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Abstract

An increasing number of parameter estimation tasks involve the use of at least two
information sources, one complete but limited, the other abundant but incomplete.
Standard algorithms such as EM used in this context are unfortunately not stable
in the sense that they can lead to dramatic loss of accuracy with the inclusion of
incomplete observations. We cast estimation with incomplete information as a source
allocation problem, and show that instability occurs at a well-defined data-dependent,
source allocation. We introduce an algorithm that finds the critical allocation by trac-
ing local maxima, of the likelihood from full weight on complete data to full weight
on incomplete data. Theoretical results support that such tracing is always possi-
ble in the exponential family by following the differential equation that governs the
evolution of local maxima while changing allocation. Our approach finds in O(n?) in
the number of model parameters the critical allocation along with a stable estimate.
We demonstrate the effectiveness of the algorithm on artifically generated mixtures
of Gaussians and on text classification with naive Bayes. The approach readily gen-
eralizes to other problems that feature from multiple sources of information.
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Chapter 1

Introduction

Virtually any estimation problem must cope with incomplete information. It may be
that data originates in fragmented experiments that produce samples with missing
entries; or that a variable is missing altogether from the dataset, but its existance is
conjectured from physical knowledge about the domain; yet, in other situations latent
variables are artificially introduced to increase efficiency of estimation. Estimation
algorithms that operate under incomplete information have been an active area of
research for decades.

Many modern application areas involve estimation estimation in which incomplete
data is prevalent, but complete samples also exist. A common instance of this type
of problem is classification. The goal of classification is to construct from a collec-
tion of labeled training samples a classifier that predicts class labels of unseen data,
but often training labels are expensive to generate, and most of the training sam-
ples are available with unknown class labels. This is the case in text classification,
where documents in electronic form are readily available, but labeling requires human
intervention. In other classification problems, such as those linked to the medical do-
main or bioinformatics, each labeling requires extensive expert knowledge, or is the
result of laborious experiments, therefore datasets with only a few labeled samples
are common. Similarly, in image classification images are widely available, but users
construct queries by presenting only a few images from the intended class. Natural

Language Processing is another domain that generates many problems amenable to
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estimation with incomplete knowledge. To name a few, part-of-speech tagging, pars-
ing, word sense disambiguation, all have access to large numbers of sentences, but
labeling large corpora is expensive and often unreliable.

One may argue why unlabeled data can be useful at all for classification. It is
impossible to build a classifier that performs better than random with unlabeled data
alone, therefore the first thought is that incomplete data is not helpful in this con-
text. However, in the presence of even very few labeled samples, unlabeled data can
noticeably improve classification. Consider for example the named entity classifica-
tion problem, in which names occurring in a text must be identified as belonging
to one of few classes (person, organization, location, and so on). Collins [7] shows
how document structure can be used to learn an accurate classifier from very few
labeled samples. He uses two types of rules that determine the class of named enti-
ties: spelling rules, such as Mr., a sub-word, or the entire entity, and context rules,
such as the modifier president. A key co-occurrence assumption enables derivation
of new rules over unlabeled data: spelling and context rules occurring at the same
time on some named entity must detect the same class. Initially, the classifier knows
only a few rules, but can derive more rules of each type from the other type due to
co-occurrence. After all the possible rules have been derived, the result is a much
better classifier. In general, like in any learning problem, unlabeled data can improve
classification due to a priori model assumptions, that effectively correlate class label
information with incomplete information.

Current approaches to classification with labeled and unlabeled data fall in three
categories: constraint-based, generative, and regularization methods. We provide a
brief account of each paradigm.

The solution to named entity classification discussed above is a constraint-based
method. Algorithms from this category equate labels of different data points through
hard constraints trained from unlabeled data. The constraints establish equivalence
sets of data points that must belong to the same class, so that eventually each set
needs only one labeled training sample. For example, Yarowsky [24] improves his

word-sense-disambiguation classifier based on the local context of the word by en-
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forcing the constraint that all instances of a word occurring in the same document
must have the same meaning. Unlabeled occurrences of a word of interest can than be
labeled at the document level, and used to train a better local-context classifier. Note
that such hard constraints are often unreasonable, limiting the use of constraint-based
methods to only a few applications.

Blum and Mitchell formalize constraint-based methods in their work on co-training
[4]. In co-training the key assumption is that data can be redundantly represented
by two independent sets of features, each being sufficient for classification, and that
feature sets co-occurring in unlabeled data must have the same label. Each set of fea-
tures yields a different classifier, and the co-occurrence condition along with unlabeled
samples can be used to iteratively train one classifier over the other. Co-training can
be very powerful, but like other constraint-based methods requires quite demanding
assumptions.

In contrast, generative methods are less restrictive and are applicable to a wide
range of problems. Such methods model the full joint probability distribution of data
and labels, and learn its parameters from both labeled and unlabeled samples. Esti-
mation usually resumes to finding parameters that maximize a likelihood-based crite-
rion, such as the probability of the labeled and unlabeled training set under the model.
The EM algorithm mentioned in the beginning specifically deals with missing infor-
mation under generative models, and is directly applicable to the labeled /unlabeled
setting. Intuitively, EM runs as an iteration that labels all incomplete data with the
best estimate under the current model in one step, and re-estimates the model from
the artificially completed data in the next step. EM has been extensively used to com-
bine complete and incomplete information (see [12, 20] for a mixtures of Gaussians
context, [16] for mixtures of experts, or [17] for document classification with naive
Bayes). Generative methods are very popular due to their flexibility in constructing
complex models and incorporating prior information. Their disadvantage lies in the
fact that they attempt to solve a more general problem than classification, and that
optimization by EM is prone to local optima.

The last class of algorithms include a variety of methods that use unlabeled data
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through regularization that modifies classification, without modeling the full joint of
data and labels. Because such methods optimize classification error directly, they
usually require less training data than generative methods. Transductive inference
[21] for example advocates minimization of classification error on the given unlabeled
samples only, without attempting to generalize on unseen data. For an instance
of transductive inference in practice see Joachims' transductive SVM [13]. Other
regularization methods include using unlabeled data to define the kernels for large
margin classifiers, or metrics that can used in building classifiers [19].

The motivation for our work is that current estimation algorithms with labeled and
unlabeled data are often unstable in the sense that inclusion of unlabeled data may
dramatically improve but also reduce performance compared to labeled-data only
estimates. This is the case because estimation with incomplete data heavily relies
on model assumptions, and the addition of unlabeled data may amplify the effect
of their violation. For example, consider EM in generative modeling: when model
assumptions are inaccurate, incorrect labeling of incomplete samples followed by re-
estimation based on the inaccurate labeling may eventually attenuate labeling errors,
but may also accumulate them, and drastically diverge to an erroneous solution.
Intuition suggests that there exists an error level ! that achieves a transition between
convergence to correct parameters and divergence to a flawed solution. Below that
critical error level, inclusion of unlabeled data is beneficial, but above that level
incomplete information is very damaging to estimation. Because current generative
algorithms for estimation with incomplete information cannot distinguish between
the two regimes, they are inherently unstable.

Central to our work is the view of estimation with complete and incomplete infor-
mation as an allocation problem between two heterogeneous data sources providing
often conflicting information about the variable of interest. The complete source is

reliable and preferred, but scarce, while the incomplete source is less robust to model

'We introduce the notion of error level for intuitive purposes only, without claiming a formal
definition of the concept. In practice we use other well-defined quantities with properties similar to
those of the error level.
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violations, but is abundant. Generative algorithms combine the two sources of in-
formation under an implicit weighting that achieves a certain level of robustness to
model misfit. For example, because EM optimizes log-likelihood, which is additive
in labeled and unlabeled samples, the algorithm allocates the two data sources ac-
cording to the ratio of their sample counts. However, we can easily generalize such
algorithms to work with any source allocation on the scale from complete-data only
to incomplete-data only estimation.

There is a direct link between source allocation and sensitivity to model misfit;
the less weight on unlabeled data, the less we trust it, and model assumptions are less
important; thus source allocation effectively trades off robustness to model assump-
tions and the potential benefits brought by unlabeled data. This tradeoff has been
recognized by other researchers [17], but currently there are no principled methods
of choosing the allocation.

In this work we introduce an algorithm that explicitly identifies in a data-de-
pendent manner the maximal source allocation that achieves stable estimation with
incomplete information. Larger allocations presume model assumptions inconsistent
with available training data, while for smaller values the misfit is small enough that
the algorithm converges in the correct direction. The sudden change in performance
at a well-defined allocation is due to the critical error level property mentioned above.
Our algorithm continuously traces estimation parameters from complete-data only to
incomplete-data only allocation by following the differential equation that governs the
evolution of local optima. The significant feature of this approach is that it provides
an explicit way of identifying critical points that arise in the estimation problem as
discontinuities in the tracing process.

While we present our method in the context of generative modeling within the
exponential family, we envision a wealth of applications of the algorithm to other

problems that deal with multiple sources of information.
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1.1 Outline

The thesis is organized as follows. In Chapter 2 we give a formal description of
the problem, possible likelihood-based optimization criteria, and standard algorithms
that optimize them. In Chapter 3 we turn to information geometry and present
a geometrical analysis of mixing complete and incomplete data, providing intuition
of why instability occurs, and how continuation methods can detect it. Chapter 4
presents a naive approach to continuation, showing how it can achieve stability, but
also why it is problematic. Chapter 5 is the formal presentation of our method, with
complete theoretical arguments. To illustrate the use of homotopy continuation for
mixing complete and incomplete information, Chapter 6 comprises its application to
discrete naive Bayes models, and mixtures of multivariate Gaussians. Experiments
that support our method are presented in Chapter 7, and Chapter 8 concludes with

directions of further research.
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Chapter 2

Estimation with Incomplete

Information

The purpose of this chapter is to give a formal treatment of generative methods
for estimation with incomplete information. In the generative framework, one mod-
els the full probability distribution over complete data (both data and labels in a
labeled /unlabeled setting), and than uses available complete and incomplete infor-
mation to estimate the parameters of the model. We address issues such as what
model family should the distribution come from, what criteria could be used to define
the goal of estimation, and what are the standard algorithms that optimize them.

