonal mesh as the base domain,

so it can naturally support surfaces with arbitrary topology. It is not necessary to use

trim curves which is common for NURBS surfaces, and also avoids the cumbersome

boundary constraints of joined patches.

• Natural Representation: 3D models are usually converted to a polygonal representation

before rendering and graphics hardware are often optimized for rendering polygons.

Subdivision surfaces are represented by polygonal meshes and require no conversion

5

CHAPTER 2. BACKGROUND 6

before rendering.

• Multiresolution support: Subdivision surfaces are intrinsically associated with multires-

olution representation. Multiresolution rendering/editing can be supported by storing

detail vectors on subdivided levels.

• Scalability: Because of its multiresolution structure, it can readily support adaptive

approximation depending on available system resources.

2.1.2 Basic Concept

In a brief way, subdivision curve or surface is defined by the limit of recursive refinement of

an initial set of control vertices. Figure 2.1 shows the case for subdivision curve. On the left

we have 4 control vertices, joined by straight line segments. Next to it is a refined version,

with new vertices inserted on each line segments of the previous level, and all vertices are

repositioned with respect to some rules. It is intuitive that if the rules are chosen appropriately,

the refinement converges and its limit would be a smooth curve. A subdivision curve is defined

to be this smooth limit curve. Indeed, B-spline curves with arbitrary degree can be shown to

be just a special case of subdivision curves, away from the endpoints [2].1

Figure 2.1: Subdivision curve. [19, Chapter 2]

Similarly, the same notion can be defined for surfaces (Figure 2.2). With a control mesh

and a set of refinement rules, a subdivision surface is defined to be the limit of recursive refine-

1For example, a uniform cubic B-spline can be constructed by using the subdivision masks (1,6,1) and (1,1)
on even and odd vertices respectively.

CHAPTER 2. BACKGROUND 7

Figure 2.2: Subdivision Surface.

ment on the control mesh. However, it is more involved than the case of curves, because the

refinement rules are dependent on the connectivity of the vertices, while for curves the con-

nectivity is always the same (i.e.all vertices have valence2 two). Thus in general, closed-form

expression of subdivision surfaces does not exist. As subdivision curves could be regarded as

a subset of subdivision surfaces, we will focus only on surfaces in the remaining sections.

2.1.3 Properties

There are several different rules that operate on different kind of meshes, including Loop[13],

Catmull-Clark[3], Butterfly[6], to name a few.3 In our system we employ the Loop scheme,

including the rules for defining creases and corners described in [8] and [15], one of the

simplest scheme defined on triangular meshes and the most commonly used.

Before going into the details of the Loop scheme, we should note some of the important

properties among all the subdivision schemes.

• Local Support : A certain point on the surface is only affected by vertices in a finite

neighborhood. (e.g.vertices in one-ring4 or two-ring neighborhood) This is desirable as

it provides ability for local editing, and it also allows very efficient computation during

2Number of neighboring vertices.
3See [19, Chapter 4] for a more complete classification.
4By one-ring neighborhood of a vertex we mean all the vertices that share an edge with the vertex. A two-ring

neighborhood is the union of one-ring neighborhoods of all the one-ring neighbor, and so on.

CHAPTER 2. BACKGROUND 8

Figure 2.3: Refinement of one triangle by splitting each edge.

refinement.

• Convergence and Smoothness : To be able to define a subdivision surface, the scheme

of course need to be converging on arbitrary control meshes. Moreover, it is desirable

for it to converge quickly so that a small number of refinements can approximate the

limit surface with small error bound. Also, the limit surface is piecewise smooth, away

from predefined creases(See next section).

Now we start our discussion on the Loop scheme on the general setting, ignoring creases

at the moment. The Loop scheme is defined on a triangular mesh and it is an approximating

scheme as the limit surface does not interpolate the control mesh. All vertices with valence

six are called regular vertices. The Loop subdivision surface is C2 continuous away from

extraordinary vertices, and C1 continuous at the extraordinary vertices.

During one step of refinement, each triangle is split into four triangles by inserting three

new vertices, by splitting each of the three edges. (Figure 2.3) The new vertices are called

odd vertices while the ones that correspond to vertices from the previous level are called

even vertices. It is easy to observe that odd vertices are always regular, and irregular vertices

from the control mesh remain irregular(the degree stay unchanged) in all subdivision level.

The positions of the vertices after the refinement are dependent on vertices in the one-ring

neighborhood, and are given by the following formulas:

For an even vertex vr+1 at subdivision level r + 1 with valence n (see Figure 2.4),

vr+1 = (1− nβ)vr + βvr1 + βvr2 + . . . + βvrn

CHAPTER 2. BACKGROUND 9

vr
n

vr+1
n

vr+1
1

vr
1

vr+1
2

vr
2

vr
3

vr

vr+1
3

vr+1

Level k

Level k+1

Figure 2.4: The neighborhood around a vertex vr of valence n.

where β = 1
n(5/8 − (3

8 + 1
4 cos 2π

n)2). For the odd vertices,

vr+1
i =

3vr + 3vri + vri−1 + vri+1

8

The position of the refined vertices are indeed given by weighted averages of the neigh-

boring vertices in the previous level, so the equations above can be nicely represented with

masks diagrams (Figure 2.5) that describes the weights. It can be directly seen from these

masks that the implementation for Loop refinement is extremely simple.

The Loop scheme is developed based on the three-directional box spline, which means

in regular regions the Loop subdivision surface is exactly a spline patch. Thus in the regular

region it can be evaluated exactly in the same way as a spline surface. However, because of

the irregular vertices and the arbitrary topology of the surface, a closed-form expression of the

surface does not exist in general. Nonetheless, the limit position and normal to the surface at

locations corresponding to control vertices can be computed in an extremely simple way, as a

result of eigenanalysis on the subdivision matrix (See Appendix A). Also, recent research has

established methods for exact evaluation of the limit surface at arbitrary parameters. [17, 16]

CHAPTER 2. BACKGROUND 10

β

β

ββ

β

1−nβ

3

3

1 1

Even Vertex Odd Vertex

Figure 2.5: Masks for Loop subdivision. β = 1
n(5/8−(3

8 + 1
4 cos 2π

n)2) where n is the valence
of the vertex

For some of the important mathematical details of the Loop scheme see Appendix A. For

even more details on subdivision in general, see [13, 19, 17, 15].

2.1.4 Creases and Corners

One of the advantages of using subdivision surface is its ease of modeling creases, which is a

very difficult task for NURBS surfaces and implicit surfaces.

To model creases and corners, we simply tag edges and vertices as sharp, and specify

special rules for these creases, as suggested in [8]. See Figure 2.6 showing these crease rules.