While we keep our presentation to the highest level of generality to account for a
wide range of model families and types of incompleteness, for valuable intuition the
reader should refer to the special case of classification with labeled and unlabeled
data. Here the goal is to build a classifier that generalizes well from few labeled
(complete) samples, and many unlabeled (incomplete) samples. Generative methods
model a probability distribution over both data and labels, whose parameters are
estimated from training data. To classify a new unlabeled sample we select the label
that has the highest probability under the model given that sample.

Note that although we learn the full joint over data and labels, classification uses
only the conditional of label given data. As opposed to fully generative methods,

discriminative techniques use training data more efficiently by estimating only the
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parameters of the conditional while ignoring the marginal. Although discriminative
methods are superior in fully supervised classification, no algorithm that combines
complete and incomplete information can be purely discriminative, because unlabeled
samples provide direct information about the marginal only. Moreover, unlabeled
data is much more available, which makes estimation of the marginal without inef-
ficient use of labeled training data feasible; therefore, for the purpose of estimation

with incomplete information we can safely focus on fully generative models.

2.1 Density Estimation within the Exponential
Family

The goal in generative modeling is to find a density p(z|n) parameterized by m on the
space of complete samples Z from a chosen model family M that best matches the

true but unknown density p*(z) in the following sense:

n' = argglreliﬂg D(p*(z) | p(z[n)) (2.1)

where D(f||g) = [ f logg is the Kullback Leibler distance (or KL-divergence) be-
tween densities [8]. The use of KL-divergence is motivated by its relation to maximum
likelihood which will be apparent later in this chapter. Nevertheless, the actual dis-
tance metric is of no practical use because the true distribution p* is never available;
therefore, we see (2.1) only as a guiding principle. Also, note that p cannot match p*
exactly only because of possible model misfit of the true distribution.

The choice of M is important, because incomplete data provides information
about the conditional only through the specifics of the model family. Restricting the
model family gives more power to incomplete data over estimation, but it is potentially
dangerous if real data violates model assumptions. To accommodate a wide variety of
model families, we formalize our algorithm in the context of any exponential family
[3]. Any distribution family that can be described by a finite number of sufficient

statistics is exponential, therefore this class contains most of the families used in
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practice.
Specifically, M an exponential family of natural parameters 8 has the following

standard form:

P(218) = exp (Bt(=)" + k(=) — (6)) (2.2)

where t(z) the vector of sufficient statistics, and ¥ (@) the partition function.
We can equivalently specify the exponential family by its mean parameterization

1, that can be easily converted to natural parameters:

n(6) = Elt(=)] = -0(60) (2.3
d
6m) = 5 [ plelm)togpleln)da (24)

Because of the one-to-one mapping between mean parameters and natural param-
eters we will specify the same density in either parameterization: p(z|n) or p(z|0).
Note that the space of natural parameters is restricted to the domain of the partition
function, while the space of mean parameters to its range. Moreover, both natural

and mean parameters lie in convex domains.

2.2 Formalization of Incompleteness

In order to introduce estimation with incomplete information in a general setting,
we must give a flexible formalization of incompleteness. Following [10], we define the
relationship between complete and incomplete data by a many-to-one map z — x(z)
between the space of complete samples Z and the space of incomplete samples X'. An
incomplete sample x comes from an unknown complete sample from the inverse image
Z(x) under the mapping. This general notion of incompleteness covers all situations
in which complete data decomposes in independent observed and unobserved variables
z = (x,y), where the mapping is projection to the first component of z. For example,

in the labeled/unlabeled data setting x is unlabeled data, and y is the class label.
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Under this general view of incompleteness we can define marginalization by inte-
grating over all consistent complete samples. For any density p(z) on the complete-

data space we can define an incomplete-data density on X by integration:

px(x) = /z( )p(z)dz (2.5)

Using marginalization, we can define for each incomplete sample x a conditional
density on Z(x) by p(z|x) = p(z)/px(x). This definition is actually the well-known
Bayes rule, that provides in our setting a separation between information provided by
incomplete data (the marginal) and other information in the complete density (the
conditional).

Indeed, when no information is assumed a priori about the complete density,
the conditional is independent of the marginal and thus of any incomplete samples.
However, often we are interested only in the conditional, as it is the case in classi-
fication with labeled and unlabeled data, and fortunately prior assumptions about
the model correlate conditionals with marginals. Even without independence the
marginal /conditional decomposition is useful because the marginal estimate contains
all information about incomplete samples, while the impact of incomplete data on
estimation with complete data depends only on model restrictions that govern the

relationship between the marginal and the conditional.

2.3 Setup of the Problem

In this section we merely introduce useful notation for describing estimation with in-

complete information. We are presented with complete samples z€ = (20,25, ..., 25)
and incomplete samples x! = (z!, z, ... 2!,) generated i.i.d. from an unknown den-

sity p*(z) on Z and its marginalization, where typically N < M. The goal is to
use both z¢ and x! to estimate the mean parameters 77 of the best approximation to

p*(z) from the exponential family M.
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2.4 Ciriteria for Estimation with Incomplete Infor-
mation

In practice, we must work with an approximation of (2.1) that is computable from
available training data, and whose optimization finds an estimate of n*. We build on

the standard maximum likelihood criterion without incomplete data:

C
arg max Z log (=) (2.6)
1<i<N

whose estimate is well-understood and well-behaved (of minimum variance if such
estimator exists, and asymptotically unbiased), but likely to be poor because of very
limited complete data. The challenge is to improve the maximum likelihood n* esti-
mate by augmenting the criterion with incomplete data.

Note that if we replace p*(z) in (2.1) with the complete-data empirical estimate
P9(2) = & Y1<icn 0(2 — 2{), we obtain an equivalent formulation of the standard
maximum likelihood criterion. This relationship to maximum likelihood is the reason
we chose KL-divergence as the distance measure between true and modeled density. In
order to benefit from geometrical intuition we will use the KL-divergence formulation
of likelihood whenever possible.

At the other extreme the likelihood of incomplete data provides an estimate of

the full density:

c
Arg max Z log px (x;'|m) (2.7)
1<j<M

or its equivalent KL-divergence formulation D(p!(z) || px(z|n)), where
P'(2) = 57 D 1<j<p O(z — x}) is the empirical estimate from incomplete data.

We must make a clear distinction between the standard usage of the incomplete-
data likelihood, density estimation from a latent variable model, and its usage in
the context of mixing complete and incomplete information. In the standard setting,

although maximum likelihood gives an estimate of the full density, only the marginal
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on the incomplete space is relevant; however, here the focus is on the conditional (in
classification for instance), and a good estimate of the marginal is important only to
the extent of improving the conditional.

While maximum likelihood of incomplete data provides a good estimate for the
marginal, it is not as powerful for estimating the conditional. Even in the limit of
infinite incomplete samples, when maximizing the likelihood amounts to having a
perfect estimate for the marginal, there is more than one compatible conditional.
For example, if incomplete data is unlabeled, a label permutation of the conditional
achieves the same likelihood on incomplete data. The power of incomplete likelihood
on evaluating estimates of the conditional can be as low as providing no information
at all, when the model family of the estimates is too unrestricted.

The two estimators we have introduced, maximum likelihood with respect to com-
plete data and with respect to incomplete data, represent sources of information about
the conditional density that are often conflicting. For instance, allowing a slight re-
duction in incomplete likelihood may permit a sudden increase in complete likelihood,
through a major reorganization of the conditional. The relationship between the two
estimators stems from the specifics of the model family, but it is hard to characterize
analytically in general.

We introduce a family of estimators that combine complete and incomplete log-
likelihoods in a linear fashion with a source allocation parameter A. Expressed in

terms of KI.-divergences, the criterion to be minimized is given by:

(1= XD (2) [Ip(zlm) + AD(B' () | px (]m)) (2.8)

The linear mixing of the log-likelihoods is not only an artificial trick that aids
estimation, but it has an important interpretation very relevant for the problem of
estimation with incomplete information. Specifically, it can be shown that (2.8) is

equivalent to the following criterion:
arg min (D (z) || px(alm)) for DG(2) | p(elm)) < 5} (2.9)
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where [ is a monotonically increasing function of A\. To give some intuition into
why the two criteria are equivalent note that if we put a Lagrange multiplier on the
inequality constraint in (eq : equivgldiv.riterion) we derive a criterion that is a linear
combination of the likelihoods. For a formal proof see Theorem A.4 in the Appendix.

Therefore, by optimizing the mixed likelihood we effectively minimize the distance
to the incomplete empirical estimate while bounding the distance to the complete
empirical estimate. If A = 0, the bound is so tight that only the complete-only
estimate satisfies it. In contrast, if A = 1 the bound on distance to p¢ is vacuous, and
we effectively perform an unconstrained minimization of the incomplete-data only
likelihood.

Although equivalent, criterion (2.9) is harder to optimize than (2.8), and the
mapping () cannot be computed explicitly; therefore, in practice we must use the
linear combination criterion.

Setting A to M /(M + N) retrieves the usual likelihood of the entire data set, the
sum of complete and incomplete likelihoods. This is the usual criterion currently used
in generative learning whenever training data contains incomplete samples, partly
because the standard algorithm for training latent variable models (EM) directly
optimizes this criterion. EM for mixing complete and incomplete information has
been extensively used empirically (see for instance [17]).

However, due to complex interactions between the two estimators, fixing A to
M /(M + N) is by no means optimal. Our goal is to find an a better data-dependent
allocation parameter that provides stable estimation, in the sense that small changes
in complete information lead to small changes in the estimated density. Instead of
performing a model-by-model analysis which is often intractable, we use homotopy
continuation methods (Chapter 5) to provide a general solution to the problem.

The algorithm we provide is not restricted to the likelihood criterion, but can
be applied to any estimator that trades off complete vs. incomplete information,
and that exhibits major changes with small variations in allocation. For example we
can exhibit a different estimator from a geometrical perspective, that minimizes the

distance to a set of distributions that combines the empirical complete and empirical
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incomplete estimates. Formally, we define P, to be the set of densities obtained by

completing the incomplete data with any conditional:

Py = {p s p(2) = (1= N)p%(2) + )\ﬁI(x(z))rx(z) (z) for some densities 7, on Z(x)}
(2.10)

The estimate 6 is now found by minimizing the KL-divergence to the set Py or

D(Px I p(=]6)) = min D(q(2) [| p(2]6)) (2.11)

The first criterion leads to a weighted version of the EM-algorithm and the latter

one to the em-algorithm [1]. The two algorithms are often identical but not here.