With these rules, the creases actually converge to uniform cubic B-spline curves, and we can

see from the masks that it decouples the surface on the two side of the crease. Thus the surface

is C0 continuous across creases.

DeRose et al. [5] further proposed variable sharpness for creases with a slight modification

to the subdivision rules. Figure 2.7 shows the famous Geri from Pixar’s short animation

Geri’s Game, who is modeled by subdivision surfaces with creases of variable sharpness.

With the support of variable sharpness, subdivision surface is a simple yet very robust way

for supporting a wide class of models.

CHAPTER 2. BACKGROUND 11

Figure 2.6: Masks for creases and corners. [8]

Figure 2.7: Geri’s game, depicting models with creases of variable sharpness (Pixar).

CHAPTER 2. BACKGROUND 12

Figure 2.8: Different triangulations of the same shape give different results after subdivision.
[14]

2.1.5 Dependency on triangulations

While analysis proves mathematical continuity for the limit surface, in practice this does not

always correspond to the intuitive sense of smoothness, at least visually. See Figure 2.8. The

first and the third figures are two control meshes that triangulate the same shapes. The second

and the last figures are their limit surface respectively. We can see that the limit surface of

the first control mesh have a lot of unexpected wiggles and bumps, while the latter is much

smoother. While the first surface looks unacceptable in its resemblance to the original shape,

mathematically it is still at least C1 continuous everywhere.

Thus, as a general rule, we want to avoid skinny triangles like those in the first figure.

Also, we want to avoid vertices with large valence. With the Loop scheme, vertices with large

valence often lead to undesired creases and rippling effect(Figure 2.9).

CHAPTER 2. BACKGROUND 13

Figure 2.9: Ripples on a surface generated by the Loop scheme near a vertex of large valence.
[19]

Chapter 3

Modeling by Sketching

Commercial modeling systems commonly focus on getting as much functionality as possible,

often at the expense of convoluted user-interface (Figure 1.1). However, if we were to support

CAD-like accuracy, there does not seem to exist much room for a simpler interface. For

example, users need to be able to see arrays of control vertices for surfaces if they were to

manipulate them directly; and a huge interface for specifying parameters could not be avoided

if the user were allowed to define shapes numerically.

However, if we are willing to sacrifice some accuracy, and restrict the class of models we

support, then we claim we can greatly simplify our interface, at the same time abstract away

many of the underlying model representations details from the users.

Works with similar goals include SKETCH and Teddy. These two systems provide inter-

faces that are simple to learn and use by specializing the modeling process for specific kinds

of shapes. SKETCH supports primitives including polygons, rectangular boxes, cylinders,

and it allows extrusion and Boolean operations. While the class of primitives is small, the

Boolean operations and extrusions allow it to model shapes without general curved surface

like furniture and other artificial objects very well. Nonetheless, it is not intended and im-

possible for modeling most biological shapes, or any shapes that cannot be represented well

without freeform surfaces. Teddy addressed this problem by offering a system that specialize

in teddy-bear-like shapes instead. Its main idea is to use a special kind of inflation (Fig-

ure 3.1). However, it becomes inflexible when the user desires otherwise. Also, the shapes it

14

CHAPTER 3. MODELING BY SKETCHING 15

can support is always topologically equivalent to a sphere(i.e. without holes), which make it

challenging or impossible to model objects with higher complexity.

Figure 3.1: Inflation in Teddy. [10]

Our system is aimed at a class of models that expands on the union of the above two. We

retain the simplicity of the interface, while leveraging more of the user’s drawing ability. The

direct gestural interface we support remove most of the GUI controls necessary in commercial

systems, while giving an efficient way to define shapes. With trimming and joining, we are

able to build up more sophisticated models with arbitrary topology. Also, we support creases

with variable sharpness by subdivision surfaces.

Before going into any details of our modeling system, we begin by showing how a mug

with reasonable quality could be built with our system in a short amount of time.

3.1 An Illustrated Example

The mug we are trying to model is composed of a handle and a main body. The handle can

be made from a tube described by its axis, and the main body can be built from extruding a

hollow tube.

Here is a step-by-step illustration for the process of building up this mug (Figure 3.2):

1. Draw the base of the mug. (a)(b)(c)

CHAPTER 3. MODELING BY SKETCHING 16

(a)The floor (b)Draw the base

(c)Base panel built (d)Tap on panel to display tube silhouette widget

(e)Draw the silhouette (f)Tube built

(g)Tap and slash to remove the top (h)Stroke to extrude the surface.

Figure 3.2: Steps to build a mug with a handle

CHAPTER 3. MODELING BY SKETCHING 17

(i) Dot and cross to attach point and get axis (j)Draw axis curve describing the handle

(k)Handle attached (l)Draw three strokes to smooth creases.

(m)Creases smoothed (n)Final mug

(o)Control mesh (p)Mesh refined twice.

Figure 3.2: Steps to build a mug with a handle (2)

CHAPTER 3. MODELING BY SKETCHING 18

2. Draw the silhouette of a cylinder that describe the general shape of the main body of

the mug. (d)(e)(f)

3. Remove the top face of the cylinder to make it hollow.(g)

4. Extrude the surface to give it thickness.(h)

5. Draw a curve attached to the surface that describe the axis of the handle.(i)(j)

6. Draw the cross section of the handle and have the handle merged with the body of the

mug.(k)

7. Use a smoothing gesture to smooth the top of the mug.(l)(m)

The entire process takes about one minute, for an user with average experience with our

system.

3.2 Gestural Input

We primarily use the pen and tablet as the input for our system, along with a few keystrokes

that corresponds to command which no intuitive gestures could be associated (e.g.refine and

unrefine). Modeling with the pen corresponds naturally to drawing on paper, while it is awk-

ward and difficult to use the mouse for the same task. Also, with the additional flexibility of

the pen, we can interpret more gestures than it is possible with the mouse.

There are five basic gestures we use in our system (Figure 3.4):

• Tap - Make contact with the tablet at a location instantaneously. Similar to a click for

the mouse. Used for selection and in compound gestures.

• Slash - A fast, short and straight stroke. Used for several commands depending on

context.

• Dot - Circle around a spot several times. Used for creating a point in space.

• Cross - Self-explanatory. Used for displaying the axis widget.

CHAPTER 3. MODELING BY SKETCHING 19

Figure 3.3: Pen and tablet input for our system.

• Stroke - Any gesture that does not classify to any of the above. Usually used for de-

scribing geometry.

While the tap and stroke are possible with the mouse, slash, dot and cross are very difficult

for it. For more involved operations like smoothing and hole cutting, we employ compound

gestures, which is a sequence of several simple gestures with a particular configuration. For

example, the gesture for cutting a hole is to first draw the hole on the surface, then tap and

slash inside the hole. Whenever the gesture is not recognized as a single command, we put the

gesture in a gesture list, and keep the gesture on screen. Every time a new gesture is entered

into the list, we interpret the entire list. If the configuration is valid and complete, we carry

out the operation. We clear the list if the user is idle for some predefined amount of time, or

the configuration fails to be contained in any possible interpretation.

CHAPTER 3. MODELING BY SKETCHING 20

Tap Slash Dot Cross

Figure 3.4: Four class of gestures recognized

3.3 Primitive Shapes

Like SKETCH and unlike Teddy, we support primitive shapes. The primitives we support

include curves, generalized cylinders, extrusions, ruled surfaces and panels1 .

3.4 Trim and Join

The set of primitives we have is obviously not enough for creating interesting shapes. We

support trimming and joining in order to build up more complicated shapes. At this moment,

however, we do not support Boolean operations between shapes. See Chapter 5 for a detailed

description of the trimming and joining operations.

3.5 Oversketching

We support oversketching for shape editing. To redefine the shape of a curve, the users can

simply overdraw on the existing curve, instead of manipulating control vertices directly as in

most modeling system. More details on oversketching of curve will be discussed in the next

chapter.

For primitive surfaces, in particular tubes, we also support silhouette oversketching. By

silhouette we mean the boundary between the object and the background. For the tubes, as

we have well-defined parameterization, we can reasonably infer user’s intention when they

overdraw the silhouette.
1By panel we mean a surface that is enclosed by a boundary

CHAPTER 3. MODELING BY SKETCHING 21

Also, for surfaces like ruled surfaces and panels that are directly defined by its parent

curves, the surface will be modified automatically by oversketching the associated curves.

Unfortunately, we are not able to support oversketching for general surface at this mo-

ment. This is due to two main reasons:

• For more complex shapes, in particular shapes that have self-occlusion, the silhouette

can be complicated. When the user do an oversketch drawing, it is often ambiguous

which set of silhouette edges he is trying to edit.

• A general surface lacks a natural parameterization likes a tube. While it is always

possible to move the vertices on the silhouette to fit the oversketch visually, the result

is not always satisfactory. More importantly, without a parameterization, it is hard to

decide how to move vertices neighboring the silhouette accordingly to give a smooth

falloff for the deformation.

3.6 Dependency Hierarchy

When an object is created based on another one, (for example a tube built from the base,

which is a panel built from some boundary curves), we keep the old object and store it in a

dependency tree. This is useful as we can later go up the dependency tree and modify shapes

that were used to define the children. The changes to the parent will then be passed to the

children in an appropriate way, if possible. For example, if we modify the shape of the base

by oversketching, it will be carried forward to the tube to modify its cross section shape.

However, the inheritance is only preserved when possible. For operations like trimming

which change the topology of the underlying mesh, the dependency is no longer obvious and

hence is not supported.

Chapter 4

Primitives

To build models in our system, we always start from some primitive shapes. In particular, we

usually start from curves, and then build surface primitives from them. More complex shapes

can then be obtained by oversketching, trimming and joining.

4.1 Curves

Curves are represented using subdivision in our system, and contrary to commercial packages,

we give the user the impression that a curve is a single entity defined by itself, instead of

something controlled by a set of control vertices (e.g.NURBS curve). Thus we are able to

create and edit the curves directly, without manipulating any control vertices.

4.1.1 Creation

During the creation stage, the user can use the pen to draw on any predefined plane. The

trail of the screen space pixels will first be projected to the plane. The next step is to find a

set of vertices to build the control mesh of the curve so that the limit curve approximate the

drawing. To do this, we first try two vertices for the control curve. Then we iteratively double

the number of control vertices until the error is smaller than ε. During each iteration, we

22

CHAPTER 4. PRIMITIVES 23

distribute the control vertices evenly by length on the drawing, and the error is measured by

the average of the distance of each drawing sample point to the polyline defined by the control

vertices. We typically do not want ε to be too small, otherwise we will pick up unwanted noise

from user’s drawing input. In our system we take ε to be the world space equivalent of 2 to 3

pixels.

When the iterations are finished, we obtain a polyline approximating the drawing, with

each of the vertices interpolating. As a final step, we apply fitting to the control vertices, using

the same algorithm described in Section 5.5, so that the limit curve instead of the control curve

is approximating the drawing.

Apart from drawing curves on a predefined plane, we also support drawing curves in space

with respect to a shadow. This technique was proposed by Cohen et al.in [4], and it prove to

be a very powerful and easy way to specify curves in 3D.

4.1.2 Oversketching

(a) Original curve (b) User oversketch (in grey) (c) After oversketch

Figure 4.1: Oversketching curve.

Using the Loop subdivision rule, a subdivision curve is indeed a B-spline curve. So we could

possibly support editing in the standard approach, by directly manipulating the control ver-

tices. However, as part of our goal is to achieve a direct interface, we hide the control points

from the user, (unless the user explicitly unsubdivide to the base level), and we do not sup-

port direct manipulation of the control points. Instead, editing is achieved by oversketching.

Oversketching is defined by some drawing that start and end on the curve, using the new

drawing trail to replace the original segment between the starting point and the ending point

CHAPTER 4. PRIMITIVES 24

(Figure 4.1) .

The algorithm Now assume the user draw a trail trying to oversketch the curve. Let the trail

be {d1, d2, . . . , dn}, which is in screen coordinates. Project the vertices of the curve at the

current subdivision level to screen space and denote the list of 2D points by {c1, c2, . . . , cm}.
Find the closest points on {cm} to d1 and dn and name them cj and ck respectively. If the

distances are bigger than some threshold, we reject the oversketch, as we cannot identify

where the trail is joining the curve.

If the oversketch is not rejected, let j < k without loss of generality, and for this moment

assume the original curve is open1. Find l <= j and r >= k such that cl and cr are vertices

that correspond to vertices on the control curve. Redefine the oversketch trail to be {en} =
{cl, cl+1, . . . , cj , d1, d2, . . . , dn, ck, . . . , cr}. This trail will be used to redefine the control

vertices in between and including the ones that correspond to cl and cr, denoting it by {qn}.
Then we parametrize both polylines {qn} and {en} by length, and finally at each of qi with

parameter ti, we reposition qi to the polyline {en} evaluated at ti.