2.4.1 Identifiability with Incomplete Information

An important property of model families relevant for estimation with complete and

incomplete information is identifiability:

Definition A model family M is identifiable with incomplete information if for any
densities p,q € M with px = gx there exist one-to-one mappings o, : Z(z) —

Z(x),Vx € X such that p(2) = q(ox)(2)).

When Z(x) is discrete, identifiability amounts to the fact that the marginal deter-
mines the conditional up to a permutation of the missing component. The importance
of identifiability is that for such models it is enough to estimate py from incomplete
data, and than compute the posterior of o, given complete evidence, in order to
produce a robust estimator.

Many common model families are identifiable. For instance mixtures of normal
distributions are known to be identifiable up to a relabeling of the components [15].
Also, discrete naive Bayes models with binary features and binary class variable are
identifiable if they have more than 3 features [11]. If the class variable is not binary
the exact number of features that make the naive Bayes model identifiable is not

known.
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Nevertheless, even identifiable model families are virtually unidentifiable for the
standard likelihood maximization algorithms, because convergence to local maxima

introduces many degrees of freedom.

2.5 Maximum Likelihood with EM

Normally, incomplete likelihood is optimized by the EM algorithm [10]. Intuitively,
the EM formulation is simple: initialize the algorithm with some parameters of the
density, and then iteratively update them in a two-step iteration: the E step that
completes incomplete training data with its expected value under current parameters,
and the M step that re-estimates parameters by maximizing likelihood of completed
data. Without any modification, if both complete and incomplete data are present
EM optimizes the combined likelihood of complete and incomplete information, that
is (2.8) with A = M/(M + N).

Extending EM to optimizing (2.8) with arbitrary A is straightforward. For our
analysis it is convenient to view each EM iteration as an operator that acts on the
parameters of the current estimate, therefore this presentation of EM merges E and

M steps into a single operator:

EMym) = (1= X5 3 ¢ +Ag, Y Bk —alnl (212
1<i<N 1<j<M
where ) are the mean parameters of our exponential family (2.2). For a derivation of
EM in this general setting see Theorem A.1 in the appendix.
To retrieve the classical EM algorithm from its general version, it is enough to set

A = 1,thus ignoring all complete training data. Consequently, we will often use EM;

as a baseline. Moreover, we can express the general algorithm in terms of EM;:

EMy(n) = (1 — \)n® + AEM,(n) (2.13)

c

where m~ are the mean parameters of the maximum likelihood density based on
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complete data only.
The linear separation between complete and incomplete information in the mean
parameterization will play an important role in proving regularity properties of the

algorithm for finding stable allocation.
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Chapter 3

Geometry of Incomplete

Information

In this chapter we cast in terms of concepts from information geometry [2] the problem
of estimation with incomplete information, and the associated optimization criteria
and algorithms as described in Chapter 2. The goal is to provide a better under-
standing of the current algorithms, that reveals their stability issues, and suggests a
direction for improvement.

We distinguish two spaces of distributions in our analysis: the space of complete
distributions over Z, and the space of marginal distributions over X'. Marginalization
defines a mapping between the two spaces. The distance between distributions in each
of these spaces is KL-divergence, even if it is not a metric and not even symmetric.

Families of densities form manifolds in these spaces. Relevant manifolds are the
model family M, viewed both in the complete and marginal spaces (Mx), and the
data manifold D, the family of all complete densities consistent with incomplete
evidence. Exponential-family manifolds are endowed with a differential geometrical
structure, with Fisher information as the Riemannian metric, and the exponential
and mixture affine connections.

We summarize complete and incomplete evidence by two points that represent the
empirical complete estimate from complete data p¢, and the empirical marginal esti-

mate from incomplete data p’. As mentioned above, the inverse image of incomplete
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evidence under marginalization q(2)p’(x(2))/qx(x(2)),Vq on Z, forms the data man-
ifold. Optimization criteria for estimation with incomplete information are functions
of distances (KL-divergences) between p’, p¢, M, and D.

We call the point that achieves the minimum distance between a point and a
manifold projection. Because of the asymmetry of KL-divergence we distinguish
two types of projection: the m-projection argminy,ers D(q || p), and the e-projection
arg mingep D(q || p). Normally both projections are analytically tractable in the com-
plete space (e-projections may be problematic, but not for our choice of D), and not
tractable in the marginal space. Maximum likelihood with respect to complete data is
just the m-projection of p¢ to M, and the maximum likelihood estimate with respect
to incomplete data is the m-projection of p! to Mx in the incomplete space, which

is not analytically tractable.

3.1 Geometry of Different Criteria and Their

Optimization

3.1.1 Maximum Likelihood and EM
No Complete Data

We can m-project in the incomplete space with the EM algorithm. First we see that
the m-projection to M x is equivalent to minimizing the distance between D and M
in the complete space. This minimization cannot be carried out directly, but can
be approximated by an iteration of successive e- and m-projections between M and
D. This is in fact Amari’s em algorithm as in [1], which is the same as EM in the
no-complete-data setting, but may differ in more complex situations, as we shall see
it is the case when we incorporate complete information.

Csiszar [9] shows that if both D and M are convex this alternating minimization
procedure necessarily converges to the true distance between the manifolds. In our
setting D is convex, but M is not. Because of lack of convexity, the alternating

minimization may converge only to a local minimum of the distance between the
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Figure 3-1: EM, as alternating minimization

manifolds. Even if the global minimum is found, there are many pairs of complete
densities that achieve this minimum, at least up to a label permutation when incom-
plete data is unlabeled. Thus based only on incomplete information it is impossible

to distinguish between these alternatives.

Complete and Incomplete Data

As we have seen in Chapter 2, EM generalizes easily to mixing complete and incom-
plete information. The EM, version of EM for any allocation parameter, optimizes
(2.8), whose geometrical interpretation is finding a density in M that minimizes the
A linear combination between the distance to p¢ and the distance to D. There are

two equivalent ways to geometrically describe the operation of EM,:

e L step e-projects to D then constructs a A linear combination with p©; M step

m-projects back to M (Figure 3-1).

e E step e-projects to D; M step m-projects to M then constructs a A linear
combination in the mean parameterization of M with the m-projection of p¢

on M.
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Therefore EM keeps iterates close to the empirical complete density by averaging
with p¢ at each step. Indeed, Theorem A.3 in the appendix shows that such linear
combinations bound the distance to p©. In fact, criterion (2.9) states that the ob-
jective of EM, effectively is to minimize the distance between M and D subject to

bounding the distance to p©.

3.1.2 Amari’s em

Surprisingly, in the presence of complete information Amari’s em algorithm [1] differs
from EM,. em is a straight alternation of e- and m-projections between data and
model manifolds, while in EM the E step is defined as an expectation that may differ
from e-projection, though for usual models it does not.

In order to present the em algorithm we need to define a data manifold that incor-
porates both complete and incomplete evidence. The obvious choice is the following

linear combination:
D' ={q¢:q¢ = (1-Np° + \g, for some q € D} (3.1)

The em algorithm attempts to minimize the distance between D’ and M by

alternate projections:

¢" = argmin D(q | p(z|n")) and n"** = arg min D(q" || p(z|n)). (3.2)
q€D’ nem

While in EM,, the density ¢" after the mixing step always resides in D', it is not
the one that minimizes the distance to D’ as in em. Therefore in principle EM, is
suboptimal.

However, unfortunately the set D’ is too rich with respect to the conditional
part of its elements, because D itself consists of the marginal p! combined with any
conditional. As a consequence, if ¢" = p(z|y, n™)[(1 — A\)p%(z) + Ap’(z)] is a member
of D', which is the case for moderately large A, the e-projection of p(z|n™) to D’ will

be ¢™. Therefore the e-projection would not depend at all on conditional complete
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Figure 3-2: Discontinuity introduced by increasing source allocation

evidence, even if D' does. Thus em is not relevant for mixing incomplete and complete
information. It seems that EM, that forcefully moves the E-step density towards

complete evidence make better use of that evidence.

3.2 Instability of Maximum Likelihood with
respect to Allocation

The interpretation of maximum likelihood with incomplete information as minimizing
distance to the data manifold while bounding distance to the complete empirical
estimate permits us to justify that small changes in allocation may result in large
changes in the estimate. As in Figure 3-2, M is not convex and usually features
many local minima of the distance to D. The complete evidence p€ is close to one of
the local minima but far from the global, and while relaxing the bound of distance
to p¢ constraint with increasing )\, the estimation moves from the local to the global
minimum. Moreover, this move features discontinuities, because as we can see from
the figure, transitions from one convex region to another are sudden.

Bringing more intuition, the local minimum of the distance between D and M
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closest to p© is related to complete evidence, while the global minimum or other local
minima are unrelated. Therefore, estimates of the conditional for allocations larger
than values that pass through sudden changes must be unreliable, because the jump
removes the dependency on complete evidence. Small changes in the conditional
evidence do not reflect changes in estimation after the jump, thus the estimation of
the conditional becomes unstable.

We have seen that normal maximum likelihood allocates between distances to
complete and incomplete data in the fixed ratio of the number of incomplete to total
samples. Since the interesting problem is when the number of incomplete samples
dominates significantly, typically maximum likelihood allocation is close to 1. There-
fore maximum likelihood focuses on an accurate estimate of the marginal, and less
accurate conditional. Thus maximum likelihood assigns too large a weight to in-
complete data for no theoretically grounded reason. Moreover, if sudden changes in
estimation are present for smaller allocation as in Figure 3-2, the maximum likelihood
estimate will be unrelated to complete evidence, and thus it offers no guarantee on
the stability of estimation of the conditional.

Therefore it is important to allow for unrestricted source allocation in combining
the likelihoods of complete and incomplete data. Fixing allocation to any single value
may lead to suboptimal estimation — unstable if it is too large, or without using the
potential of incomplete data if it is too small. Our aim is to find the maximum
allocation such that the estimate is stable and remains related to complete evidence.
The algorithm will consider a range of allocations rather than focusing on a single

one.
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Chapter 4

Stable Estimation with Path

Following

4.1 Motivation

Standard maximum likelihood algorithms, that combine complete and incomplete
data by simply summing the log-probability of each sample, bias estimation towards
an accurate marginal over the observed variables at the expense of the conditional
density of unobserved variables. More incomplete samples should only improve and
not hurt estimation, otherwise we would be better off ignoring them. But this is not
the case with maximum likelihood, because when the number of complete samples is
much smaller than available incomplete data, the complete evidence becomes insignif-
icant for the purpose of likelihood maximization. In the limit of infinite incomplete
information, the maximum likelihood estimate does not depend at all on complete
evidence. This tendency of maximum likelihood to focus on the marginal and ignore
the conditional contradicts the typical goal of estimation with limited complete and
abundant incomplete sources of information, where the variable of interest is usually
the missing component from incomplete samples.