If the curve is closed, we have two possible candidates for redefinition provided two

joining points, namely the two halves of the curve by cutting it at the two joining points . We

resolve the ambiguity by computing the average distance between {dn} and the two halves

and choose the closer one. The algorithm described above can then be applied to the chosen

half.

4.1.3 Issues on resolution

It is obvious that the algorithm presented above will not be able to handle an oversketch

that requires higher resolution than the original curve. In other words, by redefining k control

points we only have k degrees of freedom and is not possible to capture components with high

details. To overcome this problem in the case of a stand-alone curve, we calculate the error

of approximation after redefining the control points. If the error exceeds some predefined

threshold ε, we repeatedly subdivide and reapply the oversketching until the error is smaller

1If this was not true, we can reverse the list {dn}.

CHAPTER 4. PRIMITIVES 25

than ε. While we can store the the editing as multiresolution detail on the different subdivision

levels, we choose to simply throw away all the coarser ones and treat the control vertices at the

refined level as the new control curve. If the curve has children in the dependency hierarchy,

however, we cannot switch the control level freely. What we can do on this case is dependent

on the children it has, and is handled by the children curves or surfaces.

4.2 Surfaces

We have four types of primitive surfaces (Figure 4.2): Tube, Extrusion, Ruled Surface and

Panel

• Tube - a generalized cylinder, with user-defined cross section, and different scaling

between cross sections. Cone is a special case of a tube.

• Extrude - give thickness to an open surface. We make a copy of the surface by translat-

ing each vertices along its normal by some user-defined amount. The new copy is then

stitched to the original.

• Ruled Surface - defined by a pair of curves, or a curve and a point. Surface with grid-

like parameterization.

• Panel - surface defined by boundary curves. For non-planar boundaries, it produces a

surface with minimal energy.

Of these four, the tube is the most flexible shape and can be used to build a lot of shapes.

We have two main ways of building a tube:

1. Use a closed curve as the cross section shape, describe the silhoutte. A tube will then

be built with cross sections of varying size defined by the silhouette. (Figure 4.2(b)(g))

2. Use a curve as the axis of the tube, describe a cross section. The tube will then have

uniform cross sections along the entire axis. (Figure 4.2(e))

CHAPTER 4. PRIMITIVES 26

(a)Panel - Control mesh (b)Panel - Limit surface

(c)Tube - Control mesh (d)Tube - Limit surface

(e)Another tube (f)Ruled Surface

(g)Cone, a special case of tube

Figure 4.2: Primitive surfaces.

CHAPTER 4. PRIMITIVES 27

When a tube is built, we build a control mesh for a subdivision surface that describe the

mesh. If the cross section curve already exists, as in case 1, then we simply make copies of

its control curve to build up the mesh for the tube. Otherwise, we build up the cross section

curve first, in the way described in Section 4.1. The spacing between the cross sections are

chosen so that: (1)it captures the resolution of the axis curve, and (2)it produces triangles with

good aspect ratios. (Figure 4.2(c))

For the extrusion, we assume the depth we extrude is small compared to the size of the

object, and hence we do not insert any new vertices during an extrusion. For the ruled surface,

we insert new isoparameter curves between the two curves that define the surface, so that the

triangles are of good aspect ratios.

The panel is one of the other more interesting primitives. Given a list of boundary curves

that form a closed loop, not necessarily planar, we can get some form of triangulations that

produce a surface which interpolate the curves. However, a naive triangulation would not give

a good result when subdivided, as discussed in Section 2.1.5. Hence, we perform a remeshing

to produce triangles with good aspect ratio. The algorithm is a simplified version of the

one described in Section 5.4, without any tracking. So during repositioning we can simply

move the vertices to the centroid of its neighbor, and the connectivity modification is purely

based on the aspect ratios of the triangles. Indeed, the surface we would get is approximating

the surface with minimum energy that interpolates the given boundary, and this is often the

desired surface.

Chapter 5

Trimming and Joining

5.1 Introduction

Trimming and joining are important primitive operations in modeling. In order to build up

compound objects, we often need to join several parts together. For example, a handle to a

mug, or limbs to a torso. In some cases, it may be acceptable to just put the parts together in

the correct position, with the parts remaining separate entities and intersecting each other. A

more elegant way is to use CSG1 [7, Chapter 12], which represents the object using Boolean

operations (e.g. union, intersection, subtraction) of sub-objects. However, it is often more

convenient and sometimes essential to have one geometric entity that correspond to the ac-

tual compound object. With the parts remained as separate objects, we do not have a single

well-defined model, so it is tricky to perform any geometric operations on the joining region.

With CSG, the Boolean operations are often stored in a tree structure, and again no explicit

representation of the final object is constructed. Thus we do not have a single representation

of the final model either, and it is difficult to apply subsequent operations like editing (espe-

cially around the region of the join), collision detection, rendering, etc. Hence, we are often

interested in explicitly computing the result of a trimming or/and joining and represent the

result with a single surface. To achieve that, we will need to be able to trim a surface.

1Constructive Solid Geometry

28

CHAPTER 5. TRIMMING AND JOINING 29

For modeling with NURBS patches, trimming is indeed notoriously difficult and remains

a challenge for even high end systems. Usually trimming is done by computing the pre-image

of the trim curve in the parameter space. Then the pre-image in the parameter space can

be used to bound regions for which the patch is evaluated. As the control vertices of the

patches remain unchanged, the trimming ensures that the trimmed surface is coincident with

the original surface. However, computing the pre-image is often difficult if not impossible,

and also the representation for the result is more complicated than the original, as extra trim

curves are required to define the trimmed surface. It becomes difficult to handle the surface

when more and more trim curves are added.

In our system, we support the trim and join operation on subdivision surfaces. The result

surface is represented by a modified subdivision surface, with no extra information stored

(e.g. trim curves, multiresolution details). During a trim, the user describes the hole by draw-

ing, then the surface is remeshed2 with the hole removed. The user can then join new primi-

tives to the hole by drawing shapes attached to the curve. In some cases like attaching a tube

to a surface, the trim and join can be done in one step.

Before going into the details of our algorithm, we will first discuss the desired properties

of a good trimming method.

A good trimming is achieved if the following three conditions are satisfied:

Condition 1 The trimmed boundary match the trimming curve given.

Condition 2 The surface away from the trimming region should be unaffected (i.e. trimming

is a localized operation)

Condition 3 The surface around the hole should stay close to the original surface.

Condition 1 is quite obvious. Also, as none of the current work can guarantee exact coini-

cidence between the original and the trimmed subdivision surface, condition 2 is important

to restrict the region affected locally. Finally, condition 3 restricts the deviations from the

original surface in this region.

2The triangulation of the surface is modified to adapt to the shape of the hole

CHAPTER 5. TRIMMING AND JOINING 30

As subdivision surface is relatively new, the trimming operations are not studied well until

this year, when two works related are published, which we will discuss in the next section.

Both works are published this year and our work is done in parallel with them and take a

different approach.

5.2 Related Works

5.2.1 Trimming Subdivision Surfaces - Litke et al.

Litke et al. proposed in [12] a trimming method for subdivision surface. Their method is

attractive in the sense that the trim boundary it creates exactly match the trim curve provided.

(Condition 1). They also satisfy condition 2 as the algorithm is local, and the error of approx-

imation for the region around the hole is bounded by arbitrary ε, which satisfies (and in some

sense stronger than) condition 3.

Here is an overview of their algorithm:

1. Find approximate pre-image of the trim curve for a correspondence between the control

mesh and the trim curve.

2. Adaptively refine3 triangles in the neighborhood of the pre-image.

3. Remove triangles that contain the hole.

4. Add a strip of triangles to fill the gap between the desired hole and the bigger hole

created in the previous step.

5. Relax the vertices on the desired hole to give triangles with better aspect ratios.

6. Optimize correspondence.4

3according to subdivision refinement rules.
4While the adaptive refinement give natural correspondence to domain of the original surface, the correspon-

dence is poor because the connectivity has changed. Hence they require a step to optimize the correspondence by
doing a local search

CHAPTER 5. TRIMMING AND JOINING 31

7. Approximate surface by applying quasi-interpolation stencils to produce detail vectors

at several levels, depending on the user-desired ε.

This algorithm is especially suitable for CAD applications because of the exactness they

provide. However, to achieve the exactness, they require to put multi-resolution details to the

surface, and in most cases the details need to be added to several subdivision levels to give a

good-looking surface.

For our sketching system, however, this algorithm is less than ideal. We do not require

the kind of accuracy they give, and at the same time we would like to keep our representation

simple during this stage of modeling. For example, the dependency hierarchy is tricky to

implement with multi-resolution details. While we do not preclude using multi-resolution

details in our system, we would like to keep them to the final stage of the modeling to add

user-desired details, like embossing.

5.2.2 Approximate Boolean operations - Kristjansson et al.

Figure 5.1: Result from [11]

Kristjansson et al.’s work involved more general boolean operations like intersection, union

and subtraction on subdivision surfaces (Figure 5.1). They propose an algorithm for find-

ing approximate intersection curves between two subdivision surfaces. With the intersection

CHAPTER 5. TRIMMING AND JOINING 32

(a)Original (b)Vertices inserted along boundary (c)Hole removed

Figure 5.2: Creating the hole

curves represented in the parametric domain, they subdivide the triangles around the inter-

section curve adaptively to create the hole, similar to Litke et al.’s work. After merging the

domains of the two surfaces, fitting is performed to produce multi-resolution details to ap-

proximate the original surface.

5.3 Creating the hole

In the following sections we present our algorithm. The input is a subdivision surface and a

trim curve, and the output is a trimmed subdivision surface which satisfies all three conditions

in Section 5.1. Specifically, in our sketching system, the trim curve is given by a screen space

pixel trail (closed), and a projection direction. We rephrase the trimming problem as the

following:

Given an original surface defined by a control mesh M0 and a trim curve, find a new

control mesh S0 such that its subdivision limit surface S∞ approximates M∞ with the hole

removed, and such that the three conditions set in Section 5.1 are satisfied.

The first step is to create the boundary on the mesh. Contrary to the works discussed

above, we directly split the faces along the boundary (Figure 5.2(b)). While the splitting re-

quires extra work, we do not need to perform stitching and relaxation as is necessary in [12],

or the snapping and refinement in [11]. During the splitting, we maintain correspondence of

any new vertices to its position in the original control mesh, represented by barycentric coor-

CHAPTER 5. TRIMMING AND JOINING 33

(a)After hole removed. (b)After remeshing

Figure 5.3: Remeshing

dinates, which will be used later when we remesh the region. After the splitting is finished,

we discard the triangles inside the hole. (Figure 5.2(c))

5.4 Remeshing

After removing the inner triangles, we are left with a mesh that is different from the original

mesh locally. Triangles around the hole in general have bad aspect ratios (Figure 5.2(c)), and

this is bad for subdivision surfaces as discussed in Section 2.1.5. In order to fix this problem

, we need to remesh the region. See Figure 5.3. The remeshing has two main goals: (1)

to produce triangles with better aspect ratios, (2) to smoothly interpolate the difference in

resolution between the hole and M0.

Our remeshing algorithm resembles the one in [14]. Initially, we put vertices in the two-

ring neighborhood of the hole in a hot list. Each of the vertex in the hot list h has a corre-

sponding tracking position Th in the original control mesh M0, which is initialized during the

splitting in the previous step. Then we do the following:

CHAPTER 5. TRIMMING AND JOINING 34

repeat

Step 1 - Reposition vertices in hot list

Step 2 - Modify connectivity for edges in hot list

until hot list empty

Intuitively, step 1 try to distribute the vertices evenly and provides smoothing, while step 2 try

to form triangles with better aspect ratio.

5.4.1 Repositioning

The goal of the repositioning step is to distribute the vertices more evenly. In this step, each

vertex in the hot list is visited. Let h be one of the vertex and its position be xh. To distribute

the vertices evenly, we try to make every vertex close to the centroid of their neighbor. We set

h’s target position to be th = αxh+ (1−α)ch, where ch the centroid of its neighbor, and α is

a constant, typically set to 0.3. However, we do not reposition h to th directly, as th does not

lie on M0 in general. Instead, we do a local search around Th in M0, to find a closest point to

th. We then reposition h to this closest point and update Th. If the repositioning move h less

than ε distance, we remove h from the hot list.

5.4.2 Modify Connectivity

In this step, the connectivity in the neighborhood of the hole is modified trying to achieve

three goals:

1. Triangles with better aspect ratio.

2. Closer to the original surface.

3. Vertices with valence six.

While these three goals are not directly opposed to each other, in many cases they are

competing. During this step, we look at each of the edge that connect hot vertices. We try

CHAPTER 5. TRIMMING AND JOINING 35

�������

���	�
 �

��
�� � �������

Figure 5.4: Edge operations include swap, split and collapse.

to apply one of the edge operation as shown in Figure 5.4, if certain conditions are satisfied.

Also, if any edge operations are performed, we put the affected vertices in the hot list.

Each vertex has an associated target length, which is initialized to the average adjacent

edge length at the beginning. We set the target length of an edge the average of those of its

two vertices. The conditions for the split and collapse are as follows: We split an edge if it

is longer than 1.5 times the target length, and collapse the edge if it is less than 0.5 times the

target length.