One may argue that maximizing the likelihood of incomplete data, and than using
the small number of complete samples only to estimate missing components without

modifying the estimate from incomplete data is a legitimate strategy. After all, in
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Figure 4-1: Standard maximum likelihood overvalues abundant incomplete data to
the expense of classification.

many classification problems unlabeled data alone can correctly estimate the model
up to a permutation of the labels, and any such permutation achieves maximum like-
lihood. In such situations the role of unlabeled and labeled data is clearly separable,
with labeled data being responsible only for estimating the label permutation.

However, not all model families are identifiable with incomplete data, and even
if they are, when empirical data violates model assumptions maximum likelihood of
incomplete data may conflict with conditional estimation. For example, Figure 4-1
presents a binary classification problem in which the model family of each class is
bivariate Gaussian. There are only 10 labeled samples, therefore the 1000 unlabeled
dominate the likelihood, such that the maximum likelihood solution (left) is incom-
patible with the classification problem. The intended solution that achieves better
classification is the one to the right, which is only a local maxima of the likelihood.
However, if we allocate more weight to the labeled samples in the likelihood to offset
the number disproportion, the solution to the right becomes a global maximum of
the reallocated likelihood.

Therefore a weighted likelihood such as (2.8) is more suited for estimation with
incomplete information, because it can assign a significant weight to complete data
even if the number of incomplete samples is very large. But the question of what
smaller source allocation to use is difficult, and should not be answered for a model

family in general, but in a case-by-case data-dependent manner.
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Figure 4-2: EM classification error for different weightings of complete and incomplete
information in a naive Bayes model with 20 binary features and 3 classes.

The important observation is that the change from the incorrect to the correct local
maximum is sudden and occurs at a well-defined source allocation. While initially
the left configuration of Figure 4-1 achieves maximum likelihood, as we decrease
the weight of the incomplete source, the right configuration becomes more and more
likely. Then the two configurations become equally likely at a given source allocation,
and for smaller allocations only the right picture achieves global maximum likelihood.
The geometrical considerations in Chapter 3 explain the sudden change in parameters
with varying allocation.

Such discontinuity in maximum likelihood parameters can be observed empirically.
In Figure 4-2 we show the error rates at different source allocations in a naive Bayes
classification problem (20 binary features, 3 classes, 10 labeled, 1000 unlabeled sam-
ples), where for each allocation we have run the EM algorithm initialized to complete
evidence. The sudden change in parameters corresponds to a dramatic decrease in
performance.

Assuming a large number of incomplete samples in comparison with available com-
plete data, the allocation at which the parameter configuration switches should also

be near optimal. All estimates with smaller allocation optimize the correct configu-
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ration, therefore it is safe to use an allocation that maximizes the use of incomplete
data, without switching to a maximum unrelated to complete evidence. Therefore
we advocate the usage of critical allocation for the purpose of mixing complete and

incomplete information.

4.2 Path Following

In what follows we describe an algorithm that detects allocations that feature sudden
changes in estimation parameters. The focus is towards an intuitive description, while
a rigorous numerically stable version of the algorithm will be presented in Chapter 5.

Consider the EM, algorithm (2.12) that optimizes maximum likelihood for any
given source allocation A € [0, 1]. We define parameter paths to be continuous seg-
ments 1(A) of density parameters that are fixed points of the EM, operator for every
A along the path. The allocation A can be thought as the variable that parameter-
izes the continuous path. Sudden changes in maximum likelihood parameters are in
fact discontinuities, that is allocations beyond which the parameter path cannot be
continuously extended.

We can formalize the concept of continuous path extendibility through a differen-
tial equation. Differentiating with respect to A the fixed point condition EM,(n()\)) =
n(\), we get:

dn(\)  9EM,

(I = VpoEMa(n(X))] ) (n(A) (4.1)

As long as the transformed Jacobian I — V,nEM,(n(A)) is invertible, a unique
continuous extension of the fixed point () exists in both directions of smaller and
larger allocation. On the other hand if the transformed Jacobian is singular irregular-
ities such as bifurcations or jump discontinuities must occur (Figure 4-3). Therefore
the singularity of the transformed Jacobian detects critical allocations.

Bifurcations of continuous parameter paths may be a serious problem, because
while discontinuities indicate sudden changes in parameters, bifurcation are smooth,

and choosing the correct branch to follow is difficult. Fortunately, almost never sin-
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Figure 4-3: Parameter bifurcation or discontinuity at critical allocation.

gularities of the EM algorithm correspond to bifurcations; if bifurcations do emerge,
a very small change in complete evidence removes them. The reason for this strong
mathematical result will be apparent in Chapter 5.

The path following algorithm proceeds by starting at the complete-only maximum
likelihood estimate at A = 0, and extends this fixed point continuously by adding
small fractions of dn(\)/d\ as long as the transformed Jacobian remains invertible.
Singularities indicate that no further increase in source allocation is possible without
introducing a discontinuity, thus they are a stopping condition. Besides numerical
consideration in solving the differential equation, the path following algorithm has no
convergence issue because at any step the parameters define a fixed point of the EM

operator.
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Chapter 5

Path Following with Homotopy

Continuation

We introduce a powerful method for path following that is numerically stable and
does not suffer from bifurcations or discontinuities along the path from A = 0 to
A = 1. In principle, the method permits following through critical allocations, al-
though in practice this feature is irrelevant to our algorithm for stable estimation,
that does not need estimates beyond critical allocation. From a practical point of
view the method only solves numerical difficulties in finding fixed points, while from
a theoretical perspective it brings a simple and insightful description of the set of
fixed points of the EM operator.

The method builds on the theory of globally convergent with probability one
homotopy continuation, introduced in mathematics by Chow [5]. Watson gives a
careful and readable description of this important type of homotopy continuation
and its various extensions in [22], and he is also the author of HOMPACK [23], a
numerical package for homotopy continuation that implements mature algorithms for
continuation. Homotopy continuation ideas have been used before in neural networks

6], but are largely unknown to the machine learning community.
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5.1 Theoretical Background

Homotopy continuation is a numerical method for solving general equations that has
its roots in mathematical topology. In order to solve a difficult equation F'(z) = 0,
start with a trivial equation G(x) = 0 whose solution is known, and track its root
while morphing G into F. Formally, given F,G : E" — E", define a homotopy
function to be a smooth map H : E™ x [0,1] — E™ such that H(z,0) = G(z) and
H(z,1) = F(x). The goal becomes to find solutions of H(z, ) =0 for all A € [0, 1].

We can track (x,A) roots of the homotopy while changing A by following the

differential equation the governs continuous paths of solutions:

dz

Vo H (e, N) 5 + 5o H(w ) =0 (5.1)

0/\

By solving the differential equation with the initial condition G(z) = 0 and A = 0,
we hope to find a continuous path of solutions up to A = 1. However, following the
path continuously and uniquely is possible if and only if V, H(x, \) is never singular.
This condition is rarely satisfied, and the path of solutions may end prematurely in
a critical point with a discontinuity or bifurcation.

Surprisingly, a simple change to the naive method, introduced by Chow in [5],
is able to remove all critical points, producing a robust optimization algorithm. In
order to consider the modification, we extend the analysis of homotopy to a family of
trivial equations G,(x) = 0, with @ € E™ an initial point that we are free to choose.
The homotopy H,(x,\) = H(a,z, A) now depends also on the initial point. The new
algorithm will have the property that for almost all @ there are no critical points on
the path from A =0 to A = 1.

The main idea is to follow continuous paths of solutions in the extended space
(z, A), parameterized by a new variable s. The differential equation that governs the

evolution of solutions becomes:

Y a Ha(2, ) - @i%z) =0 (5.2)
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which is well-behaved as long as the Jacobian V(, ) H, has maximal rank. Theo-
rem 5.1, proved in [5] from Parametrized Sard’s Theorem, is fundamental to homo-
topy continuation because it shows that under certain conditions, easy to satisfy in

general situations, the Jacobian always has maximal rank.

Theorem 5.1 Let H: E™x E"x|[0,1) — E™ be a C* map such that the nx (m+n+1)
Jacobian V (qzxH has rank n on the set H *(0), and H,*(0) is bounded for fived
a € E™. Then Vi H, has full rank on H,*(0) except for possibly on a set of

measure 0 of a’s.

Corollary 5.2 Under the conditions of Theorem 5.1, if H,(x,0) = 0 has a unique
solution xg, there exists a unique continuous path in H;'(0) from (zy,0) to A = 1.
All other elements in H,*(0) are on closed continuous loops with 0 < X < 1, or on

paths that start and end at A = 1.

5.1.1 The Fixed-Point Homotopy

The most important assumption of Theorem 5.1, the full rank of V4, »)H, is trivially
satisfied for all fixed-point problems of C? functions under the following standard

fixed-point homotopy:
Hy(z,A) = (1 = A)(a —z) + A(f(z) — z) (5.3)

Therefore we can find fixed points of f(x) by starting at almost any initial point
a and continuously following a path of (x, \) solutions of the homotopy from A = 0
to A = 1. We follow the path by solving a differential equation with respect to a path

parameterization s:

AV, J() — T f(a)—d- (%j) 0 (5.4)

Several methods for numerically solving such equation exist [23]. One of the
simplest ones is to take sufficiently small steps in the direction of (dz/ds, d\/ds).

However, note that equation (5.4) determines the derivative along the path only
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up to a multiplicative factor. Therefore, in practice we need to choose a specific
parameterization of the curve, such as the unit length parameterization. Even in
the context a specific parameterization, the direction is still unspecified up to a sign.
We can resolve this ambiguity by following the curve in the direction that makes the

smallest angle with the previous direction, but more principled methods exist [23].