To decide whether to swap or not it is slightly more involved. First we check if the swap

is valid as discussed in [9]. If the swap is valid, we want to evaluate (1) the improvement in

aspect ratios of the triangles involved (∆θ), (2) the improvement of the distance to the original

surface. (∆d)

Referring to Figure 5.5, assume that we are considering to swap edge BC, and BC is

adjacent to two triangles, ABC and BCD. Then we calculate ∆θ by looking at the change of

minimum angle within the two triangles if BC is swapped.

∆θ = min(minangle(ABD),minangle(ADC))−min(minangle(ABC),minangle(BCD))

CHAPTER 5. TRIMMING AND JOINING 36

�

�

�

� �

�

�

�
� �

Figure 5.5: Edge swap.

� ��

	

���
������ ��������� ��
����

�� ����"!$#
%

Figure 5.6: Error angle.

As all vertices are constrained to be on M0 during repositioning, we measure the distance

from the surface at the mid-point of an edge, which in general does not lie on the surface. So,

let E be BC’s mid-point, and F be AD’s midpoint, then

∆d = error angle(E) − error angle(F)

where error angle() computes an angle that represents the error from the original surface

M0. Refer to Figure 5.6. To compute error angle of E, we find the closest point T on M0 to E

using a local search. Then we define the error angle to be the angle between BT and BE.

CHAPTER 5. TRIMMING AND JOINING 37

Finally, we take a weighted sum of the two quantities to estimate the improvement.

I = α∆d+ ∆θ

In our system we choose α = 2 and we carry out the swap operation if I > 0.

5.5 Fitting

After the remeshing step, we obtain a control mesh, call it S0, that have good triangles around

the region, and identical to M0 away from the trim region. The reposition procedure also

maintains that all vertices of S0 are lying on M0.

However, this does not necessarily give a good approximation of the original surface.

As discussed in Section 2.1.5, the limit surface is dependent on the topology of the mesh.

Indeed, when the hole we are trimming have a higher resolution than M0, which is common,

our remeshing will produce triangles of varying size that interpolates between the size of M0

and that of the hole. Hence, when tracking on M0 we will suffer from oversampling. See

Figure 5.7. Here we cut a small hole from a surface that has a much coarser control mesh.

We do the cutting and remeshing as described in the previous sections, tracking on the coarse

control mesh. During the retriangulation, small triangles are created around the hole and

many new vertices are inserted because of the short target edge length around the hole.

However, these new vertices, which are relatively more densely populated than other ver-

tices, are tracking on a control mesh with much lower resolution, and this contributes to

oversampling artifacts. We can see from Figure 5.7 that the limit surface of the trimmed mesh

inappropriately interpolates the big triangles around the hole in the original control mesh.

There is another issue which is independent of resolution. For simplicity, we can look at

a two dimensional case. In Figure 5.8, we have a polygon on the left, let us take it be M0,

a control mesh that we track on. At the right, we repositioned the vertices while staying on

the control mesh. We can easily see that the subdivision limit of the repositioned polygon is

smaller than that of the original. Of course, extreme cases like this are prevented by the surface

CHAPTER 5. TRIMMING AND JOINING 38

Control mesh before trimming Control mesh after trimming

Limit surface before trimming Limit surface after trimming

Figure 5.7: Oversampling effect if no fitting is performed

CHAPTER 5. TRIMMING AND JOINING 39

Figure 5.8: Error due to reposition.

error measure during the remeshing, but they are not totally guaranteed against because the

remeshing is optimizing on a set of potentially competing conditions.

To resolve the issues described above, ideally, we should control the limit surface of S∞
directly, and optimize by tracking vertices of S∞ on M∞. However, tracking on a limit

surface is hard, so in our algorithm we do the following instead:

1. Remesh with vertices tracking on M0.

2. For each vertices vi in the trim region, calculate v′i usingM∞ evaluated at the parameter

given by the tracking position.

3. Use a fitting procedure on the vertices {vi} so that their limit of subdivision tends to

{v′i}.

First we carry out the remeshing as before by tracking on M0. For each vertex vi in the

trim region, we can find the barycentric coordinates of the track position on the track face.

This can be regarded as a parameter in the domain surface M0. With this parameter, we

can evaluate the corresponding position in M∞, possibly using techniques specified in [16].

However, for simplicity, we approximate the evaluation by subdividing the triangles a few

times. Evaluating at each vertex vi, we get a list of geometric positions {v′i} which we hope

S∞ to interpolate. So, the final step is to fit the vi s so that their limit positions are at the

respective v′i.

CHAPTER 5. TRIMMING AND JOINING 40

(a)Original (b) A small hole cut

Figure 5.9: Improved approximation with fitting.

To solve the fitting problem, it is equivalent to finding the inverse of S∞, where S is

the global subdivision matrix. Rather than solving the inverse directly, (which is possible in

practice as S∞ is sparse), we apply an iterative algorithm that works well in practice. Let

V = (v1, v2, . . . , vi)T , V ′ = (v′1, v
′
2, . . . , v

′
i)
T ,

repeat

V = V + (V ′ − S∞V)

until |(V ′ − S∞V)| < ε

In practice, during each iteration the error drops geometrically, and we require about 10-

15 iterations with a setting of ε equals to 0.001% of the size of the mesh. See Figure 5.9 for a

illustration of the improvement for cutting a small hole with the fitting procedure.

However, we should notice that our fitting procedures only optimize V , the set of vertices

in the control mesh S0, so that their limit positions tend to a set of fixed positions V ′ on M∞
obtained from the evaluations. As a consequence, we have no guarantee about the error at

locations other than V ′. Nonetheless, in our sketching system we assume all our surfaces are

well-behaved and a good error bound on the set of control vertices should give similar bound

for the entire surface.

CHAPTER 5. TRIMMING AND JOINING 41

5.6 Alternatives to fitting

One important reason for performing the fitting is the variable edge length in the mesh pro-

duced from our remeshing algorithm. If instead, we have a relatively uniform triangulation,

then fitting is not as crucial. This is possible when our original mesh has uniform triangula-

tion. Then when we have a trim curve with uniform edge length, we can choose to trim on

a refined mesh (say level n) of the original surface that has comparable edge length. Now,

we can perform a remeshing with uniform target length, while tracking on Mn instead of

M0. Because the edge length is uniform and we are tracking on a mesh with comparable

resolution, no oversampling artifacts will occur.

While this approach is simpler by skipping the fitting step, trimming on a refined mesh

hinders flexibility for subsequent operations, as we are left with a refined mesh to represent

our object. For example, if we want to smooth a crease, we would like to be able to set the

smoothness in a very coarse level. If our trimmed mesh is based on a refined mesh, however,

smoothing is limited as the region we smooth out is only the one-ring neighborhood of the

crease edge.

5.7 Joining

When a hole is created, we also create an associated curve around the hole. New parts can

then be attached to the hole by building new shapes from this curve.

At the current stage, we do not support Boolean operations of surfaces. However, it should

be relatively straightforward to support them once we acquire the intersection curve of two

shapes. With this curve, we can cut the two meshes and join them together. Then we can

apply our remeshing algorithm to the joining region for better surface approximation.

Chapter 6

Results

The following are some shapes we are able to model with Freeform Sketch. The process

for building them is no more complicated than the description given above. Each of them

typically take about a minute to build.

• Mug - described in Chapter 3.

• Teapot - start from a tube that represent the main body, attach a handle to it, and attach

another tube to form the spout.

• Mushroom - two tubes attached together.

• House - draw a rectangle for the base, extrude it upwards to form the main body. Cut a

hole for the door, extrude it to give it thickness. Cut a hole on the top, attach a tube to

make the mosque-like roof. Cut a hole through the wall to make the window.

Please also see http://www.cs.princeton.edu/∼waingan/ffs.avi for a video demo showing

how a mug can be made in our system.

42

CHAPTER 6. RESULTS 43

Figure 6.1: Models we made in Freeform Sketch (1).

CHAPTER 6. RESULTS 44

Control mesh before trimming Limit surface before trimming

Control mesh after trimming Limit surface after trimming

Figure 6.2: Trimming of a surface.

Figure 6.3: A face built using trim and join on a tube.

Chapter 7

Discussion and Conclusion

This thesis presents the usage of subdivision models in our 3D sketching system. We see that

subdivision surfaces are extremely flexible and suitable for our system. One of the important

property is the smoothing it provides, as sketching input is often noisy. Also, while the ap-

proximating properties of the Loop scheme is not desired in some applications like CAD, it

posed no problem for a sketching system like ours. Its convenience for specifying shapes with

arbitrary topology, and its ability to define creases with variable sharpness are very attractive

for our system.

One of the main focus of the thesis is a trimming algorithm for subdivision surfaces.

We initially aim at a simple implementation as accuracy is not our main concern. However,

results show that a naive approach will give very bad-looking results, with wiggles and bumps

everywhere. A great amount of effort has been spent on getting trimmed surface with better

quality, at least visually, while not adding multi-resolution details to the surface. In two related

works [12, 11] we discussed in Chapter 5, they both require putting multi-resolution details

to several subdivision levels after trimming. This is undesirable for us as it is cumbersome to

apply subsequent operations.

The remeshing and fitting algorithm we present in Chapter 5 is giving good results for

most cases, but it is not yet ideal. While we are able to control the errors at the positions

corresponding to control vertices, in some occasions very subtle bumps appear, even the tri-

angulations we have in the region are reasonably regular (See Figure 7.1). We do not have an

45

CHAPTER 7. DISCUSSION AND CONCLUSION 46

explanation for why this is happening, but this point out an important fact that the L∞ norm

is not always a good measure for approximation of surfaces. In our case, we do have a small

L∞ norm for the distance between the trimmed and the original surface, but subtle bumps

can still exist as a coherent region of small deviations can contribute to noticeable disruption,

especially when smoothly shaded. In our system, we would actually prefer a smoother surface

with a worse L∞ norm.

(a) Control mesh (b) Limit surface

Figure 7.1: Subtle bumps after remeshing, contrast adjusted in the circled region of (b) to
emphasize the bump.

For the sketching system itself, our work has shown promising result on the system’s

potential. We are able to build shapes with complexity previously not possible with similar

systems in a very short amount of time. Also, subdivision surfaces give our model higher

visual quality, compared to polygon models as in Teddy or SKETCH. Surfaces are in general

smooth everywhere, while creases can be specified with variable sharpness when desired.

This gives us ability to model both the boxy kind of shapes of SKETCH and the biological

shapes of Teddy, and combinations of both.

All the modeling operations in our system are supported through gestural input, which

prove to be an easy and efficient way to build shapes, compared to the standard GUI in most

commercial systems. It has better correspondence to traditional drawing on paper, and without

the complicated GUI, it is much less intimidating for the novice users. Nonetheless, there

are still plenty of rooms for improvement on the interface, as currently our gestures are not

always obvious to users. More importantly, we should give suitable negative feedbacks or

CHAPTER 7. DISCUSSION AND CONCLUSION 47

make reasonable guess when a gesture is not recognized.

Indeed, pen interfaces has recently gained much popularity in other application domains

like PDA and Tablet PC. Even computer games (e.g.Black and White, 2001, Lionhead Stu-

dios.) have started to use gestures for the interface, rather than the standard interface with

buttons and keystrokes.

Currently, we are developing new tools to build models from skeletons, which describe

the basic structures of the shape like branches. With the skeletons, we can acquire natural

parameterization of the models more easily, and this can be used to support oversketching for

these shapes. For example, we can oversketch iso-parameter curves to describe deformations

to a model.

While we have some notable achievements during the past year, it just seems to open up

even more possibilities for 3D modeling in this direction. Some of the more interesting or

immediate future research include:

• Further study on the trimming operations - We would like to investigate more into

the properties of the trimmed surface we obtain, in order to prevent the bumps we show

in Figure 7.1. Also it will be interesting to incorporate general Boolean operations

which will widen the class of models we can model.

• Multi-resolution details - It will be desirable to support multi-resolution details as a

finishing tool to add features to our model, like embossing.

• Animation by sketching - A natural follow-up work for modeling would be anima-

tion. In particular, the skeleton-based modeling that we are developing naturally gives

the structure for animating. It will be interesting to use a similar gestural interface to

describe motions.

Appendix A

Mathematical Properties of
Subdivision Surfaces

In this appendix we give a few of the important and well-known mathematical properties of

subdivision surfaces without proof. Much more elaborated treatment can be found in [15] and

[19].

In the context of subdivision analysis, it is very useful to introduce the notion of the

subdivision matrix. The subdivision process can be represented using matrix operations as

subdivision rules are linear combinations of vertices. For analysis of continuity, convergence

and limit position, we look at the local subdivision matrix, which operate on a neighborhood

of some vertex.