5.2 Homotopy Continuation of the EM Operator

In this section we apply homotopy continuation results to the problem of finding
fixed points of the EM, operator. Due to the linearity of the operator with respect to
source allocation (2.13), Hyc(n, A) = EMy(n) —n is exactly the standard fixed-point
homotopy (5.3) of EM; at initial point . Moreover, the EM, operator is C? on the
domain of valid parameters (as long as the partition function is C?), thus we only
need boundedness to claim the results of Theorem 5.1.

A necessary condition for the boundedness of the set of fixed points at all alloca-

tions is that conditional expectations of sufficient statistics are always bounded:
{E[t(2)|x,7m] : ¥n} bounded Vx € X (5.5)

The above condition is not satisfied by all exponential families, but most inter-
esting cases that occur in practice will satisfy it. In particular, if Z(x) is discrete
for all x € X, the conditional expectation becomes a finite convex combination of
functions of x, thus it is bounded. This is the case for all classification problems,
in which missing information comes from finitely many labels. Many problems with
continuous missing data will also satisfy property (5.5). 1

Therefore all the strong results of homotopy continuation theory naturally apply
to EM with incomplete information. In particular, for almost any initial points n¢

there is a unique continuous path of homotopy solutions from A = 0 to A = 1,

Even if (5.5) does not hold, it is unlikely that homotopy will fail in an infinite continuous path
that never reaches A = 1. Moreover, the condition is detectable when it occurs, because in the limit
the homotopy matrix will not have full rank.
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and there are no discontinuities or bifurcations along the way. Thus all numerical
problems of naive path following are removed by simply performing the continuation
in the extended (1, A) space.

According to the theory, homotopy continuation amounts to solving the following

differential equation

AV,EMi(n) — I EM,(n) —n°] - (ZZZz) —0 (5.6)

subject to (dn/ds)? + (d\/ds)? = 1 and initial condition (n¢,0).

The homotopy matrix can be computed explicitly for exponential families in gen-
eral. From (2.12) we know that EM;(n) = 57 >0, ;<5 E[t(2)[x(2) = 2, 7], and the
Jacobian of EM; is given by

VM) = |52 3 cov(b(:)lx(z) = afm)| Fp) (57)
1<j<M
where cov is the covariance matrix of the vector of sufficient statistics, and F' is the
Fisher information matrix 59—;21/1(0). For a derivation of the Jacobian see Theorem A.2
in the Appendix.

Figure 5-1 gives a high level description of simplest realization of homotopy contin-
uation for stable estimation with incomplete information. Note that besides solving
the differential equation directly there exist other numerical methods for homotopy
continuation [23]. Also, Euler’s method only advantage is its simplicity, thus in prac-

tice better ODE solvers should be used [18].

5.3 Qualitative Analysis of EM Continuation

5.3.1 General Configuration of Fixed Points

Homotopy theory provides a general characterization of the configuration of fixed
points of EM. According to Corollary 5.2, for almost all starting points n¢, the set
of parameters (n, A) that are fixed points of the EM, operator is composed of only
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Input: Complete data z¢ = (2%, 2, ..., 25), incomplete data x' = (2!, 22,... 1))

Output: Mean parameters 1 at critical allocation
1. Initialize (1, A) to (n©,0) and (dn/ds,d)\/ds)qa to (0,1).
2. Compute EM;(n) and V,EM;(n).
3. Compute (dn/ds,d)\/ds) as the kernel of [AV,EM;(n) — I EM;(n) —n°].

4. Normalize (dn/ds,d\/ds) and choose sign such that
(dn/ds,d)\/ds) - (dn/ds,d\/ds)%, > 0.

5. Update parameters: (1, N)new = (0, A) +€- (dn/ds,d)\/ds), (dn/ds,d\/ds)qa =
(dn/ds,d\/ds).

6. Repeat 2 until A > 1 or det(AV,,EM;(n) — 1) = 0.

Figure 5-1: Simple homotopy continuation algorithm for stable estimation with in-
complete information using Euler’s method

the following types of structures:

e a unique continuous path from A =0 to A = 1;
e some continuous paths with both endpoints at A = 1;
e some continuous loops with all A’s in (0, 1);

e continuous regions with all \’s equal to 1.

Intuitively, because the homotopy differential equation is never degenerate for
A € (0,1), every fixed point can be extended continuously and uniquely in both
directions, therefore the set of fixed points consists of continuous paths only. In
addition, the only fixed point at A = 0 is ¢, therefore the path from 0 allocation to
one 1 allocation is unique, and there are no paths with both endpoints at A = 0. For
a generic configuration of the fixed points of EM, see Figure 5-2. Note that even if
the path from n® to A = 1 is always continuous, it is not necessarily monotonic in
allocation, and this is the reason why naive path following, that always increases the

allocation, finds discontinuities.
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Figure 5-2: Generic configuration of fixed points of the EM, operator

Continuous regions entirely within A = 1 must be included because according to
the theory the homotopy matrix is guaranteed to have maximal rank only for A < 1.
At A = 1, when fixed points do not depend on the initial point, degeneracies may
occur. This is probably not likely to happen often, but it is conceivable that entire
continuous paths may stay at A = 1. Indeed, likelihood with no complete data can
achieve its global maximum not only at multiple points, but even at a continuum of
points. For instance, this is the case for discrete naive Bayes models with only two
independent features. Nevertheless, as soon as A is less than 1, linearly combining
with n¢ removes any irregularities.

It is worth mentioning that homotopy continuation can be used to follow any
continuous component of the set of fixed points. We may start at a fixed point at
A = 1 and follow it until we reach 1 allocation again, or 0 allocation if we happen
to be on the unique path, or we may trace loops of fixed points. Nevertheless, the
only fixed point that we know a priori is (¢, 0), and for a different initialization of
continuation other fixed-point finding algorithms must be used in advance. For the
purpose of this work we are interested only in the continuous path that relates fixed

points to complete evidence, therefore we do not study other initializations.
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Even standard EM without complete samples benefits from the properties re-
vealed by homotopy theory because we can construct an EM, operator by setting
n® to whatever starting point EM is initialized to. The unique path from 0 to 1
allocation looses its meaning in this context, but the connections established through
continuation between different local maxima of likelihood at A = 1 might prove in-

sightful.

5.3.2 Types of Critical Points

Because Theorem 5.1 is not valid without exception for all initial points, homotopy
continuation is not free from irregularities. In this section we give a detailed descrip-
tion of such irregularities so that we can use them to our advantage. We begin with

a definition:

Definition Given an initial point and its associated EM, operator, (1, \) is a strongly
critical point if [A\V,EM;(n) —I EM;(n) — n| does not have maximal rank, and A
for which this happens is a strongly critical allocation. An initial point n® is strongly
critical if the continuous path of fixed points starting at n¢ contains a strongly critical

point.

Strongly critical points are places where bifurcations or discontinuities may occur.
Existence of such points may hinder continuation, but fortunately they may occur
only for a measure 0 set of initial points. Therefore, almost never the initial point is
strongly critical, and if it is, a small perturbation removes the critical character.

Why is the existence of strongly critical initial points unavoidable? To answer
this question consider an identifiable model, or any model for which likelihood can
have only finitely many local maxima. Homotopy continuation establishes a mapping
between non-critical initial points and fixed points of the EM; operator. This is a
mapping between a continuous set to a discrete set, therefore continuation partitions
the set of all non-critical initial points into continuous regions that map to the same
fixed point. The boundaries of these regions realize a sudden transition between fixed

points that can happen only if boundaries contain strongly critical initial points.
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Figure 5-3: Initial points partitioned into regions of convergence bounded by strongly
critical points.

Figure 5-3 pictures a typical partition of initial points into regions of convergence, in
which the boundaries which are strongly critical are of course of measure 0.

Misestimation occurs when the empirical initial point n¢ and the true parameters
n* of the m-projection of the true distribution to M fall in different regions of con-
vergence. While no criteria can verify membership to the same region of convergence,
jumps in path following can detect that the initial point is not consistent with the
marginal, and limit the extent to which the final estimate falls into a distant region.

In order to achieve stable estimation the true initial point n* cannot be on a
boundary. Otherwise even with abundant complete evidence the estimate may be
easily biased towards distant fixed points. Theoretically we can guarantee that if p!
is the true marginal and is an element of My, a small region around the true n*
contains no strongly critical initial point.

To illustrate the effect of the initial point being close to a strongly critical value
consider an operator that has exactly three fixed points as in Figure 5-4 (for instance
f(x) = 2 with fixed points —1, 0, 1, and strongly critical initial point at 0). A path
splits into branches at a strongly critical point, and each branch leads to a different
fixed point of the operator at A = 1. If we perturb ¢ by a small amount, the path
proceeds without any criticality from A =0 to A = 1, and the fixed points that were
on other branches become connected through continuous paths starting and ending at

A = 1. But depending on the direction of the small perturbation of the starting point,
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0 A 1

Figure 5-4: Dynamics of fixed point paths as the initial point passes through a strongly
critical value. Similar line styles correspond to the same initial point.

the final fixed point at A = 1 may end up on any of the initial branches. Therefore
even if the path is not critical, it is not stable at A = 1 because a small perturbation
in the initial point results into a large change at A = 1. The further the initial point
is from the boundary, the more room there is for a poor complete-date estimate, and
the more stable the estimation.

If strongly critical points are unlikely to occur, other types of critical situations

are more frequent:

Definition Given an initial point and its associated EM, operator, (n, A) is a weakly
critical point if A\V,,EM;(n) — I is singular, and A for which this happens is a weakly

critical allocation.

Weakly critical points include not only all strongly critical points, but also places
where A must change its monotonicity in order to continue following the path. In
short, weakly critical points are the places at which continuity would break had we
tried to follow the n path naively under its A parameterization.

Although less obvious, weakly critical points also have a negative impact of stabil-

ity of estimation. From the geometrical considerations in Chapter 3, weakly critical
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allocation is the place where a sudden change in parameters marks a shift from one
convex region to another convex region of M. For larger allocations the fixed point
looses its connection to n¢, and moves away rapidly from n¢ and possible n*. While
the estimate after critical allocation in some instances may be better, we observe a

sudden increase in variance of estimation, compromising stability.

5.3.3 Relationship of Continuation to Standard EM

Both EM and homotopy continuation find fixed points of the same operator. While
EM offers no guarantees on the outcome of the estimation, homotopy continuation
follows a preferential fixed point which is related to complete evidence. The question
is whether in practice the two local optima will indeed be different.