Let Mr be the array of vertices (V r, V r
1 , . . . , V

r
n)T consisting the one-ring neighborhood

of vertex V r, at subdivision level r (Refer to Figure 2.4). Then, we can characterize subdivi-

sion in the neighborhood of V r by a n+1 by n+1 matrix, Sn, to encode the rules of one step

of refinement, which send Mr to Mr+1, the neighborhood of the vertex V r+1 in the refined

mesh. In terms of the matrix, we have

48

APPENDIX A. MATHEMATICAL PROPERTIES OF SUBDIVISION SURFACES 49




V r+1

V r+1
1
...

V r+1
n




= Sn




V r

V r
1
...

V r
n



,

or more concisely,

Mr+1 = Sn ·Mr.

And so, Mk, the neighborhood of V 0 refined k times, is equal to Sn ·Mk−1 = SknM0.

For the Loop scheme,

Sn = (1/8)




a b b b . . . b b

3 3 1 0 . . . 0 1
3 1 3 1 0
3 0 1 3 1 . . . 0

...
...

...

3 0 1 3 1
3 1 0 1 3




,

where a = 8− nb, b = (1/n)(5 − (3 + 2 cos(2π
n))2/8).

For example, when n = 6, b = 1
2 , a = 5

S6 = (1/8)




a b b b b b b

3 3 1 0 0 0 1
3 1 3 1 0 0 0
3 0 1 3 1 0 0
3 0 0 1 3 1 0
3 0 0 0 1 3 1
3 1 0 0 0 1 3




,

APPENDIX A. MATHEMATICAL PROPERTIES OF SUBDIVISION SURFACES 50

Indeed the local subdivision matrix is just another way of representing the masks shown

in Figure 2.5. The first row of the matrix map V r to V r+1 by the mask (a, b, b, ..., b), and the

remaining rows map V r
i to V r+1

i by the mask in Figure 2.5.

For a well-defined scheme like Loop, the neighborhood will converge to a single point

in the limit by applying Sn repeatedly. In other words, as k → ∞, each of V k
i in Mk will

converge to the limit point V ∞. So, to analyze the local property of a subdivision surface at

a vertex, it is sufficient to analyze the local subdivision matrix. By eigenanalysis, it is known

that V∞ is given by

V∞ =
(wV 0 + V 0

1 + . . .+ V 0
n)

w + n

where w = 3/b.

Also, a well-defined tangent plane at V ∞ on the limit surface will be spanned by two

vectors,

v1 =
n∑

i=1

cos(
2π(i− 1)

n
)V 0
i , v2 =

n∑

i=1

sin(
2π(i − 1)

n
)V 0
i

The simple closed form solution for V ∞ is the reason that evaluation is possible in con-

stant time, and evaluation on arbitrary parameters is also based on this fact. Indeed, with

arbitrary evaluation, a subdivision surface can be regarded as a patch locally. In our system,

we use the evaluation methods during the fitting stage, described in Section 5.5.

Bibliography

[1] Autodesk. 3ds max 4., 2001.

[2] R.H. Bartels, J.C. Beatty, and B.A. Barsky. An Introduction to Splines for Use in Com-

puter Graphics and Geometric Modeling. Morgan Kaurmann, Los Altos, California,

1989.

[3] E. Catmull and J. Clark. Recursively generated b-spline surfaces on arbitrary topological

meshes. Computer Aided Design 10, pages 350–355, 1978.

[4] Jonathan M. Cohen, Lee Markosian, Robert C. Zeleznik, John F. Hughes, and Ronen

Barzel. An interface for sketching 3D curves. 1999 ACM Symposium on Interactive 3D

Graphics, pages 17–22, April 1999. ISBN 1-58113-082-1.

[5] Tony DeRose, Michael Kass, and Tien Truong. Subdivision surfaces in character ani-

mation. Proceedings of SIGGRAPH 98, pages 85–94, July 1998. ISBN 0-89791-999-8.

Held in Orlando, Florida.

[6] Nira Dyn, David Levin, and John A. Gregory. A butterfly subdivision scheme for surface

interpolation with tension control. ACM Transactions on Graphics, 9(2):160–169, 1990.

[7] Foley, van Dam, Feiner, and Hughes. Computer Graphics: Principles and Practice.

Addison Wesley, 1996.

[8] Hugues Hoppe, Tony DeRose, Tom Duchamp, Mark Halstead, Hubert Jin, John Mc-

Donald, Jean Schweitzer, and Werner Stuetzle. Piecewise smooth surface reconstruc-

tion. Proceedings of SIGGRAPH 94, pages 295–302, July 1994. ISBN 0-89791-667-0.

Held in Orlando, Florida.

51

BIBLIOGRAPHY 52

[9] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and Werner Stuetzle.

Mesh optimization. Proceedings of SIGGRAPH 93, pages 19–26, August 1993. ISBN

0-201-58889-7. Held in Anaheim, California.

[10] Takeo Igarashi, Satoshi Matsuoka, and Hidehiko Tanaka. Teddy: A sketching interface

for 3D freeform design. Proceedings of SIGGRAPH 99, pages 409–416, August 1999.

ISBN 0-20148-560-5. Held in Los Angeles, California.

[11] Daniel Kristjansson, Henning Biermann, and Denis Zorin. Approximate boolean oper-

ations on free-form solids. CAGD, 2000. Held in Oslo, Norway.

[12] Nathan Litke, Adi Levin, and Peter Schröder. Trimming for subdivision surfaces.

CAGD, 2001.

[13] C. Loop. Smooth subdivision surfaces based on triangles. Master’s thesis, University of

Utah, 1987.

[14] Lee Markosian, Jonathan M. Cohen, Thomas Crulli, and John F. Hughes. Skin: A

constructive approach to modeling free-form shapes. Proceedings of SIGGRAPH 99,

pages 393–400, August 1999. ISBN 0-20148-560-5. Held in Los Angeles, California.

[15] Jean E. Schweitzer. Analysis and Application of Subdivision Surfaces. PhD thesis,

University of Washington, August 1996.

[16] Jos Stam. Evaluation of loop subdivision surfaces. SIGGRAPH 98 CDROM Proceed-

ings, 1998.

[17] Jos Stam. Exact evaluation of catmull-clark subdivision surfaces at arbitrary parameter

values. Proceedings of SIGGRAPH 98, pages 395–404, July 1998. ISBN 0-89791-999-

8. Held in Orlando, Florida.

[18] Robert C. Zeleznik, Kenneth P. Herndon, and John F. Hughes. SKETCH: An interface

for sketching 3D scenes. Proceedings of SIGGRAPH 1996, pages 163–170, 1996.

[19] D. Zorin and P. Schröder. Subdivision for modeling and animation. Course notes of

SIGGRAPH 2000, August 2000.