From a theoretical point of view, one can establish that when allocation is in a
small region near 0, EM, initialized to n° must converge to the fixed point found
by continuation. The reason is that the uniqueness of fixed points at A = 0 and the
continuous-path structure prove that in a region near A = 0 there are no multiple
fixed points at the same allocation. However, the region may be quite small, and
beyond it theory does not guarantee similarities between EM and continuation.

Empirically, as it will emerge from Chapter 7, EM, started at ¢ and homo-
topy continuation follow each other for moderate allocation, but at larger allocation
may diverge from each other without regard to weakly critical A’s. When EM, and
continuation follow the same fixed point up to critical allocation, often EM, and
continuation give the same estimate for slightly larger allocation. Of course, contin-
uation must first decrease A\ and increase it again in order to follow the path, but
surprisingly when it reaches slightly larger than critical allocation it meets again the
solution found by EM. Note that we never perform true path following with standard
EM,, but for each value of A we run it separately starting from n¢. In conclusion,
EM, and homotopy continuation tend to stay together for moderate allocation, but
diverge unpredictably for larger; path following indeed finds a preferential fixed point
compared to EM,.
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5.4 Alternate Homotopy of the EM Operator

To illustrate the power of the generality of homotopy continuation, we exhibit a
different homotopy of the EM, operator useful for stability analysis. Fixing the A\
allocation between complete and incomplete information, we want to characterize
how the fixed point reached by continuation changes while the initial point changes.
n% is very noisy because it is an empirical estimate from limited complete data, and
such analysis brings insight into the impact of uncertainty in n¢ over uncertainty in
estimation.

The goal of alternate homotopy is to track fixed points while changing the initial

point and holding A constant. For this purpose we introduce a second allocation pa-

rameter u € [0, 1] and look for fixed points (n, 1) of the following linear combination:

F(n) = (1= N[ = wn{ + pmy] + AEMy(n) (5.8)

assuming that we are given a starting fixed point at p = 0.
The fixed-point homotopy does not apply in this situation, but we can still use

the general homotopy theory by defining the following homotopy function:

Hye(n, p) = (1= p)[(1= N0t + AEM;(n) —n] +

(5.9)
(1= Nng + AEMy(n) — 1]

In order to apply the theory, we need to verify that the conditions of Theorem 5.1
are satisfied. The most important condition, V (@ has full rank at all fixed
points, is trivially satisfied because the following square submatrix of maximal di-

mension

Vo oo (,00) = (1= M) (1= )] (5.10)

is always invertible.
Therefore tracing fixed points with homotopy continuation while changing the
initial point is possible without reaching bifurcations or discontinuities. However, u

need not be monotonic along the path, and the fixed points found at g = 1 are not
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necessarily on the unique continuous path of fixed points that passes through 0.
Another problem is that at g = 0 fixed points other than n{ may exist, therefore the
continuous path may return to one of those points and never reach p = 1.

The importance of the alternate homotopy is only theoretical as it provides insight

into stability of fixed points found by homotopy while the starting point varies.
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Chapter 6

Specific Models

We illustrate the application of homotopy continuation for mixing complete and in-
complete information to a number of specific exponential families. In all cases data
decomposes into unobserved and observed components z = (z,y), so that (z,y) are
complete and x incomplete samples. The missing information y is the class label, and

the class description p(z|y) is model specific.

6.1 Discrete Naive Bayes

We detail homotopy continuation on a naive Bayes model, in which observed data
decomposes into features independent given class. Both the class label and features
are discrete. Discrete naive Bayes is one of the simplest graphical model, and yet is
applicable to many practical problems, such as document classification.

Formally, observed data x € X' consists of features (z1,2,...,2;) € X} X Ay X
-+ X X, and the model family M contains probabilities that satisfy the naive Bayes
independence assumption:

k

11 Pxily)

i=1

k

H Pi(xi,9)

i=1

P(x,y) = Py(y) = Py(y)FvxeXyey (6.1)

Assessing the modeling power of naive Bayes is important for understanding the

impact of incomplete data in label estimation. The more features, the more restricted
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is the model family. Given enough features, the model is identifiable, in the sense
that Px(x) determines P(x,y) up to a label permutation. If features and classes are
all binary, three features suffice for identifiability [11]. In other settings, the exact
number of features needed for identifiability is unclear. Also, the more class labels, the
less restricted the model is: if features are binary and there are more than 2% labels,
M contains all distributions. In practical applications to document classification the
number of classes is small and there is a large number of binary features, thus the
model is probably identifiable.

Naive Bayes, like any discrete graphical model, is in the exponential family [11].
In order to exhibit explicit parameters and sufficient statistics, let’s characterize the

label set and feature sets completely:
y - {yﬂ;yla - 'ayY} and Xl - {x((JZ)*x§7)7 s axg?l}a 1 S l S k

Discrete naive Bayes with positive probabilities can be put into exponential form
(2.2) with Kronecker delta sufficient statistics: {5(33(,-) y)}1§i§k71§jSKi7yEy and {d,, h1<i<v-
] b

Note that symbols of the type ) and 9,, have been omitted, otherwise the param-

(x((f),y
eterization would be over-complete. The expectation of sufficient statistics produces

the mean parameterization of naive Bayes:

{Py (i) h<icy, {B(:cﬁi), y)}lgigk,1gj§m,yey (6.2)
Under this parameterization the EM, operator is:

Pr(y) — (1=XNP%y)+ A cr PT(x)P(y|x)
Pi(z,y) — (1=XNP%z,y) + A X crrma PT(X)P(ylx)

where
I P ot

20sjey [Hill PZ’(XH%)} Py (y;)*

and P¢ and P! are empirical frequencies computed from complete and incomplete

(6.4)

P(ylx) =

53



samples respectively.

Mean parameters must satisfy certain validity constraints: they must be positive,
dorcicy Pr(yi) < 1, and 370 i g, P,L-(xgi),y) < Py(y). Because we perform homo-
topy continuation in an unconstrained fashion, we must ensure these conditions are
automatically satisfied.

Positivity is the most important condition, because it is necessary for the differ-
entiability of P(y|x), thus of the EM, operator. We show that all fixed points along
the unique continuous path with A € [0, 1) have positive coordinates. Assume this
is not the case. Let A\g € (0,1) be the minimum allocation on the continuous path
starting at P¢ for which the positivity constraint is violated. Because of continuity,
the fixed point at A\g must have some 0 coordinates, but no negative coordinate yet.
Therefore for A < Ay, fixed points on the curve have positive coordinates, and some
of them approach 0 when A — Xg. But from (6.3), if all coordinates of a fixed point
are positive, they all must be greater than (1 — \) min PY(x,y). In practice we use
smoothed P¢ so that the previous minimum is positive, therefore no coordinate can
converge to (. In conclusion, homotopy continuation cannot produce non-positive
coordinates for A < 1. The other constraints on mean parameters are automatically
satisfied for any positive fixed point given (6.3), because by just summing up the
equations we get >, Py(y) =1 and erx> Pi(z,y) = Py (y).

It remains to give an explicit formula for the homotopy matrix, or more exactly
V,EM,. Rather than using (5.7), we compute the Jacobian directly. It is enough to
produce the derivatives of P(y|x) with respect to all parameters, and then we can

use (6.3) to construct the Jacobian:

ST (o [P g O
oP(y|x) . Pyl Px\xly) | P\ i)
OP(z,y) 0z(Xi) [ Px(x) O (v) Px(x) ] (6:5)

where P(x \ x;|y/) is marginalization with respect to i'th feature.
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6.2 Mixture of Multivariate Normals

Consider a classification problem in which we model each class as a multivariate
normal distribution. Therefore the joint model of observed data and class label is a
mixture of multivariate normals. Formally, if Y = {y° y*,...,y" } is the set of labels,

and d the dimensionality of data, M consists of densities of the type

1 1 .
p(x,y) = MmN (x|y) = Wym exp —§(X — ) B (x— ) (6.6)
Y

where g, i, 3, and 7y, 0 <4 <Y, are the means, covariances, and mixing coefficients
of the mixture.

Mixtures of normal distributions form an exponential family. Simple compu-
tations show that (6.6) can be put into exponential form with the following suffi-

T, Taking expectations

clent statistics: {d,i(y), 6, (y)x, 0,i (y)xx" h1<i<y, X, and xx
of sufficient statistics we obtain the following mean parameterization of a mixture of
normal distributions: {mys, myi e, TSy hicicy, and Y ooy Tyibbyis D ocicy TyiSyis
where S, = E, ), xx'] = 2, + uyu;‘j. However, we will use a simpler equivalent

parameterization:

{ﬂ-yi}lgigY; and {ﬂ'yi[l,yi, Tyisyi}ogigy (67)

where 7’s are positive of sum less than 1, and 7S’s positive definite.
Given complete samples (x;,¥;)1<i<ny and incomplete samples (x)1<;j<nr, the EMy

algorithm mixing the two sources of information has the following updates:

1 1
mo= (=5 D 4w A Y pulx) (6.8)
1<i<N 1<j<M
1 1
Ty, = (1_)\)N Z 5y(yi)Xi+)\M Z p(y[x))x] (6.9)
1<i<N 1<j<M

1 1
mSy, = (1=N5 D Swxx + Az Y plylx)xix’  (6.10)

I<i<N 1<js<M
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Here the mean parameterization is crucial for the linearity in allocation of the
operator. Nevertheless, if we use the standard parameterization (means, covariances,
mixing), we can still derive a valid homotopy continuation algorithm, as the regu-
larity properties of linear homotopy translate under a reparameterization. Because
taking gradients with respect to mean parameters (or computing Fisher information)
is more involved from the point of view of symbolic computation, we detail homotopy
continuation for the standard parameterization.

To apply homotopy continuation we need the homotopy matrix, therefore explicit
formulas for VEM. Derivatives with respect to m,, p,, and 3, can be computed from
the EM updates once we know the derivatives of p(y|x). These can be obtained from

the derivatives of the full joint

Ip(x,y) 1 1

Tﬂy = W_yp(x’y)_zy,ﬂy/p(xﬂy) (6.11)
WO o) [+ (57 (- ) (6.12)
T = gl (5 = (5 e e =) U5 (619
using the following formula:
oplylx) 1 dpxy)  pyx) < Ipxy)
R e D (614

For numerical reasons, in practice it is better to work with logarithms 7, = log 7,
rather than the true mixing coefficients:
ap(xa y) 7ry

Tfry =p(x,y) — S ,Wy/p(x’y) (6.15)

The above derivative has the right scale. Moreover, when working with logarithms it
is trivial to show that the positiveness of mixing coefficients is maintained along the

path.
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Chapter 7

Experiments

We implement homotopy continuation for finding fixed points of the EM algorithms
on mixtures of multivariate normals, and discrete naive Bayes families. To solve
the differential equation we use a second order Runge-Kutta algorithm with a small
step size. The computationally dominant step is solving equation (5.4) by a QR
factorization of the homotopy matrix. Due to this operation the algorithm is O(n?)

in the dimension of the homotopy matrix, i.e. the total number of parameters.

7.1 Multivariate Normal Models

We analyze the performance of homotopy continuation for estimation with complete
and incomplete data under Gaussian model assumptions on artificially generated
binary classification problems. Because of the high variability due to limited com-
plete data, we run each experiment many times with randomly selected labeled and
unlabeled samples from generated data. In homotopy continuation, we extend a con-
tinuous path of fixed points started from complete evidence until we reach a weakly
critical allocation, or maximum-likelihood allocation, whichever is the minimum. Be-
cause maximum likelihood allocation is typically almost 1, stopping a path with no
critical points at maximum-likelihood allocation or at 1 makes little difference. Also,
if the path features no critical points EM and homotopy continuation have equal per-

formance in practice, therefore we compare EM and continuation mostly on the runs
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with critical points.

As expected, weakly critical allocation occurs when there is disagreement between
labeled and unlabeled evidence, either because unlabeled data violates model assump-
tions, or because unlabeled data is so limited that the complete-data only estimate
is far from the truth. To emphasize the impact of homotopy continuation, we choose
data generated mostly from models that disagree with the family used by the al-
gorithm, but we also show an instance in which data is generated from exactly the
model family of the algorithm.

In Figure 7-1 we show homotopy continuation and EM runs on three different
cases, each generated from four Gaussian clusters. In the first two cases one class
consists of three of the clusters, and the other class of the remaining cluster, while
in the third case two clusters are assigned to each class and classes cross each other.
In each case we show a plot of the classification error of homotopy and EM in terms
of the complete-data only classification error for each run. Points above the main
diagonal are to be avoided, because in such cases addition of unlabeled data hurts
classification. The plots feature only runs in which homotopy stopped at a critical
allocation, because in the rest of the runs EM and continuation achieve the same
classification error. In each case we performed 500 runs with 20 labeled and 200
unlabeled randomly selected samples, and critical allocation appeared in 20%, 27%,
and 24% of the runs, respectively.

In the first experiment we can see from Figure 7-1 that EM dramatically increases
the error when the labeled-data only estimate is accurate, and it reduces it when the
initial error is large. Homotopy is able to pick up in the instances that feature critical
allocation all situations in which EM dramatically increases the error. All critical
homotopy runs are below or not far above the main diagonal. However, stopping at
critical allocation is more conservative than EM, not reducing the error by as much
as EM when the initial error is high to begin with.

The second experiment differs from the first only in that clusters have higher
variance, therefore there is a higher degree of model misfit. The impact is that

the percentage of critical homotopy runs is higher (27% compared to 20%), and the
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Figure 7-1: Comparison of EM and homotopy continuation on 500 random selections
of 20 labeled and 200 unlabeled samples on each of three different problems. Left:
complete data from which to choose samples. Right: classification error vs. complete-
data only classification error on each run that had a critical allocation.
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Figure 7-2: EM and homotopy continuation on data that violates the diagonal Gaus-
sian class model assumption. Left: complete data from which to choose samples.
Right: classification error vs. complete-data only error on 500 random selections of
8 labeled and 1000 unlabeled samples (critical allocation only).

number of runs in which EM fails is also higher, while EM reduces the error by a
smaller amount in the better runs. Homotopy is again able to pick up all situations
in which EM fails, increasing the gain from the addition of unlabeled data.

Because the performance of EM seems to be very related to the degree of model
misfit, we run an experiment in which there is high disagreement between data sam-
ples and the model. In Figure 7-2 data comes from two Gaussian clusters with
correlated coordinates and with a large overlap. We model each class by naive Bayes
Gaussians, i.e. normals with diagonal covariances. We sample 8 labeled and 1000 un-
labeled points in 500 runs, and we achieve a higher percentage of critical homotopies
than in the previous experiments, 48%. In this experiment EM fails dramatically with
almost all runs increasing error with the addition of unlabeled data, while homotopy
is able to not only limit but also reduce the error on the problematic runs.

We can analyze the experiments in even more detail by looking at what happens
to the decision boundary while following a path of fixed points with homotopy con-
tinuation. In Figure 7-3 we see a typical run in which homotopy outperforms EM on
the data from Figure 7-2. The left graph shows the evolution of allocation along the
path with each iteration. Weakly critical points occur at local optima of the graph,

with the first one at A = 0.11, and sharp subsequent ones at 0.55 and 0.17. Although
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Figure 7-3: homotopy continuation run on experiment from Figure 7-2. Left: al-
location with critical values. Right: decision boundary from complete-data only
estimation, at the first critical allocation, and as trained by EM.

homotopy can follow through all critical points, we do not have a way to rank critical
allocations, therefore we always stop at the first one. Note that the large number of
iterations is due to a very small homotopy step size in following the gradient, and can
be greatly reduced with adaptive step size methods [23].

The right graph in Figure 7-3 depicts the 8 labeled and all unlabeled samples, and
the evolution of the decision boundary while following the path of fixed points. At
the first critical allocation unlabeled data correctly adjust the decision boundary, but
the solution provided by EM is very far from the truth, splitting a class in two. The
transition from the initial boundary to the final one does not happen smoothly with
increasing allocation, and that is why homotopy continuation is able to prevent it.

It is important to point out that EM fails mostly due to violation of model assump-
tions, thus when the training data matches well the model it is likely that homotopy
continuation is too conservative. To illustrate such an example we consider a case in
which classes are far apart Gaussian clusters, and the model family is also Gaussian
with no restrictions (Figure 7-4). With sufficient unlabeled data there is little chance
that EM with converge to locally optimal parameters. Therefore at large allocations
EM will converge to the same parameters, up to a label permutation, indifferent of

the complete evidence. In such situations even noisy labeled data should suffice for
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Figure 7-4: EM and homotopy continuation on a data set that agrees well with the
Gaussian class model assumption. Left: complete data from which to choose samples.
Right: classification error vs. complete-data only error on each run that had a critical
allocation out of 500 random selections of 10 labeled and 100 unlabeled samples.

a correct identification of the classes through EM initialization. Indeed, in Figure 7-
4 on 500 random selections of 10 labeled and 100 unlabeled samples EM achieves
very good error reduction in all cases, while the conservatory homotopy almost does
make use of unlabeled data on the critical runs. Average over all runs homotopy still
reduces error from 8% to 7%, but EM achieves 3%.

Interestingly, there are still 26% critical runs even with such a perfect match
between unlabeled data and model assumptions. This indicates that the critical
allocations encountered in this experiment are due to the high variability of the labeled
samples that causes an initial mismatch between complete-data only estimate and
true distribution. To verify such claim we take a close look at the performance of
a sample homotopy continuation (Figure 7-5). In the presented run it is clear that
the complete-data only estimate is far from the true distribution, and cannot be
continuously evolved into it. Indeed, the path has a critical point at A = 0.62, and
the decision boundary evolves into a negative direction before critical allocation until
it is able to adjust to the unlabeled evidence. Path following before critical allocation
does preserve a continuous link with complete evidence, and does not allow a large
jump to a different configuration, as it cannot evaluate whether the new configuration

will be a very positive or very negative one.
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Figure 7-5: homotopy continuation run on experiment from Figure 7-4. Left: al-
location with critical values. Right: decision boundary from complete-data only
estimation, at the first critical allocation, and as trained by EM.

The artificial experiments on mixtures of normal distributions suggest that homo-
topy continuation trades off increased stability and connectedness with labeled evi-
dence at the expense of less aggressive usage of incomplete information. This tradeoff
is especially beneficial when model assumptions are questionable, as other algorithms
such as EM may not only increase but also dramatically decrease performance, and

homotopy continuation detects when this may happen.

7.2 Text Classification with Naive Bayes

We apply homotopy continuation to a document classification problem that poten-
tially poses more difficulties in estimation with labeled and unlabeled samples than
the artificial mixture of normals. This is because real data usually has a higher degree
of model misfit, and also the larger number of parameters offers more opportunity for
local optima. The task is to construct from few documents with known topics and
many uncategorized documents a classifier that correctly assigns new documents to
one of the given topics. We use the 20-newsgroups database for training [17], which
is a collection of newsgroup articles labeled by the newsgroup on which they were
posted.

We use a standard naive Bayes model for documents, that performs well in practice
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even though it discards all syntactical information and makes simplifying assumptions
that are clearly violated. Specifically, we represent each document by a set of binary
features that indicate word appearance in the document for each word in the vocab-
ulary [14]. Note that only word presence matters, not the actual word count. Other
naive Bayes models that make use of word counts exist [17], but to illustrate homo-
topy continuation on a simple model we opted for binary features. The naive Bayes
assumption is that documents in each class have statistically independent features.
Under this assumption the computations from Section 6.1 are directly applicable.

Because homotopy continuation with exact computations is O(n?) in the number
of parameters, we reduce the size of the problem to control the complexity of exper-
iments. The parameterization of discrete naive Bayes has YN + Y — 1 parameters,
where Y is the number of classes and N the number of features, and we reduce both
Y and N. We run experiments on 3 randomly selected classes, and the 20 features
that have the largest mutual information with the class label. We perform feature
selection only once on all 20 newsgroups, hoping that the most significant 20 words
do not vary too much for the three-class problem with limited labeled samples.

A difficulty that we may encounter in discrete settings, especially under scarce
labeled data, is that empirical maximum likelihood probabilities of some features may
be zero. Such zero probabilities do not generalize because the feature will eventually
occur in some test sample, and also pose technical problems because they correspond
to infinite natural parameters of the exponential family. To avoid such problems we
smooth the labeled empirical estimate by adding a count of 1 to each (feature, class)
pair (i. e. Laplace smoothing). Smoothing changes the starting point of homotopy
continuation, hopefully to a sensible value.

In Table 7.2 we show results from an experiment with 10 randomly selected labeled
documents, and the rest of 2916 available documents from the 3 classes selected
(talk.politics.mideast, soc.religion.christian, and sci.crypt) as unlabeled data. The
results combine 50 experiments out of which 45 featured homotopy paths with critical
allocation. Maximum likelihood allocation is effectively 1, while the average critical

allocation was 0.93. We see that homotopy continuation dramatically improves the
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labeled only | homotopy | EM
critical runs 35.8% 20.4% 28.0%
all runs 35.7% 21.4% 27.7%

Table 7.1: Error rates of maximum likelihood from labeled data, homotopy continua-
tion, and EM on 50 random selections of 10 labeled documents from 2926 documents
in three classes.

poor estimation based only on 10 labeled samples, and outperforms EM even if the
critical allocation is close to the maximum likelihood allocation. This is due to the
fact that even a small increase in allocation can result in a jump followed by large
change in error rate.

We visualize the effect of critical allocation on classification error on a few typical
instances of the experiment described above. In Figure 7-6 we show on the same graph
in terms of homotopy iteration both the error rate and the allocation parameter.
Critical values of allocation are followed by a sudden change in error rate, which is
negative most of the time, but it can also be positive. In most situations EM is able to
reduce the error rate of maximum likelihood from labeled data, but the reduction can
be even more dramatic for lower allocation. In other cases even the slightest positive
allocation of unlabeled data damages estimation, and homotopy continuation is able
to bound the increase in error by stopping before the dramatic increase. Yet in other
runs homotopy continuation does not detect the benefit or the loss from including
unlabeled data because there is no critical allocation.

We have seen on a simple naive Bayes model that homotopy continuation has the
ability to bound allocation of incomplete data to maximize its use while maintain-
ing a connection with complete evidence that disallows convergence to unsupported
local maxima. Maintaining the homotopy connection is likely to be even more impor-
tant with larger number of parameters because of a larger number of local optima.
Nevertheless, the number of parameters can be prohibitive in computational complex-
ity. Approximate methods that may alleviate this problem are a direction of future

research.
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Figure 7-6: Possible evolutions of error rate and allocation with homotopy contin-
uation iteration on a discrete naive Bayes model with 20 binary features. Critical
allocations may or may not be present, and may signal a negative or positive change

in error rate.
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Chapter 8

Discussion

We have introduced a general algorithm for estimation within the exponential family
from limited complete and many incomplete samples that is stable as opposed to
standard EM-like algorithms. The algorithm proceeds by following a continuous path
of fixed points of the EM operator, starting from full weight on complete data, and
increasing the allocation of incomplete data until the path reaches a discontinuity.
The algorithm is able to find the critical allocation in O(n®) complexity in the number
of parameters. We present results on artificially generated mixtures of Gaussians,
and on text classification with naive Bayes, demonstrating that our algorithm is able
to pick up instances in which EM drastically increases classification error with the
inclusion of unlabeled data.

Our view of estimation with incomplete information as a source allocation prob-
lem between two heterogeneous data sources permits easy generalization to other
problems involving estimation from different sources of information. An important
consequence of the presented work is that error rates, and other quantities of interest
that depend on the allocation between the different sources, feature discontinuities
and sudden changes at specific values of the allocation. Such critical values are iden-
tifiable through homotopy continuation methods, and depending on the problem may
have different interpretations. We have seen that in the labeled/unlabeled data set-
ting critical allocation signals an unwanted decrease in stability, but in other contexts,

such as novelty detection, it may signal that a desired departure from the initial model
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has occurred.

The numerical algorithm used in path following, globally convergent with proba-
bility one homotopy continuation, is of important interest in itself, because it benefits
from theoretically-proven strong regularity properties, that are widely applicable to
any fixed-point optimization problem, provided that the conditions of the homotopy
theorem are verifiable. Of particular interest are domains that feature natural ho-
motopies in which the allocation parameter has a physical interpretation rather than
being artificially introduced.

Possible directions of extending the current work include a homotopy continuation
study of allocation between two sources without a priori bias over one of the sources,
and further, the study of allocation between multiple sources of information (more
than two). Another direction of research is estimation with incomplete information in
which samples can exhibit more than one type of incompleteness (different incomplete
samples may have different variables missing). Yet another direction of research
is exploiting the ability to detect critical allocation in developing active learning

algorithms.

68



Appendix A

Proof of Results

Theorem A.1 Let z¢ = (2%, 25,...,25) and x! = (2, 2L,... 2%,) be sets of com-
plete and incomplete samples. Given a distribution p(z|m) on the complete space from
an exponential family exp (6t(z)" + k(z) — ¥(0)), the following update of the mean

parameters:

EMy(m) = (L- Ny 30 60 + A S Elb(alx(z) =alm] (A1)

1<i<N 1<j<M

monotonically increases the X\ conver combination of complete and incomplete log-

likelihoods.

Proof We begin with the following application of Jensen’s inequality due to the

concavity of log:

(

p
(

g P / p(al) pleln) / p(Ed) | Z:”j';dz (A.2)
z Z( Zin

n
px(x|n) (x) px (x|1) p(z|n) x) px(x|N)

With the above inequality we can derive a variational lower bound at 7 on the

combined log-likelihood:
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£lm) =2 S togp(:Clm) + - S ogp(aln) > £03) +

1<i<N 1<j<M
1-A p(zf p(z|n)
+ E log +— § / T 9)log Zdz (A3
N 1<i<N p( 1<J<M g p(2]n) (A-3)

Therefore we can guarantee an increase in log-likelihood by maximizing with re-

spect to m the following quantity:

- A A R

— > logp(ellm) + - Y / p(z|z}, 0) log p(z|n)d= (A.4)
1<i<N 1§j§M Z(])

Representing p as an exponential distribution in terms of natural parameters we

obtain the following equivalent formula that must be maximized:

T
1 c 1 I
ol1-Ny X Ay X [ plelal n)t(Z)] —4(0)  (A5)
1<i<N 1<j<M 7 Z(@j)

Differentiating with respect to @ we recover the necessary condition that must be

satisfied at the maximum, if the maximum lies inside the domain of mean parameters:

n=(1- )\)% >t + )\— > / M)t (z) (A.6)

1<i<N 1<]<M

Because the domain of mean parameters is convex, and t(z) is in the domain of
mean parameters (a typical exponential-family constraint), the above equation defines
a valid set of mean parameters, thus the maximum is not achieved on the boundary.
Because the partition function of an exponential family is convex, the above condition

is also sufficient, defining the unique maximum. O

Theorem A.2 Let p(z|n) be a distribution on the complete space from an exponential

family
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exp (Ht(z)T + k(z) — 7,&(9)) and xI = (2l 2L ... 21,) a set of incomplete samples.

The Jacobian of the EMy operator (with full weight on incomplete samples) is given

by:

VaEMi(n) = |37 3 covlb(lx(z) = afm)| Fep)t (A

1<j<M
where cov is the covariance matriz of the random wvariable t(z) under p(z|x(z) =

. . . . . 2
zf,m). and F(n) is the Fisher information matriz %1&(0).

Proof We first write the EM; operator in the following way using our definition of

incompleteness:

1 1 fz(wg)p(z|n)t(z)dz
EM = — E[t =zl n=— . A.
o M 1<j<M SR o ") M 1<<M fz(m§)p(z|7])dz (A4.8)

Taking the derivative with respect to m we express the Jacobian in terms of

L p(z|n):

VyEM;(n)

1 {IZ(IJI) t(z)T%p(ZM)
1<j<M

B o fz(zp %’p(zh’))
~M Topplm) A = o }

7 fz(x§)p<z|77)
(A.9)

Using the fact the p is an exponential family we can derive %p(z|n) by first

differentiating with respect to the natural parameters 6

d

G718 = ple18) [62) — 150(6)| =pCle) e —m (A0

and changing the variable to n

d

T = Zgp(18) - Vap = plelm) [62) —n - Flp) T (A1)

where F'(n) = 8‘9—0227,&(0) = Vn is the Fisher information matrix.

Substituting %p(z|n) in (A.9) we get
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which is the result stated in the theorem. O

Theorem A.3 For any distributions P and @, and for any X € [0,1) the following
inequality holds:

D(P|| (1 =XP+ Q) < log (A.13)

1
1—A

Proof D(P||(1—)\)P—|—)\Q):fPlog(1ﬂ\)%,\QSfPlogﬁzlogﬁ. O

Theorem A.4 Let f and g be continuous functions on a compact set. There exists
a monotonically increasing function 3 : [0, 1] — [0, 00) such that for every X € [0, 1],
(1=X)f+Ag and {g|f < B(N)} achieve their minimum at the same time. Moreover,

we can choose B(0) = min f and any F(1) > max f.

Proof (1 — \)f + Ag is continuous on a compact set thus it achieves its minimum.
Let x) be one of the points achieving it. Moreover, let 2\ be a point achieving the
minimum of {g|f < f(x))}. Then f(z)) < f(z\) and g(z}) < g(x)). Therefore
(I =N f(2)) + Ag(x)) < (1 —XN)f(xy) + Ag(xy), and because z, is a minimum by
definition, we must have equality. If follows that z/, achieves the minimum of both
{9|f < f(«)} and (1 — A)f + Ag. Therefore we can define G(\) = f(2,) to ensure
that the functions in the statement achieve their minimum at the same time.

It remains to show that [ is increasing. Let Ay < Ag. By definition

(1 —=X1)f(2),) + Mg(x),) < (1= M) f(a),) + Agla),)
(1= o) f()) + Aag(xh,) > (1 = Xa) f(),) + Aag(z),)

Substracting the second inequality from the first we obtain:
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(A2 = M)(f (7)) —9(2),)) < N2 = M)(f(),) — 9(x),))

therefore f(z),) — g(z),) < f(2),) —g(x)},), or equivalently B(A1) — B(A2) < g(),) —
g(x),)-

Assume by contradiction that 8(A1) > B(A2). It follows that g(z), ) > g(z),). and
since f(z),) < B(A2) < B(A1), o, cannot be a minimum of {g|f < B(A1)}. This is a

contradiction. The choice of values of 3 at 0 and 1 is trivial. O
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